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Abstract

Each year thousands of people suffer across the globe due to higher cancer incidence and
mortality rates. Additionally, the treatment option for cancer patients is also costly, and often
cancer drugs suffer from lower efficacy with more side effects. The DNA topoisomerase can
function as an established cancer target because Human Topoisomerase (Top1) regulates
genetic transcription during the post-mitotic phase and plays a critical role in DNA supercoil-
ing during replication and repair. Therefore, during drug therapy, blocking the Top1 may be
crucial for inhibiting the proliferation of cancer cells. Here, the TCM (traditional Chinese
medicine) compounds have been screened through the virtual screening. The Chinese
medicine library’s virtual screening process made it possible to narrow down the compound
list to 29 compounds based on binding energy (-7.1 to -9.3Kcal/mol), while following Lipniski
filtering, MM/PB (GB) SA filtering was used to screen the remaining 22 compounds and the
top four compounds were chosen based on binding free energy. Here, the four compounds;
CID-65752 (T2972: Rutaecarpine), CID-5271805 (T4S2126: Ginkgetin), CID-9817839
(T2S2335: Dehydroevodiamine) and CID-51106 (T3054: Daurisoline) had comparatively
higher binding energy of -8.2, -8.5, -8.3 and -8.2 respectively during molecular docking than
other compounds. Among these four compounds, no toxic profile of the two screened com-
pounds; CID-5271805 and CID-9817839 was found in ADMET filtering. Moreover, the
SASA (solvent accessible surface area), Rg (radius of gyrations), RMSD (root mean square
deviation), and RMSF (root mean square fluctuation) profile of the drug-protein complex
reveals the stability and rigidity of the compounds in molecular dynamics simulation study.
However, these studies need to be validated in experimental approaches to develop more
potent and effective cancer drugs.
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1. Introduction

Cancer poses a high risk threat globally where 10 million deaths as well as 19.3 million newly
diagnosed have been reported [1]. A large proportion of cancer patients are from low- and
mid-income countries where higher mortality rate is estimated. The significantly higher cost
of the treatment as well as the new drug development process resulted in less affordable treat-
ment option [2]. Also, drug resistance towards chemotherapeutic drugs and diverse side effects
reduce the efficacy of the cancer drug [3]. Therefore, new cancer drug development with better
efficacy and a lesser degree of side effects with affordable options requires complex processes,
timing, and funding [4].

The DNA topoisomerase plays a vital role in DNA supercoiling during replication as well as
the transcription stage and is important for cell division. It can be targeted for antimicrobial and
anticancer drug development processes [5]. It relaxes DNA supercoiling by reducing torsional
stress [6] and initiates cleavage of the phosphodiester bond on the DNA strand forming the 3'-
phosphotyrosine linkage between the TYR273 [7]. The DNA repair as well as genetic transcrip-
tion are regulated by Human Topoisomerase (Top1) in post mitotic process. The blockage of the
Top1 can be important for the inhibition of cancer cell growth during the drug treatment [8];
and camptothecin [9]. Also, different analogs of the camptothecin [10] have been developed; for
example, Topotecan, and Irinotecan [11]. However, they possess multiple side effects [12] and
drug resistance [13]. For example, Camptothecin is chemically unstable and associated with the
overexpression of ABCB1 and ABCG2 which lead to cross-resistance [14-16].

The computer-aided drug designing and virtual screening procedure dramatically reduce
the time and complex procedure by screening readily available or designing new analogs.
These approaches can be included in the identification of the drug targets, potential hit identi-
fications from a library [17], and filtering the drug molecules based on pharmacological prop-
erties; absorption, distribution, excretion, metabolism, and toxicity [18]. The popular drug-
designing approaches include virtual screening, molecular docking, pharmacophore-based
designing, molecular dynamics, and QSAR [19].

The structure-based virtual screening procedure is one of the key steps in computer-aided
drug designing where screening is conducted by targeting the molecular or biologically rele-
vant target and drugs. This process can be divided into two major groups; ligand-based
approaches; where drugs are developed and designed based on the similarity of the drugs or
compound; and structure-based virtual screening where the primary focus is given the struc-
ture of the protein molecules [20]. The screened database can be also very diverse, natural
compounds, synthetic compounds library, and drug repurposing library [21]. Numerous
drugs have come into the markets from virtual screening procedures [22]; captopril, ritonavir,
tirofibanan, and saquinavir [23].

In this research approach, the Chinese compound list was virtually screened against DNA
topoisomerase protein. The best-selected compounds were further screened through
MM-GBSA and ADMET filtering to obtain more accuracy. The dynamics simulation
approaches were also employed to understand the stable nature of the DNA topoisomerase
and compound complexes.

2. Material and method
2.1. Protein and ligand preparation

The crystal structure of DNA topoisomerase I was retrieved from the Protein Data Bank
(PDB:1T8I) [24]. The protein structure was cleaned in Pymol [25] to remove the water mole-
cules, and hetero atoms. The GROMOS 96 43B1 force field was used to optimize the Protein
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structure [26]. The traditional Chinese medicine Library was prepared from 800 Chinese tradi-
tional medicines contain 2390 monomer compounds. This compound list includes various
structural types such as flavonoids, alkaloids, terpenoids, and glycosides. Traditional Chinese
Medicine library is a powerful library in the fields of anti-cancer, anti-inflammatory, antibacte-
rial, apoptosis, and autophagy research [27].

2.2. Molecular docking

The virtual screening calculation was done in DrugRep tools [28] which started with the detect-
ing binding pockets. The binding pockets were set based on binding sites of the protein. The
binding pockets were set as ALA498, ALA486, ASP563, HSD367, THR718, ASP533, ARG364,
VAL502, THR498, HSD632, LEU485, GLY503, LEU487, GLU495, GLU494, GLU492, THR501,
ASN631, PRO368, LY363, ASN366, SER506, CYS630, HET0, ARG488, SER534, ALA715,
ALA499, GLU561, PHE361, GLY490, GLY496, ASN491, PHE529, ARG508, LEU629, GLY531,
ASP500, LYS532, LYS493, TYR537, ASP562, ARG590, ILE535, GLN633 residue. The selected
traditional Chinese medicine library was shown in supplementary material (S1 File). The recep-
tor based screening from DrugRep finds cavity guided screening and searching binding pockets
of receptor by using CB-Dock [29] and screens leading compounds with AutoDockVina tools
[30]. The custom docking box was set as (12.5x 5.3 x 18.8) A in centre where the size (18 x 21 x
28) A for x,y,z axis respectively. The top screened lead compounds were further selected based
on binding energy and subjected to further filtering based on Lipniski rule of five.

2.3. Lipniski rule of five filtering

The lipniski rule of five determines the chemical compounds having certain pharmacological
and biological properties which may lead to active drug in human. The Lipniski rule states that
active drugs follow these mentioned criteria; (1) hydrogen bond donor less than 5, (2) less
than 10 hydrogen bond acceptor, (3) less than 500 dalton molecular weight, (4) calculated
octanol-water partition coefficient that not exceed 5, (5) number of rotatable bond less than
10. The top screened compounds were further filtered through Lipnsiki rule of five and the
compounds which violates more than one rule were excluded [31].

2.4. MMGBSA and MMPBSA

The screened compound list was further screened by MM/PB(GB)SA methods where built in
docking program was used to generate the ligand binding pose. The calculation and decompo-
sition of binding free energy for each energy minimized protein ligand binding conformation
was done. The receptor force field was set as ff19SB with the OPC water model and the ligand
force field was set as GAFF2 with truncation radius of 8A which retained the protein residues
within 8A of all ligand binding pose for rescoring [32].

2.5. ADMET

The absorption, distribution, metabolism, excretion, and toxicity (ADMET) were calculated in
PKCSM [33]. The canonical smiles of the top four ligand molecules were used as entries for
the ADMET calculation.

2.6. Molecular dynamics

The YASARA dynamics software package was utilized to perform molecular dynamics simula-
tion [34] where the force field was set as AMBER14. The drug protein complexes were opti-
mized before the simulation along with hydrogen bond orientation and cleaning. The TIP3P
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solvation model was used to create the cubic simulation cell. The physiological parameter of
the dynamics of the drug-protein complex was set as 300K temperature, 7.4 pH, and 0.9%
NaCl [35]. The Particle Mesh Ewald (PME) method was applied to calculate the long range
electrostatic interaction by a cut off radius of 8 A. The simulation cell box was set 20 A larger
than the drug-protein complex to allow the free motion. The energy minimization was con-
ducted by the steepest gradient algorithms (5000 cycles) by simulated annealing method. The
simulation was performed using an NPT ensemble for relaxation & minimization of the sys-
tem, where temperature and pressure were maintained at 300 K and 1 atm, respectively, using
the Berendsen thermostat and barostat. The time step of the simulation was set as 1.25fs and
chemical bond involving the hydrogen bonds was fixed using SHAKE algorithms [36]. The
simulation trajectories were saved after 100ps time and extended for 100ns times. The simula-
tion trajectories was utilised to calculate the root mean square deviation (RMSD), root mean
square fluctuation (RMSF), radius of gyration (Rg) and solvent accessible surface area [37, 38].
The MM-PBSA was calculated with the MDs trajectories. The MM-PBSA was implemented by
using following equation;

Binding Energy = EpotRecept+EsolvRecept+EpotLigand+EsolvLigand—-EpotComplex
—EsolvComplex

3. Results

3.1. Virtual screening

The virtual screening of the Chinese medicine library allowed to screen the compound list into
29 compo based on the binding energy where more negative energy indicates more favourable
interactions. The top 29 compounds demonstrated binding energy from -7.1 to -9.3Kcal/mol
ranges (Table 1).

Then the Lipniski filtering was applied to screen the compound list where violations of more
than one Lipniski rule were considered especially the violations in molecular weight ranges and
hydrogen bond donor and number of rotatable bonds were observed. The final 22 compounds
after Lipniski filtering were filtered through MM/PB (GB) SA scoring. The MM/PB (GB) SA fil-
tering allows to select top four compounds based on binding free energy (Table 2).

3.2. Binding interaction of the top compounds

The top 4 compounds and their binding residues while interacting with the target topoisomer-
ase protein were retrieved from Pymol and Discovery Studio Software Package (Fig 1).

The CID-65752 and DNA topoisomerase complex had multiple Pi-Cation interactions at
LYS525, GLU356, and GLU418 position and also one Pi-alkyl interaction was observed at
LYS374 position. The CID-5271805 and DNA Topoisomerase complex was stabilized by five
hydrogen bonds at GLU494, SER534, ARG364, ARG488, and THR501 residues. Also, this
complex had one pi-cation bond at Lys493 and one pi-alkyl interaction at LYS532 residues.
The CID-9817839 and protein complex showed two hydrogen bonds at ASP533, THR501, and
one Pi-cation at LYS493, one alkyl at ARG364 and one Pi-Alkyl at LYS532 residues. The CID-
51106 and DNA topoisomerase complex had five hydrogen bonds at ARG349, SER432,
ARG749, LYS746, and LYS347 residues. It also had one alkyl interaction at ILE756, and two
Pi-Sigma interaction at ALA753, and LYS202 (Table 3).

3.3. ADMET

The water solubility of compounds reflects the solubility of the molecules at 298K temperature.
The lipid-soluble ones are less well absorbed than the water-soluble ones. The T4S2126 and
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Table 1. Virtual screening of 29 compounds from traditional Chinese medicine against DNA Topoisomerase.

Compound ID Compound Name Formula Score MW HBD HBA RB NOA LogP
TN1113 Vincetoxicoside B C,1H5001; -8.4 448.38 7 8 10 11 0.2
TMA0507 Tomatidine CyyHysNO, 82 415.65 2 1 1 3 6.2
T7602 Theaflavin CaoHz4015 82 564.49 9 10 11 12 0.6
T3770 Taraxasterol C30H;500 -9.3 426.7 1 1 1 1 9.1
T3S0895 Spirostan-3-ol Cy7H4405 -8.6 416.64 1 1 1 3 6.4
T1703 SN38 Cy,H,0N,05 -8.3 392.4 2 5 4 7 3.1
T2972 Rutaecarpine CisH13N;0 -8.2 287.32 0 2 0 4 3.9
T6S1256 Ruscogenin Cy7Hy404 -8.5 430.62 2 2 2 4 4.7
T5783 Rosamultin Cs6Hs501¢ -8.9 650.8 7 8 11 10 3.1
T3778 Pueraria glycoside C51H20010 -8.2 432.38 7 8 10 10 -1.1
T5710 Pinocembrin 7-O-beta-D-glucoside C,1H,,009 -8.4 418.39 5 6 0.9
TN2027 Oxysanguinarine Cy0H3NO;5 -8.3 347.32 0 1 4.9
TN6738 Orthosphenic acid C3oH4g05 -8.7 488.7 3 4 6.2
T550788 Oroxin A Cy1H,00,0 8.1 432.38 6 7 10 10 0.0
T3850 Luteolin-7-glucuronide Cy1H1504, -8.3 462.36 7 9 11 12 -0.0
TQO0070 Luteolin-3-O-beta-D-glucuronide C,1H1504, -8.2 462.36 7 9 11 12 -0.0
T2728 Limonin C,6H;3005 -8.7 470.52 0 3 1 8 1.7
T5S1103 Isoliensinine C37H45N,04 -7.1 610.75 2 2 11 8 6.3
T6228 Irinotecan C33H33N,O6 -8.2 586.68 1 5 7 10 4.6
T6169 Indirubin C1eH10N>0, -8.1 262.26 2 2 0 4 23
TN1733 Hesperetin 7-O-glucoside CyH,,01, -8.0 464.4 6 7 11 11 0.5
T4S2126 Ginkgetin C3,H,,0, -8.5 566.51 4 6 9 10 4.1
T7600 Fucoxanthin C4Hs506 -8.5 658.91 2 4 14 6 8.0
T6S0221 Eriocitrin Cy7H3,0,5 -8.2 596.53 9 10 15 15 -1.4
T2S2335 Dehydroevodiamine C1oH N30 -8.3 301.34 0 1 0 4 4.1
T3054 Daurisoline C3,H,,N,06 8.2 610.75 2 2 11 8 6.3
T3376 Cynaroside C51H001; -8.4 448.38 7 8 11 11 -0.2
T4S0295 Apigenin 7-glucoside C,1H5001¢ -8.1 432.38 6 7 10 10 0.0
TN2435 (-)-Stylopine CoH7NOy -8.5 323.35 0 0 0 5 2.9

Here MW, HBD, HBA, RB denotes as molecular weight, hydrogen bond donor, hydrogen bond acceptor, rotatable bond respectively.

https:/doi.org/10.1371/journal.pone.0310364.t001

T252335 had water solubility ranges from -2.92 to -3.6. The higher Caco2 permeability is mea-
sured as a value more than 0.90 where T252335 and T2972 had more Caco2 permeability com-
pared to other compounds. The ability of the drug molecules to pass the blood-brain barrier is
a crucial parameter to alleviate the side effects and toxicities to enhance drug efficacy. The BBB
permeability >0.3 indicates the readily cross the blood-brain barrier and logBB <-1 indicates
the poor distribution to the brain. The T2972 and T252335 had more logBB values than readily
distributed thresholds (Table 4). The AMES and hepatotoxicity indicate that T2972 and T3054
had a probability of being toxic, and were excluded for further downstream analysis.

3.4. Molecular dynamics simulation

The RMSD or root mean square deviation of the simulation trajectories defines the stable
nature of the drug-protein complex. Fig 2A) indicates that initially, the drug-protein in the
dynamics system had a higher RMSD trend which represents the more mobile nature of the
drug-protein system at the initial phase of the simulation. Every complex became stable after
30ns and maintained the stability of the complex till 100ns periods. The CID-9817839, and
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Table 2. Binding free energy filtering of 22 compounds by MM/PB(GB)SA method.

Compound
TN1113
TMA0507
T3770
T350895
T1703
T2972
T6S1256
T3778
T5710
TN2027
TN6738
T550788
T2728
T6228
T6169
TN1733
T4S2126
T252335
T3054
T3376
T450295
TN2435

PB1

16.66
22.16
22.31
17.05
22.86
2.23

12.73
12.41
9.22

17.84
12.18
12.75
16.38
12.24
1.07

11.72
15.81
-2.07
2.95

7.79

12.87
16.77

PB3
-7.01
-9.44
-2.04
-2.56
-4.92
-16.23
-2.06
-9.61
-13.36
-6.47
-12.41
-6.47
-9.22
-8.76
-14.51
-3.86
-9.44
-23.46
-18.92
-8.81
-11.59
-8.65

https://doi.org/10.1371/journal.pone.0310364.t002

PB4 GB1 GB2 GB5 GB6 GB7

-11.95 -31.17 -24.33 -23.24 -12.15 -17.92
-13.17 -31.62 -27.98 -27.48 -13.16 -28.58
-10.94 -32.52 -28.35 -27.71 -9.71 -30.21
-10.52 -29.05 -25.08 -24.31 -11.02 -24.88
-7.82 -33.81 -28.56 -27.57 -8.46 -27.01
-21.72 -35.91 -31.96 -31.01 -24.39 -32.38
-13.65 -27.71 -26.69 -26.1 -23.33 -19.72
-15.42 -32.84 -25.68 -24.37 -14.23 -20.3

-16.52 -31.13 -25.88 -25.3 -17.3 -22.89
-21.39 -26.55 -17.2 -26.2 -2.68 -26.61
-19.97 -37.58 -31.84 -30.95 -15.72 -31.03
-14.24 -31.9 -24.69 -23.16 -12.44 -16.95
-16.8 -31.47 -38.90 -28.7 -16.28 -31.26
-11.89 -27.6 -31.24 -26.71 -12.21 -29.90
-19.18 -32.29 -28.92 -28.07 -20.98 -28.09
-13.01 -30.38 -24.27 -23.36 -14.59 -19.11
-21.28 -42.64 -36.16 -35.27 -18.52 -43.12
-26.3 -38.46 -34.77 -33.78 -28.62 -35.01
-31.09 -51.6 -44.99 -43.95 -29.5 -45.34
-17.36 -34.44 -27.84 -26.7 -18.34 -22.54
-17.63 -29.89 -24.46 -23.99 -16.56 -22.03
-16.76 -36.19 -23.43 -24.11 17.88 -29.91

CID-5271805 complexes had higher RMSD when compared to other complexes which indi-
cate comparatively less stability than other complexes. The overall RMSD of the compounds
were below 2.5A which defines the overall more stable nature of the complexes. This RMSD
trend also demonstrates the less flexible nature of the complex.

The SASa or solvent-accessible surface area of the drug-protein complex from the simula-
tion trajectories represents the surface area changes while higher SASA relates with the exten-
sion of the surface area and lower SASA defines the truncated nature of the complexes. Fig
2B) indicates the CID-5271805 complex had a higher SASA value which indicates the com-
plexes had a loose packaging system during the simulation periods. As a result, the complexes
had a more flexible nature while interacting with the complexes. The rest of the complexes had
stable SASA trends till 100 ns periods.

The radius of gyration of the complexes indicates the mobile nature of the complexes. Fig
2C) indicates that the CID-9817839 and CID-5271805 complexes had higher Rg profiles. This
higher Rg profile of those complexes shows the higher flexible nature of the complex. The
hydrogen bond of the complexes defines the stability of the complexes where Fig 2D) indicates
the complexes had less fluctuating hydrogen bonding trend during simulation. The hydrogen
bond trajectories were stable across the simulation time. The RMSF or root mean square fluc-
tuation of the amino acid residues of the protein complex represents the changes and flexible
nature of the amino acid residues in a protein complex. Fig 2E) indicates the complexes had
lower RMSF than 2.5A except few residues. The lower RMSF profile for the maximum residues
indicates the stable nature of the complexes.

Also, binding free energy was calculated from the MM-PBSA approach from simulation
trajectories of YASARA. The more positive energy from MM-PBSA from the YASARA
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l A5532

Fig 1. Molecular docking study of DNA topoisomerase I with top four active compounds from Traditional
Chinese Medicine. Here, a) indicates the surface view, cartoon shape, and 2D view of CID- 65752 and DNA
topoisomerase I; b) indicates the interaction of CID-5271805 and DNA topoisomerase I; ¢) represents three different
view of CID- 9817839 and DNA topoisomerase [; d) represents three different view of CID- 51106 and DNA
topoisomerase I.

https://doi.org/10.1371/journal.pone.0310364.g001

algorithm indicates more favourable binding. Fig 3 indicates that CID-65752 had higher
energy in MM-PBSA compared to other complex which indicates more favourable binding of
that complex.

4. Discussion

The computer-aided drug design illustrates a new era by providing lesser time and cost as well
as a labouring process which makes this method more feasible. It has become an important
tool for designing drug analogues and new drug development. Also, it provides a combination
of experimental and computational frameworks to accelerate the drug discovery process. The
integrated virtual screening, molecular docking, ADMET, and dynamics simulation
approaches can aid in shortlisting the most biologically relevant and active compounds [39-
42]. The computer-aided drug designing can target specific molecules by using the structural
information’s and the nature of their binding pattern [43-45].

Traditional Chinese medicine (TCM) plays an important role in the treatment of patients
for long periods in China and Asian countries. The rich phytochemical content of those plant
species; tannin, alkaloid, flavonoids, and other content can be utilized to use drug development
with higher efficacy [46]. To date multiple drugs have been developed from TCM for example;
artemisinin which is found majorly in Artemisia carvifolia known to treat acute leukemia [47],
chemotherapeutic drug taxol [48], cardio-protective drug Danshensu [49], and salvicine for
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Table 3. The binding interactions of the top 4 compounds where hydrogen bond, Alkyl bond, and Pi-Alkyl inter-
actions were observed.

Complex Residue Interaction Distance(A)
CID-65752 (T2972) LYS425 Pi-Cation 4.70
GLU356 Pi-Cation 4.49
GLU418 Pi-Cation 4.79
LYS374 Pi-Alkyl 447
CID-5271805 (T4S2126) GLU494 Hydrogen 2.03
SER534 Hydrogen 2.65
ARG364 Hydrogen 2.29
ARG488 Hydrogen 3.77
THR501 Hydrogen 2.88
LYS493 Pi-Cation 4.56
LYS532 Pi-Alkyl 403
CID-9817839 (T252335) ASP533 Hydrogen 2.09
THR501 Hydrogen 2.19
LYS493 Pi-Cation 4.07
ARG364 Alkyl 5.05
LYS532 Pi-Alkyl 5.26
CID-51106 (T3054) ARG349 Hydrogen 2.78
SER432 Hydrogen 1.80
ARG749 Hydrogen 2.30
LYS746 Hydrogen 3.56
LYS347 Hydrogen 3.20
ILE756 Alkyl 4.85
ALA753 Pi-Sigma 3.92
LYS202 Pi-Sigma 3.70
PHE340 Pi-Alkyl 4.75

https://doi.org/10.1371/journal.pone.0310364.t003

treating the solid tumor. Although recent studies show that some TCM compounds have toxic
effects [49], systemic investigation of TCM compounds requires to develop of therapeutic
drugs from TCM compounds with fewer side effects and toxicity [50]. The virtual screened
compounds in this study consist of rich diversity of flavonoids, alkaloids, terpenoids, and gly-
cosides [51]. These herbal drugs possess multiple evidence of uses in drug development and
design with less toxicity [52].

The Lipinski rule of five plays an important role in determining drug-likeness screening. It
helped to additionally screen 7 compounds in the virtual screening process. The CID- 65752
and DNA topoisomerase complex interaction reveals the interaction at GLU356 and LYS374
residues where residue contact was also observed for the crystal structure of DNA

Table 4. Absorption, distribution, metabolism, excretion and toxicity of the selected compounds.

ID Water Solubility Caco2 Permeability BBB Permeability AMES Toxicity Oral Rat Acute Toxicity Hepatotoxicity
T2972 -3.459 1.26 0.699 Yes 2.431 Yes
T4S2126 -2.92 -0.84 -1.84 No 2.733 No
T2S2335 -3.6 1.74 0.353 No 2.12 No
T3054 -3.652 0.567 -1.047 Yes 2.463 Yes

Here the water solubility, Caco2 permeability, BBB permeability, oral rat acute toxicity were calculated as log mol/L, log Papp in 10-6 cm/s, log BB, mol/kg units
respectively.

https://doi.org/10.1371/journal.pone.0310364.t004
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Fig 2. The molecular dynamics simulations study of the DNA topoisomerase I. a) the root mean square deviations,
b) solvent accessible surface area, c) hydrogen bond, d) radius of gyrations, e) the root mean square fluctuations of the
complexes.

https://doi.org/10.1371/journal.pone.0310364.9002
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Fig 3. The binding free energy from YASARA MM-PBSA where the positive energy indicates more favorable
binding. The CID-65752 had better binding than other complex.

https://doi.org/10.1371/journal.pone.0310364.9003
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topoisomerase. The multiple interactions at active site points indicate the strong binding
nature of the complex. This compound is also reported to inhibit hyperplasia in rat model
[53], also improve cognitive function by improving mitochondrial function [54], treatment of
liver diseases [55], and function against pathogenic fungi [55]. The CID-5271805 and DNA
Topoisomerase had multiple interactions at ARG364, ARG488, THR501, LYS493, and LYS532
residues where the crystal structure had similar interaction sites. The CID-5271805 also pos-
sesses a diverse range of effects on the cellular system; anti-inflammatory activity and anti-apo-
ptotic effect [56], promotes M2 polarisation of microglia through PPARy signalling pathway,
and inhibits neuroinflammation [56]. The CID-9817839 and protein complex had similar
interactions at ASP533, THR501, LYS493, ARG364, and LYS532 residues like crystal struc-
tures. The CID-9817839 is involved in inhibiting metastasis [57], suppressing the inflamma-
tory response in rat and human systems [58], improving stress-induced memory impairment
[59], and enhancing cognitive function. The CID-51106 and DNA topoisomerase complex
had two interaction points similar to the crystal structure at LYS746 and LYS347. Also, the
compound had multiple hydrogen bonds, where the interaction or presence of multiple hydro-
gen bonds indicates the strong binding nature of the complexes. The CID-51106 inhibits
esophageal squamous cell carcinoma growth in vitro and in vivo conditions [60], inhibits
tumor angiogenesis [61], and suppresses lung cancer tumorigenesis [62].

5. Conclusion

This study represents the virtual screening of the TCM compounds against the DNA topo-
isomerase to design cancer drugs. The four compounds CID-65752 (T2972: Rutaecarpine),
CID-5271805 (T4S2126: Ginkgetin), CID-9817839 (T2S2335: Dehydroevodiamine), and CID-
51106 (T3054: Daurisoline) had higher scoring in docking and binding free energy filtering.
The molecular dynamics study of the complex reveals that the complexes had exhibited stabil-
ity across the simulation trajectories and RMSD, RMSF, SASA, and Rg. The lower toxicity and
drug-likeness of the compounds were also revealed in ADMET screening, where T2972 and
T3054 had been excluded due to the probability of being toxic. Finally selected two screened
compounds; CID-5271805 (T4S2126: Ginkgetin) and CID-9817839 (T252335: Dehydroevo-
diamine) had also important roles in cellular activity and development other drugs develop-
ment that have been represented in the discussion. This study represents that the TCM
compound can be used to design and develop the cancer drug, however, validation from the in
vitro and in vivo conditions is required for further assessment.
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