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Abstract

Contrary to popular lore, optimal visual acuity is typically better than 20/20. Could correcting

acuity beyond 20/20 offer any benefit? An affirmative answer could present new confounds

in studies of aging, development, psychiatric illness, neurodegenerative disorders, or any

other population where refractive error might be more likely. An affirmative answer would

also offer a novel explanation of inter-observer variability in visual performance. To address

the question, we had individuals perform two well-studied visual tasks, once with 20/20

vision and once with optical correction, so that observers could see one line better on an eye

chart. In the contour integration task, observers sought to identify the screen quadrant loca-

tion of a sparsely defined (integrated) shape embedded in varying quantities of randomly ori-

ented “noise” elements. In the collinear facilitation task, observers sought to detect a low-

contrast element flanked by collinear or orthogonal high-contrast elements. In each case,

displays were scaled in size to modulate element visibility and spatial frequency (4–12

cycles/deg). We found that improving acuity beyond 20/20 improved contour integration for

the high spatial frequency displays. Although improving visual acuity did not affect collinear

facilitation, it did improve detection of the central low-contrast target, especially at high spa-

tial frequencies. These results, which were large in magnitude, suggest that optically cor-

recting beyond 20/20 improves the detection and integration of contour elements, especially

those that are smaller and of higher spatial frequency. Refractive blur within the normal
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range may confound special population studies, explain inter-observer differences, and

meaningfully impact performance in low-visibility environments.

1. Introduction

Ever since Herman Snellen introduced his eye chart in 1862, optimal vision has often been

thought to be 20/20, which corresponds to the ability to resolve gaps of 1 arc minute [1]. How-

ever, optimal visual acuity of healthy adult eyes is typically better than 20/20 [2, 3] (Fig 1A).

Fig 1. Motivation, stimulus, and results for the contour integration experiment. (A) Whereas habitual visual acuity

is approximately 20/20 for the majority of adolescents and adults, acuity can typically be further improved via optical

correction (see also [2]). This implies that it should be possible to optically improve not just acuity but also other

aspects of visual performance among those with 20/20 vision (Figure adapted from [3]). (B) Observers in the contour

integration experiment attempted to detect the screen quadrant location of a circular integrated target (shown here

with a small number of randomly oriented “noise” elements). (C) The stimulus display was scaled larger or smaller to

yield a lower and higher spatial frequency condition (4 or 12 cycles/deg). (C) Self-adjustable eyewear enabled observers

to reach threshold accuracy (75%) under noisier conditions for the high spatial frequency condition. Errors

equal ± 95% confidence intervals. *** p< .001.

https://doi.org/10.1371/journal.pone.0310678.g001
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Can improving acuity beyond 20/20 improve other aspects of vision? An affirmative answer

would reveal a new confound for studies that do not match groups on refractive error and

would offer a novel explanation for individual differences on vision tasks. It would also justify

a re-evaluation of visual acuity requirements for consequential activities such as driving at

night, flying aircraft, or conducting military or police operations in low-visibility

environments.

To consider the relevance of optical correction within the normal range, we had observers

with 20/20 vision perform two well-studied psychophysical tasks, once with 20/20 vision and

once with vision improved beyond 20/20. In the contour integration task, observers sought to

identify the quadrant location of a closed circular chain of oriented elements (“Gabors”) that

appeared among a varying number of randomly oriented and positioned “noise” elements

[4, 5]. In the collinear facilitation task, a central low-contrast target was presented between col-

linear or orthogonal high-contrast flankers, and observers determined on each trial whether

that target was present or absent [6]. In each task, the entire display was scaled in size so that

the elements were presented with a lower or higher spatial frequency (4 cycles/deg versus 10 or

12 cycles/deg). Scaling in this way allowed us to examine whether visual correction could

become more relevant for less discernible features.

These two experimental paradigms have been of long-standing interest in special popula-

tion studies because their biological substrates have been extensively investigated. Studies in

psychophysics, electrophysiology, and single-unit recording have shown that contour integra-

tion and collinear facilitation are subserved by long-range horizontal excitatory connections

between orientation-tuned spatial frequency filters in V1/V2 and by feedback from higher-

order visual areas such as V4 [7–10]. These tasks have therefore been used to evaluate visual

cortical functioning in aging [11], autism [12, 13], development [14], schizophrenia [15, 16],

dyslexia [17], drug abuse [18], and amblyopia [19, 20], among other cases. Contrast sensitivity

deficits—which can be revealed via the collinear facilitation task and which have a neural basis

in the visual pathway [21]—have also been documented in a range of populations, including

aging [22] and schizophrenia [23, 24]. In most cases, observers have “normal or corrected-to-

normal” vision, which in its strictest definition, corresponds to having at least 20/20 vision.

Here, we consider whether visual acuity confounds can arise when all subjects meet this

requirement. An affirmative answer would show that inferences about visual cortical function-

ing in special population studies may often be premature.

In previous work, we compared healthy adults with 20/20 vision to those with better-than-

20/20 vision (average logMAR difference = .12) on the experimental paradigms just described

[25]. We found that the 20/20 group performed worse on the contour integration task and had

worse contrast sensitivity on the collinear facilitation task, especially for small, high spatial fre-

quency displays (scaled down in size). We hypothesized that the main effect and interaction in

each task resulted from differences in refractive error. However, that study, being correlational,

could not indicate the true origin of the deficit. Visual acuity has not just an optical component

but also a cortical one, requiring a process of comparing a noisy incoming sensory representa-

tion to potentially 26 letter templates stored in long-term memory (assuming that most

observers are English speaking and naïve to the Sloan optotypes) [26]. Eye movements are also

relevant such that removing strategic micro eye movements via image stabilization can impair

visual acuity by 1–2 lines on an eye chart (~0.15 logMAR units) [27]. Other factors, such as the

integrity of the retina and optic nerve, and the pupillary reflex, can also impact acuity [28, 29].

What is needed, and what we provide here, is a simple but convincing demonstration that

optical blur within the normal range can degrade visual perception for two commonly used

and biologically well-described psychophysical tasks.
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2. Materials and methods

Data availability

The experimental data are available as supplemental material. The data file is in SPSS format

(see S1 Data) and can be opened using the read.spss function in the foreign R library or in

JASP. Definitions for the variables in the data file can be found in S1 File.

Participants

The participants included 14 adults (8 females; age: M = 27.4 years, SD = 8.7, with age informa-

tion lacking for one individual). Two participants were the co-authors (BK, BPK); all others

were psychophysically inexperienced. None of these observers were dropped from the analysis

and none discontinued the task due to fatigue or discomfort. The sample size was guided by

the large effects uncovered in the aforementioned correlational study [25]. To be included in

the study, observers needed to have at least 20/20 vision that was correctable by at least one

line on an eye chart. We did not require any specific refractive error value before or after opti-

cal correction since many, if not most, special population studies exclude subjects based on

subjective acuity rather than refractive error. The research followed the tenets of the Declara-

tion of Helsinki and was approved by the Rutgers IRB. Accordingly, all participants provided

informed written consent upon being apprised of the nature and possible consequences of the

study.

Optical correction

Acuity was established binocularly with a logarithmic (“ETDRS”) visual acuity chart (Precision

Vision, LaSalle, Illinois) presented under fluorescent overhead lighting. Visual acuity values

were expressed as logMAR units—the logarithm of the minimum angle of resolution (in arc-

min) or the log10 of the Snellen fraction inverse, with 20/20 vision corresponding to 0.0 log-

MAR and with each line below it corresponding to downward steps of 0.1 logMAR. Passing a

line required identifying at least three of the five letters on a line, and an observer’s acuity cor-

responded to the lowest line at which the observer was able to achieve that threshold. Note

that, compared to Snellen charts, ETDRS test charts have better test-retest reliability and a

lower floor for performance (20/10 rather than 20/16) [30, 31]. Note also that letter-based acu-

ity charts (including Snellen) are routinely used in many scientific studies that critically

depend on visual acuity, such as those that examine eye movements, spatial vision, and visual

plasticity [27, 32–34].

Visual acuity estimates were obtained with the chart-recommended viewing distance of 2

meters. An advantage of this chart is that its estimates are robust and apply to a variety of dis-

tances, including those employed in our study (.88 meters and 1.82 meters) [35]. Note that our

results would likely be the same if we had used a more standard ETDRS viewing distance of 4

meters. This is so because: i) visual acuity, on average, does not change between 0.5 and 7.5

meters [35], ii) accommodation response is small (~0.5 D) and has been empirically been

shown to be almost identical for distances ranging from 1 meter to 8 meters [35], and iii) our

participants were young and unlikely to have issues with lens accommodation. It should also

be pointed out that severe hyperopia is unlikely in our study because the condition is uncom-

mon in young adults [36] and because participants were able to reach 20/20 subjective acuity

without optical correction.

Visual acuity was corrected via Adlens Emergensee glasses (purchase date: July 2013),

which rely on Alvarez Dual Lens technology. The glasses consisted of a pair of slender lenses

for each eye, with each lens having a wavefront curvature. By turning a knob for each eye,
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observers could slide the lenses laterally across each other to adjust the overall focal length.

Twelve observers wore such glasses to improve their acuity by at least one line on the eye

chart. One additional observer had prescription glasses to improve their vision, and another

observer used the adjustable glasses to achieve both 20/20 and 20/16 vision. When using the

adjustable glasses, observers covered one eye with an eye occluder and adjusted a knob on the

side of the glasses until they could see the line below the lowest line they could see without the

glasses as clearly as possible. This process was repeated for the opposite eye so that stimulus

clarity would be improved binocularly. The binocular visual acuity before acuity correction

was 20/20 (n = 12) or 20/16 (n = 2) (average logMAR = -0.01); the binocular acuity after cor-

rection was 20/16 (n = 12) or 20/12.5 (n = 2) (average logMAR = -.12). For expository pur-

poses, we refer to the two visual acuity conditions as “20/20” and “corrected”, although it

should be borne in mind that observers could likely have been corrected even further with spe-

cialized optometric equipment (see Discussion).

Apparatus

The apparatus was the same as in our previous study [25]. Participants viewed stimuli from a

chin rest on a 21” CRT monitor, which had a resolution of 1024x768 and a frame rate of 100

Hz noninterlaced. Lookup table values for the monitor were linearized with Psychophysics

Toolbox [37] and calibrated on a regular basis with a Minolta CS-100 photometer (Konica

Minolta Sensing Americas Inc, Ramsey, New Jersey). The room was darkened shortly before

the tasks in order to minimize distractions from other details of the testing room and to be

consistent with our earlier work. Participants fixated on a moderately bright screen (30 cd/m2)

and thus observed the stimuli photopically. Note that the brightness of the screen made signifi-

cant darkness adaptation unlikely. To the extent that there was darkness adaptation, its impact

would be minimal since the ordering of the corrected and uncorrected conditions was coun-

terbalanced across observers.

Stimuli & procedure: General

Observers performed the contour integration task twice in succession, once with and once

without optical correction. They also performed the collinear facilitation twice in succession,

once with and once without optical correction. To counteract possible practice or fatigue

effects, half of the observers always began each task with increased refractive error (“20/20”),

and the remaining observers always began with reduced refractive error (“corrected”). The

methods for both experiments have been previously described [25] but are repeated below.

Stimulus & procedure: Contour integration

For the contour integration experiment, there was a lower spatial frequency (LSF) and a high

spatial frequency (HSF) block of trials, which were counterbalanced across observers. Stimuli

consisted of Gabor patches, which are oriented sinusoidal luminance gratings multiplied by a

circular Gaussian:

Gðx; y; yÞ ¼ csinð2pf ðxsinyþ cosyÞÞexp �
x2 þ y2

2s2

� �

where (x,y) denotes the distance in degrees from the center of the element, θ is the element’s

orientation (in deg), f is the peak spatial frequency of the element, and c is Michelson contrast.

In the LSF block, Gabors had a sine phase (to create a balanced luminance profile), 95% con-

trast, a peak spatial frequency of 4 cycles/deg, and a Gaussian envelope SD (space constant) of
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7.3 arcmin. Note that Gabor elements are commonly used in vision research since their lumi-

nance profile resembles the orientation-tuned spatial frequency filters found in early visual

cortex and thus are thought to better activate populations in those regions [38]. The stimulus

area (target + noise) subtended 19.9 deg on a side. The circular target (diameter = 7.4 deg) con-

sisted of twelve equally spaced Gabors (spacing = 1.93 deg) and was positioned at a quadrant

center with randomly added jitter (± 0.5 deg along each dimension). The target quadrant was

randomly assigned on each trial and never contained a unique number of Gabors relative to

neighboring quadrants. Noise Gabors never overlapped with each other or the target Gabors,

and ranged in number from 36 to 464 depending on the staircase recommendation (see

below). Stimuli in the HSF block were the same as the LSF block, except that the entire stimu-

lus was scaled to one-third the retinal size (e.g., so that Gabors had a peak SF of 12 c/d). Scaling

was achieved by shrinking the stimulus display and increasing the viewing distance from 87.6

cm to 181.5 cm. Note that modulating spatial frequency via viewing distance imposes little

effect on contour integration from 3 to 24 cycles/deg [39]. On each trial, an array of oriented

Gabors appeared for 1000 milliseconds (Fig 1B), after which participants saw a homogeneous

gray screen with numbers 1 through 4 centered in each quadrant. Note that a 1 s presentation

duration has been used successfully in past clinical studies [5, 40]. Observers were given an

unlimited amount of time to identify the target quadrant number and did not receive feedback

on response accuracy. There was no inter-trial interval.

Within a block, there were three randomly interleaved Bayesian adaptive “QUEST” stair-

cases—30 trials per staircase—and each determined the number of noise patches needed to

yield 75% accuracy [41]. The psychometric curves assumed a slope of 3 and an upper asymp-

tote (1-delta) of .97. The three threshold estimates were averaged to produce one value per spa-

tial frequency condition per observer. Thirty catch trials (without noise) also appeared

randomly in each block to ensure that all observers were on task. Therefore, there were 240

non-practice trials in the experiment. Observers performed 20 practice trials that were of the

same spatial frequency as the subsequent non-practice trials. The average duration for each of

the two runs of this experiment (with or without correction), including instructions and prac-

tice, was 11.0 minutes.

Stimulus & procedure: Collinear facilitation. Stimuli in this experiment were viewed

from a distance of 181.5 cm. Half of the collinear facilitation experiment consisted of low spa-

tial frequency stimuli, and the other half consisted of high spatial frequency stimuli (Fig 2A

and 2C). In the LSF trials, there were three vertically aligned Gabor elements centered on a

mean gray background (45 cd/m2). The Gabors were rendered with the same formula as

above; each had a sine phase, a peak spatial frequency of 4 cycles/deg, and a Gaussian envelope

SD of 10.6 arcmin. The central Gabor was vertically oriented and separated from the flankers

by 4 lambda (wavelength) center-to-center. The flanker orientations were either vertical (col-

linear) or horizontal (orthogonal), depending on the block. Note that edge-to-edge Gabor

spacing at high contrast will be at least 15 arcmin and will not result in crowding on the foveola

[42]. Therefore, detection thresholds of the central target across flanker conditions can provide

an estimate of contrast sensitivity. Stimuli in the high spatial frequency trials were similar to

the LSF trials, except that the entire stimulus was scaled to 40% of the retinal size (e.g., Gabors

had a peak SF of 10 c/d). Similar to an earlier study [43], we increased the flanker contrast

from 64% in the LSF block to 94% in the HSF block so that the latter would be easier to see.

Flanker contrast differences within this range do not alter facilitation for lower SF stimuli [43].

Each trial began with a white fixation cross centered on a gray background. Immediately

after initiating a trial, the observer saw a blank screen (400 ms), a three Gabor array (90 ms),

and then another gray screen until a response was provided (present or absent). Note that the

90 ms presentation duration has been used successfully in past clinical studies to demonstrate
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a benefit of collinear flankers [44, 45]. After a response was entered, a gray screen appeared for

400 ms. We opted to present the stimulus on every trial rather than use a two-interval forced

choice since qualitatively the same results arise in the two cases [44] and since the former

allows for a shorter experiment. For each condition, 1-up, 3-down staircase determined the

threshold, the amount of contrast needed to see the stimulus 79.4% of the time [46, 47]. Specif-

ically, in the event of one incorrect response (miss), the contrast between the background and

the central Gabor increased by 0.1 log units (26%); in the event of three consecutive correct

responses (hit), the contrast decreased by the same amount. A decrease or increase of contrast

preceded by a contrast change in the opposite direction was labeled a ‘reversal,’ and a block of

trials terminated after seven reversals. Threshold for a condition was computed as the average

contrast (in log units) for all the trials following the 4th reversal. (Averaging contrasts over all

trials rather than just the reversal values improves threshold estimates [47]).

In each half of the experiment, there were two blocks corresponding to whether the flankers

were orthogonal or collinear to the central target. The two block types were counterbalanced

across observers, and so too was the SF order. Collinear facilitation was measured as the

threshold in the orthogonal minus the collinear conditions, with larger (positive) differences

Fig 2. Stimulus and results for the collinear facilitation experiment. Orthogonal and collinear configurations and

thresholds are shown for (A, B) a lower spatial frequency condition (4 cycles/deg) and (C, D) a high spatial frequency

condition (10 cycles/deg). The task was to judge on each trial whether the central element was visible. Higher

thresholds indicate that higher target contrasts were needed to see the target reliably. Optical correction improved

thresholds for all conditions, but especially for those involving higher spatial frequency stimuli. Errors equal ± 95%

confidence intervals. *** p< .001.

https://doi.org/10.1371/journal.pone.0310678.g002
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reflecting more facilitation. The total number of non-practice trials was determined by how

quickly subjects underwent 7 reversals in each of the four blocks; this corresponded to 204 tri-

als (SD = 33 trials, range = [257, 158]) or about 40–60 trials per condition. Observers began

each half of the experiment with 20 practice trials without flankers. The average duration for

each of the two runs of this experiment (with or without correction), including instructions

and practice, was 14.2 minutes.

Analysis

For the contour integration task, groups were compared with two 2 (spatial frequency) by 2

(acuity) within-subjects type-III sums-of-squares analyses of variance (ANOVAs)—once for

the catch trials (percent correct) and once for the non-catch trials (threshold averages). For the

facilitation task, groups were compared with a 2 (spatial frequency) by 2 (flanker orientation)

x 2 (acuity) within-subjects type-III sums-of-squares ANOVA. For the ANOVAs, we provide

two effect sizes: Z2
p which is most commonly reported in this context and ω2, which is less com-

monly reported but less biased [48]. Cohen’s d with Hedges’ correction was used to provide

effect sizes of follow-up paired t-tests. All tests were parametric, assuming normality and inde-

pendence of observations within subjects. Graphs show 95% confidence intervals, which are

derived from the summarySE function in the Rmisc package in R, and which do not incorpo-

rate between-subject variance [49]. Analyses were conducted in SPSS version 29, except for the

calculation of ω2, which was generated via JASP 0.19 [50].

3. Results

We investigated whether visual performance on contour integration or collinear facilitation

changed as observers’ visual acuity was improved beyond 20/20 (Fig 1; see S1 Table).

In the contour integration task, for the catch trials, mean performance was consistently

above 88% accuracy for each condition. There was a main effect of spatial frequency (F(1,13) =

6.054, p = .03, Z2
p = .318, ω2 = .121) and no main effect of acuity (F(1,13) = 2.9, p = .11, Z2

p =

.183, ω2 = .121). There was a marginal two-way interaction (F(1,13) = 3.7, p = .08, Z2
p = .223, ω2

= .067), indicating that small acuity changes might even impact the detection of solitary inte-

grated shapes. In the non-catch trials, there were main effects of acuity (F(1,13) = 18.2, p<
.001, Z2

p = .583 ω2 = .253) and spatial frequency (F(1,13) = 8.3, Z2
p = .391, ω2 = .164). The effect

of acuity depended on SF (F(1,13) = 20.5, p< .001, Z2
p = .628, ω2 = .222) such that visual correc-

tion did not alter performance at the low SF (t(13) = .7, p = .48, Hedges’ g = .19, 95% CI = (-.32,

.68)), but it did help at the high SF (t(1,13) = 4.8, p< .001, Hedges’ g = 1.2, 95% CI = (.52,

1.86)). Finally, when we added age or sex (or both together) in the above ANOVAs, neither

interacted with the other variables nor issued forth a main effect (all p>.05).

For the collinear facilitation experiment, there was an expected main effect of spatial fre-

quency such that targets were less detectable (contrast thresholds were higher) for the scaled-

down stimulus than for the larger display (F(1,13) = 814.0, p< .001, Z2
p = .984, ω2 = .805)

(Fig 2; see S1 Table). Contrast thresholds were also lower for collinear than orthogonal flankers

(F(1,12) = 15.3, p = .002, Z2
p = .540, ω2 = .105), exemplifying the classic collinear facilitation

effect. There was also an acuity by spatial frequency interaction (F(1,13) = 7.2, p = .02, Z2
p =

.358, ω2 = .028). Follow-up t-tests (with thresholds averaged across orientation) showed that

optical correction reduced contrast thresholds at the higher SF (t(13) = 4.8, p< .001, Hedges’ g
= 1.21, 95% CI = (.53, 1.88) and, to a lesser extent, the lower SF (t(12) = 3.2, p = .006, Hedges’ g
= .83, 95% CI = (.24, 1.41)). This two-way interaction dovetails with the contour integration

results above and shows that smaller Gabors with finer-grained features are especially hard to
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detect for people with only 20/20 vision. No other interactions in the ANOVA reached signifi-

cance (all p>.10). As above, when we added age or sex (or both) in the above ANOVAs, nei-

ther interacted with the other variables nor issued forth a main effect (all p>.05).

It may be questioned whether these effects depended on task sequence, that is, whether

observers began each experiment with 20/20 vision or with optical correction (We thank a

reviewer for suggesting this analysis). To consider this possibility, we re-ran the same ANO-

VAs as before but also included “sequence” as a between-subject factor (7 observers per

group). In the contour integration task, there was a main effect of acuity and an acuity by spa-

tial frequency interaction, as before (both p< = .001). Furthermore, there was no main effect

of sequence and no interaction with sequence (all p>.12). In the collinear facilitation task,

there continued to be a main effect of acuity and an acuity by spatial frequency interaction

(both p< .01). However, here, sequence was relevant in exactly one way: it interacted with the

acuity by spatial frequency interaction (F(1,12) = 5.0, p = .046, Z2
p = .293, ω2 = .014). More spe-

cifically, the two-way interaction could be detected among those who began the task with 20/

20 uncorrected vision (F(1,6) = 35.3, p = .001, Z2
p = .855, ω2 = .064) but could not be detected

among those who began with corrected vision (F(1,6) = .22, p = .65, Z2
p = .036, ω2 < .001).

Because this interaction was unexpected and just under the level of significance, and because

there were only 7 subjects per group, the finding should be considered preliminary and in

need of replication.

4. Discussion

We considered whether optically correcting visual acuity beyond 20/20 could benefit visual

performance on contour integration or collinear facilitation tasks. In prior work, we hypothe-

sized that there would be a benefit, especially at higher spatial frequencies [25]. The rationale

was that removing slight amounts of refractive error might augment the detection of orienta-

tion, spatial frequency, position, or contrast, which in turn might strengthen integration pro-

cesses that rely on these features. Consistent with our hypothesis, we found that improving

acuity by about one line on an eye chart within the 20/20 range allowed individuals to tolerate

the presentation of more noise Gabors in a high spatial frequency variant of a contour integra-

tion task and boost contrast sensitivity, especially for high SF stimuli. These effects (main effect

and an acuity by spatial frequency interaction per task) were all large in magnitude (Z2
p >.35)

and in the predicted direction [25], and could survive statistical correction [51].

An objection may be that the glasses could have produced a placebo effect, improving confi-

dence and overall performance. However, this would not explain why the glasses were more

effective for the high versus low spatial frequency condition. Nor would it explain why our

within-group differences closely matched the correlational results reported previously, where

observers donned their own eyewear (if any). Finally, the placebo effect should not be

assumed; the glasses could have alternatively led to complacency, causing observers to exert

less effort in the expectation that the stimuli could be more easily observed.

Implications for vision science, neuroscience, and society

Our results show that a common and easily fixed cause of imperfect acuity, refractive error,

has a strong influence on two well-studied contour tasks even when acuity is within the normal

range. Therefore, it is not sufficient to control for acuity simply by ensuring that all subjects

have “normal or corrected-to-normal vision”; instead, the groups must be matched on refractive
error within the normal range. Such matching can be done by testing all subjects with best cor-

rected acuity (shortly after a refractive exam) or by statistically comparing groups on refraction
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values (derived from retinoscopy or an autorefractor). It is beyond the scope of our study to

review all special population studies of vision that match or do not match groups on refractive

error. However, failing to match on refractive error within the normal range could change the

conclusions reached. For example, people with schizophrenia exhibit worse contrast sensitivity

at higher spatial frequencies [23, 52, 53] but also more often have out-of-date prescriptions

[54]. As another example, people of advanced age have impaired contour integration and con-

trast sensitivity at higher spatial frequencies [21, 55] but are also less likely to have appropriate

eyewear [56]. In either situation, group differences might diminish or disappear entirely upon

removing residual optic blur.

While matching groups on refractive error is a step in the right direction, it is probably not

enough if the goal is to uncover the mechanisms responsible. As noted in the Introduction,

visual acuity is influenced by a myriad of processes, including pupil size, lens opacity, retinal

dopamine, integrity of the optic nerve, V1 surface area, eye movements, and perceptual learn-

ing [e.g., 27, 57–60]. Therefore, if groups are matched on refractive error but not on subjective

visual acuity and if groups differ on either contour integration or contrast sensitivity, then it

will be difficult to infer why the group differences emerge. As an example, subjective visual

acuity improves in early childhood, worsens in older age [2, 26, 61], and is impaired in schizo-

phrenia [62–65]. However, contour integration also improves in childhood [14], worsens in

older age [11], and is impaired in schizophrenia [15]. Therefore, in each of these cases, integra-

tion differences could potentially be explained by any of the determinants of visual acuity.

At the same time, matching groups on visual acuity (and not just refractive error) must be

done with care, as it could also generate misleading results if visual acuity is intrinsically linked

to the condition of interest or if it shares mechanisms with the visual process of interest. For

example, retinal hypo-dopaminergia worsens both contrast sensitivity and visual acuity [59],

and may also be more common in chronic, stabilized schizophrenia patients [66]. In this con-

text, matching patients and controls on visual acuity may remove some of the variance associ-

ated with the illness itself and may lead to an underestimate of contrast sensitivity deficits.

Researchers will need to consider both approaches (matching and not matching on acuity) to

reach a balanced and nuanced understanding of how a process is different in the population of

interest.

Visual acuity confounds are probably more pervasive than what our results suggest. First,

while our focus was on contour element detection and integration, small decrements in acuity

could matter for any task in which fine-scale or low-visibility elements must be inspected. For

example, crowding [67], orientation discrimination [68], and stereoacuity tasks [69] should all

be reconsidered if the compared groups could realistically differ in visual acuity. In the neuro-

science domain, the P1 component of the visual evoked potential has been linked to visual acu-

ity differences [70], and this too might help explain why people with schizophrenia or people

of advanced age have a longer latency and lower amplitude on this waveform [70, 71]. Second,

we have defined “normal” vision as 20/20 or better but many studies have imposed more

lenient visual acuity cut-offs. For example, in schizophrenia studies, the upper bound is com-

monly placed at 20/32 [24, 40, 72]. Thus, the opportunity for group differences in visual acuity

is often larger than what we have assumed. Third, methods for measuring acuity are usually

insufficiently precise, which could cause groups to appear matched on this variable when in

reality they are not. As noted in our earlier work [25], Snellen charts yield noisier acuity esti-

mates and often have lower bound limits of 20/16 or even 20/20 (e.g., Rosenbaum Pocket Eye

Chart), making it difficult or impossible to discern whether groups are actually matched on

acuity [31]. Adaptive staircase methods (Freiburg visual acuity test) may also yield noisier acu-

ity estimates with an inadequate number of trials (>30) or response alternatives [73, 74] and

thus may fail to pick up on true group differences (see Limitations below). Acuity estimates
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based on the number of letters correct are more precise than those based on the number of

lines correct [75]. Going forward, we recommend that all studies include key details such as

the lower cut-off for testing, the type of chart used, the method for scoring acuity, and whether

groups are statistically matched on refractive error or subjective visual acuity.

Our results also point to an important way to increase statistical power: Whenever partici-

pant groups are already matched on acuity or whenever a good case can be made that the acu-

ity differences are not essential to the group being studied, adding a visual acuity covariate will

remove variance (noise) in the dependent variable and allow other group differences to stand

out more clearly [76].

There are also implications that extend beyond neuroscience and vision science. Constable

guidelines in the United Kingdom only require 6/6 binocular vision despite the importance of,

for example, recognizing suspects in low-visibility environments [77]. The United States Federal

Aviation Regulations only require 20/20 vision in each eye (www.faa.gov). Acuity standards for

driving in the United States vary but can be as high as 20/120 (South Carolina) in the better eye

(https://eyewiki.aao.org/Driving_Restrictions_per_State). This is concerning because recent

clinical trials have shown that even a 0.5 diopter refractive error—roughly equivalent to a one-

line difference on an eye chart relative to best-corrected acuity [78]—can worsen nighttime

driving [79]. Tightening standards for vision may therefore improve public safety. Of course,

the practical benefit of stricter acuity standards will need to be balanced with practical consider-

ations (transportation availability) and will need to be confirmed in more ecological contexts.

Are these results novel or surprising?

Our results have serious implications, but are they novel? For our literature search of contour

integration (PubMed title/abstract keywords: “contour integration” AND refract*; search

date = 8/05/24), the most relevant article showed that treatment-based visual acuity improve-

ments in amblyopia was associated with improvements in contour integration [80]. However,

acuity after correction in that study was approximately 20/20, making it unclear whether per-

formance would improve even more with further reductions in refractive error. For collinear

facilitation and contrast sensitivity, past work has shown that ~0.5 diopters of optical blur can

worsen contrast sensitivity, especially at higher spatial frequencies [81–83] (PubMed abstract/

title keywords: “contrast sensitivity” OR “collinear facilitation”) AND refract*; 1,258 retrieved

search items retrieved; search date = 8/05/24). However, these studies either did not measure

subjective visual acuity or they did not specify whether acuity was at least 20/20 in the presence

of dioptric blur. Others have shown that worsening vision from 20/16 to 20/20 via spherical

lenses numerically worsened contrast sensitivity, especially at higher spatial frequencies

(range: 1.5 to 18 cycles/deg) [84]. Unfortunately, it was never reported whether the effect was

statistically significant. Another study found similar effects for letter contrast sensitivity, but

they did not report whether subjects had at least 20/20 vision after blur was induced [85].

Therefore, to our knowledge, the current study may be the first to directly show that optical

manipulations within the 20/20 range can impact contrast sensitivity or contour integration.

But aren’t these results already obvious? Visual acuity is important for vision, and so of

course increasing refractive error will worsen visual performance. Our response is that, for

many researchers, this result is not obvious. For instance, the ICD-9 CM and the International

Council of Ophthalmology [86] have placed the upper bound of “normal” vision at 20/25 (log-

MAR = .1) [see also Fig 7 of 87]. Many special population studies implicitly assume that the

result is not obvious by not matching groups on refractive error within the normal range. As

described above, visual acuity charts are often truncated, failing to include measurement levels

of 20/10 or 20/12.5, implying again that these differences are unimportant.
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Limitations and future directions

A limitation of our study is that we optically corrected vision not by way of an optometrist but

by self-adjustable corrective eyewear. However, the fact that vision can be corrected without

any specialized equipment indicates that this improvement is attainable in everyday viewing

circumstances. Moreover, an optometrist, having access to more advanced instrumentation

(e.g., wavefront aberrometry), would likely have improved acuity to a greater extent than what

we were able to (e.g., because of more precise spherical correction or correction for astigma-

tism or higher-order aberrations). Therefore, our results probably underestimate the benefits

of transitioning to optimal vision from 20/20 vision. Likewise, we employed a commonly used

and accepted method for measuring acuity—line-by-line ETDRS testing; however, our results

may have been even stronger if we had measured acuity more precisely via letter-by-letter

ETDRS testing or via certain variants of the Freiburg visual acuity test (e.g., more trials, more

response alternatives, finer screen resolution) [73–75]. Future studies that seek to more power-

fully demonstrate the functional importance of small amounts of refractive error would benefit

from leveraging these more precise methods. It would also be worth knowing—via a standard

clinical refraction exam—how much refractive error changed from our adjustable glasses and

to what extent refractive error was still present in the “corrected” condition. Additionally,

most of our observers initially had uncorrected 20/20 vision and so were likely adapted to

optic blur [88]. Studies could consider adding defocus to those who already have optimal cor-

rection, to determine whether similar effect sizes might emerge in the absence of adaptation.

Finally, we believe that refractive error confounds will arise when comparing groups for other

types of visual processing (stereopsis, crowding, and so on), but this assertion will need to be

verified experimentally.
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