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Abstract

Traffic signs detection is an important and challenging task in intelligent driving perception

system. This paper proposes an improved lightweight traffic signs detection framework

based on YOLOv5. Firstly, the YOLOv5’s backbone is replaced with ShuffleNet v2, which

simplifies the calculation complexity and reduces the parameters of backbone network. Sec-

ondly, aiming at the problem of inconspicuous traffic sign characteristics in complex road

environment, we use the CA attention mechanism in this paper to improve the saliency of

the object. Finally, aiming at the large-scale difference between the traffic signs and the high

proportion of small objects, we design the BCS-FPN to fuse multi-scale features and

improve the representation ability of the small-scale objects. The TT-100K dataset is also

analyzed and the dataset is collated. We test on the collated TT-100K dataset for the

improved YOLOv5 in this paper. And the results show that compared with YOLOv5s, the

mAP of our algorithm is equivalent to that of YOLOv5s, and the speed is improved by

20.8%. This paper also has carried on the experiment on embedded devices, experimental

results show that our framework in computing power less embedded devices has a better

effect.

I. Introduction

With the rapid development of autonomous driving technology, the intelligent perception

technology and vehicle communication technology of intelligent vehicles are also constantly

updated and iterated [1–4]. Among them, road traffic signs detection [5, 6] is the key task of

intelligent driving perception system. Road traffic signs of effective identification are the basis

of the intelligent transportation system and unmanned technology, as well as the accuracy of

the subsequent unmanned intelligent decision-making provides a convenient condition.

Recently, more and more traffic sign detection frameworks use CNNs, and the object detec-

tion algorithm based on CNNs has also achieved a lot of achievements. All the time, object

detection has been the most fundamental and challenging branch of computer vision. The
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object detection frameworks based on CNNs are mainly divided into two categories. One is a

two-stage object detection algorithm that pursues accuracy, and the other is a single-stage

object detection algorithm that pursues speed. The difference between the two types of algo-

rithms is based on whether the proposal region is further divided. Among them, the two-stage

object detection algorithms will filter the proposal region and then match the prediction box.

And the two-stage object detection algorithms mainly include R-CNN [7–9] series, Mask-

RCNN [10] and Cascade R-CNN [11]. Domen Tabernik et al. [12] a CNN-based method to

solve the whole process of target detection and recognition by training the model in an auto-

matic end-to-end way. Y. Qian et al. [13] identified the problem of the single function of cur-

rent deep learning models and proposed a unified neural network that can simultaneously

detect drivable areas, lane lines, and traffic targets. The one-stage object detection algorithm

will directly match the proposed region. And the single-stage object detection algorithms

mainly include YOLO series [14–16] and SSD [17]. T. Suwattanapunkul et al. [18] used the

YOLO series of algorithms to perform experiments on the Tsinghua-Tencent 100K (TT-100k),

the Taiwan Traffic Signs (TWTS), and a hybrid dataset combining traffic scenes between

TT100k and TWTS datasets. Y. Cao et al. [19] proposed a multi-scale small object detection

structure to solve the problem of small-scale road traffic targets, and conducted experiments

on the autonomous driving dataset BDD-100K.

The network frameworks of the existing algorithms are complex, the computational

complexity is high, and the running memory occupied by the model is also large when it is

deployed, which requires the device to have strong computing power support. In general,

the computing power of vehicle processors is often poor, and the running memory is rela-

tively small, so the above algorithm is not suitable for direct application in road traffic

detection. For the problem of insufficient computing power of the device, some scholars

have focused on lightweight detection networks. Andrew G. H et al. design MobileNet [20]

network based on streamlined architecture, which uses depthwise separable convolution to

build lightweight deep neural network. Subsequently, Andrew G. H et al. optimize Mobile-

Net and propose MobileNet v2 [21] and MobileNet v3 [22] networks. Among them, the

inverted residual with linear bottleneck structure is introduced in MobileNet v2, which has

higher accuracy and smaller model than v1. MobileNet v3 updates the inverted residual

structure of MobileNet v2, uses Neural Architecture Search (NAS) parameters, and finally

redesigns the structure of the time-consuming layer. Huawei has also proposed a light-

weight series network with similar performance to MobileNet, the GhostNet series [23–25].

The core idea of GhostNet is to generate feature maps that express intrinsic feature informa-

tion with low-cost linear transformations. In addition, in a complex road environment, the

above algorithms cannot effectively extract the object features, the detection effect of traffic

signs with large-scale differences is not good, and the detection accuracy is not very high.

For this problem, some scholars have paid attention to the attention mechanism which is

widely used in the field of natural language processing. The essence of attention mechanism

is to locate interesting information and suppress useless information. Hu J et al. propose a

SENet [26] attention mechanism with low complexity, fewer parameters and less computa-

tion, including Squeeze part and Excitation part. Woo S et al. propose the CBAM [27] atten-

tion mechanism, emphasizing the features along the two main dimensions of the channel

axis and the spatial axis.

Therefore, in view of the problems of large scale difference of traffic sign targets in complex

road environment, complex detection model, and model deployment limited by equipment,

this paper proposes a lightweight algorithm for traffic signs detection based on YOLOv5 [28]

named SCB-YOLOv5. The main innovation and contribution are as follows:
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1. To solve the problems that the complex model, the large number of model parameters, and

the limited model by equipment during deployment, ShuffleNet v2 [29, 30] is used to

replace the YOLOv5’s backbone network for extracting features, which greatly reduces the

number of network parameters and improves the speed of network operation. And

SimSPPF [31] is used to replace the SPPF structure, which improves the feature extraction

ability of the backbone network.

2. Aiming at the problem that it is difficult to effectively extract object features in complex

road environment, a lightweight CA [32] attention module is added to the backbone net-

work, which enhances the saliency of the object at the cost of a small computational cost.

3. For the problem of large differences in target scales, the BCS-FPN is designed to replace the

FPN+PAN structure of YOLOv5. SCCBL is used as the convolution module for the

BCS-FPN to reduce the amount of model calculation while ensuring the accuracy. The C2f-

SCConv structure is designed to further reduce the number of network parameters and

improve the detection speed. Moreover, the multi-scale feature fusion mechanism is intro-

duced to improve the network feature fusion ability.

The paper structure is as follows: Section II introduces the SCB-YOLOv5 and improves the

details of each part, section III is the experimental results and analysis, and section IV is the

conclusion.

II. Methodology of the proposed approach

2.1 YOLOv5

YOLOv5 is the YOLO series algorithm used in most of the algorithms [33]. YOLOv5 is similar

to YOLOv4 [34], but there are some differences. YOLOv5 algorithm than YOLOv4 backbone

network part added Focus structure and CSP [35] structure. YOLOv5 is mainly divided into

four parts, respectively input part, backbone network part, neck feature extraction part, and

prediction part as shown in Fig 1.

The backbone network part mainly includes the Focus structure and the CSP structure.

Focus mainly performs a slicing operation, which can reduce the size of the feature map by

increasing the dimension of the feature map without losing any information. CSPNet takes the

CSP structure for reference design train of thought, and joined the residual structure for effec-

tively preventing the gradient from disappearing.

The Neck feature extraction network part adopts the FPN+PAN structure, which can effec-

tively transfer semantic information and fuse multi-scale features. The Neck part also designs a

CSP structure, which enhances the ability of the network to fuse multi-scale features while

reducing the amount of calculation. At the prediction end, CIoU loss [36] is used as the

bounding box regression loss, and NMS(non-maximum suppression) is used to screen the tar-

get box.

2.2 The improvements of the backbone network

We use the ShuffleNet v2 to replace the original YOLOv5’s backbone network for feature

extraction. ShuffleNet series network is a kind of lightweight structure, its structure is

clear and concise, and has verified on the multiple data sets its good generalization

performance.

ShuffleNet v2 is the latest version of the ShuffleNet network family and proposes 2 princi-

ples for effective network architecture design, namely use direct metrics (such as speed)

instead of indirect metrics (such as FLOPs) when designing networks and such metrics should
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be evaluated on the target platform. Based on these two principles, four principles for efficient

network design are derived:

1. When the channels of the input feature matrix and the output feature matrix of the convo-

lutional layer are equal, the MAC (memory access cost) is minimized, and FLOPs (floating-

point operations) remain unchanged. For a convolutional layer with a 1×1 kernel, hwc1 is

the memory consumption of the input feature matrix, hwc2 is the memory consumption of

the output feature matrix, and 1×1×c1c2 is the memory consumption of the convolution

kernel parameters, which can be obtained using the mean inequality since this condition is

Fig 1. YOLOv5 algorithm structure.

https://doi.org/10.1371/journal.pone.0310269.g001
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that FLOPs remain constant

MAC ¼ hwðc1 þ c2Þ þ c1c2

� 2hw ffiffiffiffiffiffiffiffic1c2

p
þ c1c2

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hwFLOPs
p

þ
FLOPs

hw
;

ð1Þ

where, FLOPs =hwc1c2, h and w are the height and width of the input and output feature

matrices respectively, c1 and c2 are the number of channels of the input and output feature

matrices respectively, and the condition for the above equation to take the equal sign is c1 =

c2.

2. When the Group of GConv(Group Convolution) increases, the MAC will also increase

(keeping FLOPs constant). For a 1×1 convolutional layer in Group Conv, hwc1 is the mem-

ory consumption of the input feature matrix, hwc2 is the memory consumption of the out-

put feature matrix, and 1� 1� ðc1=gÞ � ðc2=gÞ � g is the memory consumption of the

convolution kernel parameters. Among them, g is the number of Groups. Thus, it can be

obtained

MAC ¼ hwðc1 þ c2Þ þ
c1c2

g

¼ hwc1 þ
FLOPs� g

c1

þ
FLOPs

hw
:

ð2Þ

Among them, FLOPs =hwc1c2/g, when the fixed FLOPs are unchanged, the increase of g
will cause the increase of MAC.

3. When the network design is more fragmented, the processing speed is slower. There are

many branches in networks such as Inception and SPP block, and the degree of fragmenta-

tion is also the degree of branches, which can be in parallel or series. Although the frag-

mented structure can improve the accuracy, it will decrease the efficiency of the model. The

fragmented structure is also not suitable for running on GPU devices with strong parallel

capabilities, and the start and synchronization of convolution kernels are also involved in

the case of many branches. So the more fragmented the network design, the slower it will

be.

4. Element-wise overhead also slows things down. Element-wise operations include activation

functions, Element addition (residual structure), etc., and bias in convolutions. The com-

monality of Element-wise operations is that FLOPs are small, but MAC is large. Moreover,

the DW Conv(Depthwise Convolution) can also be seen as an Element-wise operation. In

practice, Element-wise operations are more time-consuming than expected.

According to the above four design criteria, the ShuffleNet v2 can be designed, and the

structure is shown in Fig 2. For the basic unit of the ShuffleNet v2 network shown in Fig 2(A),

the channel of its feature input matrix is split into two branches. Firstly, aiming at the principle

of simplifying the complexity of the network, the degree of fragmentation is reduced in the

design of the subsequent network. No operation is added in the left branch, and the number of

channels of the three Conv inputs and outputs in the right branch is the same, which also

meets the principle of the equal number of input and output channels. After Conv, the two

branches are concatenated using Concat, which also makes the number of front and back

channels consistent for the whole unit. Channel reorganization is then performed at the end of
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the unit. Add operations are no longer performed in the whole basic unit, and the ReLU acti-

vation function and DW Conv only exist in one branch, reducing Element-wise operations as

much as possible. For the ShuffleNet v2 down-sampling unit shown in Fig 2(B), the operation

of channel splitting is canceled, and finally, the channels of the output feature matrix are dou-

bled after Concat. The 3×3 average pooling of one of the branches is turned into a 3×3 DW

Conv, which can be regarded as a DW Conv with a weight of one-ninth, which can increase

more possibilities, and x finally adds a 1×1 convolution. In particular, in both units of Shuffle-

Net v2, DW Conv is followed only by the BN layer, cancelating the ReLU layer.

In this paper, after extracting features in the backbone network, to strengthen the saliency

ability of feature expression, the CA attention mechanism is added to the back of the backbone

network. CA attention mechanism is a lightweight attention mechanism that can effectively

enhance the expression ability of network learning features, and its implementation process is

shown in Fig 3.

The main implementation process of the CA attention mechanism is that location informa-

tion is embedded in channel attention to encode channel relationships and long-term depen-

dencies through accurate location information. In the left part of Fig 3, to capture the attention

and encode the position information in the width and height of the image, the input feature

map is first divided into two directions of width and height, and the global average pooling is

Fig 2. The ShuffleNet v2 network structure diagram. The Fig 2(A) on the left is the basic feature extraction unit with residual structure, and the Fig 2(B) on

the right is the down-sampling unit.

https://doi.org/10.1371/journal.pone.0310269.g002
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performed respectively, so that the feature maps in the width and height directions are

obtained, as shown in the following equation:

zh
c ¼

1

W

X

0�i�W

xcðh; iÞ;

zw
c ¼

1

H

X

0�j�H

xcðj;wÞ:
ð3Þ

Among them, zh
c is the output of the c−th channel with height h and zw

c is the output of the c
−th channel with width w. These two transformations aggregate features along two spatial

directions, respectively, resulting in a pair of direction-aware feature maps. Then, the two fea-

ture maps are concatenated together by the Concat operation and fed into the shared convolu-

tion module to reduce its dimension to the original C/r, as shown in the following equation:

f ¼ dðF1ð½z
h; zw�ÞÞ: ð4Þ

Among them, [�,�] is the Concat operation along the spatial dimension, δ is the nonlinear

activation function, and f is the intermediate feature map that encodes the spatial information

both horizontally and vertically. f is then decomposed into two separate tensors fh2RC/r×H and

fw2RC/r×W along the spatial dimension. Then two other 1×1 convolution transformations are

used to transform fh and fw into tensors with the same number of channels, resulting in:

gh ¼ sðFhðf hÞÞ;

gw ¼ sðFwðf wÞÞ;
ð5Þ

where σ is the Sigmoid activation function. Finally, the weight gh in the height direction and

Fig 3. Structure of CA attention mechanism.

https://doi.org/10.1371/journal.pone.0310269.g003
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the weight gw in the width direction of the obtained input feature map are jointly weighted on

the original feature map to obtain the feature map with weights in the height direction and

width direction, as shown in the following equation:

ycði; jÞ ¼ xcði; jÞ � gh
c ðiÞ � gw

c ðjÞ: ð6Þ

In this paper, the CA attention mechanism is added to the tail of the backbone network.

Fig 4 shows the comparison before and after adding the CA attention mechanism. In Fig 4, red

regions indicate regions with high saliency for a certain object, and darker colors indicate

higher saliency.

In this paper, the SPP structure is improved by using SimSPPF for replacement and replac-

ing the Leaky ReLU activation function with the ReLU activation function, and the specific

structure is shown in Fig 5.

Finally, the backbone network parameters used in this paper are shown in Fig 6.

In Fig 6, the parameters in parentheses after Conv_BN_Relu and SimSPPF represent the

number of input channels, the number of output channels, and the number of parameters,

respectively. The parameters in parentheses after ShuffleNet_Block represent the number of

input channels, the number of output channels, the module category, and the number of

parameters, respectively, where, when the module category is 1, it is the base module of Shuf-

fleNet v2, and when the module category is 2, it is the down-sampling module of ShuffleNet

Fig 4. Comparison of thermodynamic diagrams before and after adding the CA attention mechanism.

https://doi.org/10.1371/journal.pone.0310269.g004
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Fig 5. SimSPPF structure diagram.

https://doi.org/10.1371/journal.pone.0310269.g005

Fig 6. The parameters of the backbone.

https://doi.org/10.1371/journal.pone.0310269.g006
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v2. CA modules after the parameters in parentheses, respectively for the number of input

channel, output channel number, and reference number. After calculation, the improved back-

bone network parameter quantity is 0.49M, and the calculation amount is 1.4GFLOPs, while

the backbone network parameter quantity of YOLOv5s is 3.82M, and the calculation amount

is 9.6GFLOPs. Thus, after replacement of backbone network, the model parameter was

reduced by 69.1%, the amount of calculation was reduced by 78.1%.

2.3 The improvements in feature fusion networks

The neck of YOLOv5 uses the FPN+PAN structure. Because this method is a top-down and

then bottom-up feature fusion mechanism, it can only fuse the feature map features of adjacent

scales, and it is difficult to effectively fuse the cross-scale features. To explore a feature fusion

network that can fully fuse multi-scale feature maps, so that the three outputs of the network

can fully fuse the features of different levels, and can only increase a small amount of parame-

ters to ensure the detection speed of the network, this paper designs a lightweight cross-scale

feature fusion mechanism named BCS-FPN, which is the FPN [37] with BiFPN [38] and C2f-

SCConv, as shown in Fig 7.

The improvement of BCS-FPN compared with the FPN+PAN structure in YOLOv5 is that

a lightweight module is designed for the feature fusion network to reduce redundant calcula-

tions and a multi-scale feature fusion mechanism is introduced to enhance the feature fusion

ability. In Fig 7, C2f-SCConv is the designed lightweight module, among which, the SCCBL

module is an efficient convolution module and uses SCConv [39] as the basic unit of convolu-

tion. SCConv uses characteristics between space and channel redundancy to compress the

CNN, which reduces the representative characteristics of redundant computation and is easy

to learn. The implementation process of BCS-FPN is as follows: Firstly, the feature map output

by the C1 layer is connected to the prediction end of the F1 layer, and the feature map output

by the C2 layer is connected to the prediction end of the F2 layer, so that an edge from the orig-

inal input node to the output node is added, which can fuse as many target features as possible

under the premise of increasing a small amount of calculation. Secondly, the convolution

module is replaced by the SCCBL module to further reduce the amount of calculation while

ensuring accuracy. Finally, the C2f-SCConv structure was designed for the feature fusion net-

work to further reduce the number of parameters and improve the detection speed.

SCConv structure is shown in Fig 8. In the first part of Fig 8, SCConv(Spatial and Channel

reconstruction Convolution) consists of a spatial reconstruction unit (SRU) and a channel

reconstruction unit (CRU). SRU utilizes a separate-and-reconstruct method to suppress the

spatial redundancy while CRU uses a split-transform-and-fuse strategy to diminish the chan-

nel redundancy. Concretely, for the intermediate input feature X in the bottleneck residual

block, the spatial refinement feature Xw is firstly obtained by SRU operation, and then the

channel refinement feature Y is obtained by CRU operation. Exploiting the spatial and channel

redundancy between features in the SCConv module, it can be seamlessly integrated into any

CNN architecture to reduce redundancy between intermediate feature maps and improve the

feature representation of CNNs.

The role of SRU is to exploit the redundant features of the space, as shown in the SRU struc-

ture in the middle part of Fig 8, with the operation of separation reconstruction. The purpose

of separation operation is characteristic of the information rich content for less characteristic

figure and space separation. The scaling factor in the Group Normalization(GN) layer is then

used to evaluate the information content of the different feature maps. And we leverage train-

able parameters in the GN layer to measure the variance of spatial pixels for each batch and

channel. Then the weight values of the feature map are mapped to [0,1] by sigmoid function.
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Finally, the input features are multiplied by the weight values W1 and W2 respectively to obtain

two weighted features Xw
1

and Xw
2

, and the Spatial-Refined features are obtained by adding

them by the Reconstruct operation. CRU’s role is to use the channel characteristic of redun-

dancy, the CRU structure as shown in the last part of Fig 8, the split-transform-fusion strategy,

further reducing space refined characteristic figure Xw along the channel dimension redun-

dancy. The Split operation splits the channel of the spatially refined feature into two parts, one

with α�C channels and the other with (1−α)�C channels, where 0�α�1 is a split ratio. Then

1×1 convolution is used to compress the channels of the feature map to improve efficiency. In

Transform operation, efficient convolution operations (GWC and PWC) are used instead of

standard convolution to extract high-level representative information and reduce the compu-

tational cost. In Fuse operation, global average Pooling is first applied to collect global spatial

information. The global channel descriptors S1 and S2 of the upper and lower parts are then

stacked together and the channel attention operation is used to generate the feature impor-

tance vector β1 and β2. Finally, Y1 and Y2 are merged in a channel manner under the guidance

Fig 7. Diagram of the BCS-FPN structure.

https://doi.org/10.1371/journal.pone.0310269.g007
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of the feature importance vector. In addition, rich representative features can be extracted by

CRU, and redundant features can be handled through low-cost operations and feature reuse

while lightweight convolution operations.

After calculation, the parameter amount of BCS-FPN is 1.9M, and the calculation amount is

3.6 GFLOPs. The parameter amount of YOLOv5s neck part is 2.45M, and the calculation amount

is 4.6 GFLOPs. It can be seen that after replacing the FPN+PAN of the YOLOv5s with BCS-FPN,

the parameter amount is reduced by 22.4%. The amount of calculation is reduced by 21.7%.

2.4 SCB-YOLOv5

The lightweight traffic sign detection framework based on YOLOv5 named SCB-YOLOv5 is

shown in Fig 9. The SCB-YOLOv5 is that the YOLOv5 with ShuffleNet, CA attention mecha-

nism, and BCS-FPN.

Fig 8. Diagram of the SCConv structure.

https://doi.org/10.1371/journal.pone.0310269.g008
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As shown in Fig 9, SCB-YOLOv5 is mainly divided into four parts, namely input, backbone,

neck and prediction. First, images are fed to the network from the input, and after being scaled

and padded, 640*640*3 images are fed to backbone. Secondly, the ShuffleNet v2 network is

used for feature extraction, the CA attention mechanism is used to enhance the saliency of the

target, and the SimSPPF module is used to handle the distortion of the image to enhance the

feature extraction ability. Then, multi-scale feature fusion is performed through the BCS-FPN

network. Finally, inference of prediction boxes is performed at three scales. The process of the

detection framework in this paper is as follows:

Fig 9. Diagram of the SCB-YOLOv5 structure.

https://doi.org/10.1371/journal.pone.0310269.g009
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1. The TT-100K data set is analyzed and divided into the training set, validation set, and test

set.

2. The optimal weights of the model are obtained by training the network with the divided

training set and validation set.

3. The obtained model training weights are used to perform a validation test on the test set.

III. Experimental results and comparative analysis

In the experiments of this paper, the SCB-YOLOv5 model is comprehensively analyzed on the

TT-100K dataset. The experiment is carried out under the Pytorch framework. The operating

system of the server is Linux Ubuntu 18.04, the CPU model is Intel(R) Xeon(R) Gold 6248R,

the CPU frequency is 3.00GH, and the memory of the server was 128GB DDR4. The GPU is

RTX A6000, with memory of 48 GB.

3.1 Analysis of the TT-100K dataset

In this section, we first present an analysis of the TT-100K dataset. TT-100K dataset is a com-

monly used traffic sign dataset jointly produced by Tsinghua University and Tencent. Among

them, the training set contains 6105 images and the test set contains 3071 images, and the data

set contains 232 kinds of traffic signs in total. In this paper, the number of targets and the scale

of targets in the TT-100K dataset are first counted, and the statistical results are shown in Fig 10.

We then classify the objects into three categories based on their pixel size. The small-scale

Fig 10. Scale statistical plot of the TT-100K dataset.

https://doi.org/10.1371/journal.pone.0310269.g010
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objects, whose pixel size is less than 32×32. The mesoscale objects, whose pixel size is between

32×32 and 96×96. Large scale objects, whose pixel size is greater than 96×96.

Because the data set of some categories of quantity is less, easy to cause in the process of

training network owe fitting. So to ensure the validity of the model, this paper only chooses a

target quantity is more than 100 categories to continue training. Finally, the categories of the

filtered dataset and their numbers are shown in Table 1.

3.2 Network model training

Before training the model, the ratio of the training set to the validation set was divided into

7:3. The image input model, carries on the pretreatment, and adjust the picture size is 640 x

640. The training method uses SGD with a momentum parameter size of 0.937, an initial

learning rate of 0.01, and 16 images for each batch. All models are trained for 300 epochs

according to these parameters.

3.3 Experimental results and analysis

To objectively evaluate the advantages of the SCB-YOLOv5 algorithm proposed in this paper,

Precision, Recall, average precision mAP@50, and average inference time are selected as evalu-

ation indicators, and the calculation formula is as follows.

precision ¼
TP

TPþ FP
; ð7Þ

recall ¼
TP

TP þ FN
; ð8Þ

AP ¼
Z 1

0

PðRÞdR;

mAP ¼

XN

i¼1
APi

N
;

ð9Þ

where, TP is the number of correct detections, FP is the number of false detections, is the num-

ber of missed detections, FN is the integral of the Precision-Recall curve, AP is the number of

Table 1. After screening of TT-100K data set object and quantity.

Labels Numbers Labels Numbers Labels Numbers

pne 2091 pn 2963 pl40 1356

p5 393 i2r 417 pl50 1027

pl60 820 i5 1582 w57 393

pl80 865 pl12 181 pl120 296

pr40 200 pl5 484 w59 196

pl30 596 i4 733 pm20 156

ip 340 pl100 664 p23 281

pm30 107 pg 154 p26 812

w55 175 p10 358 p11 1535

p13 353 p19 122 i4l 330

ph4.5 186 pl20 158 p3 169

pl70 149 il80 294

https://doi.org/10.1371/journal.pone.0310269.t001
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detection categories, and the average inference time in this paper is the average time calculated

after 500 images which are selected for testing.

The SCB-YOLOv5 traffic sign detection algorithm proposed in this paper is compared with

SSD, RetinaNet, FCOS, YOLOv3, YOLOv3-Tiny, YOLOv5-GhostNet, YOLOv5-MobileNet,

and YOLOv5s on the TT-100K dataset The experimental results are shown in Table 2. It can

be seen from Table 2 that the proposed SCB-YOLOv5 algorithm has little difference from

YOLOv5s in terms of accuracy and recall. However, the mAP@50 of SCB-YOLOv5 is 0.2% less

than that of YOLOv5s, and the inference speed is 20.8% faster than that of YOLOv5s. Com-

pared with other algorithms, SCB-YOLOv5 has obvious advantages in speed and accuracy.

Table 3 shows the comparison between SCB-YOLOv5 and other algorithms in terms of the

number of parameters, amount of computation, and model size. Among them, SCB-YOLOv5

has the smallest model size, the least number of parameters, and the least amount of calcula-

tion. Compared with YOLOv5s, the number of parameters of SCB-YOLOv5 is reduced by

50.8%, the amount of calculation is reduced by 59.8%, and the model size is reduced by 48.8%.

It can be seen from Tables 2 and 3 that SCB-YOLOv5 has obvious advantages over other

mainstream detection algorithms in the number of model parameters, calculation, accuracy,

and speed indicators.

In the training process, the mAP@50 curves of SCB-YOLOv5 and YOLOv5s with epoch are

shown in Fig 11. It can be seen from Fig 11 that SCB-YOLOv5 has a faster training conver-

gence speed.

Finally, in order to observe the comparison of the detection effect of SCB-YOLOv5 and

YOLOv5s more intuitively, Fig 12 shows the comparison of the detection effect of SCB-YO-

LOv5 and YOLOv5s. As can be seen in Fig 12, SCB-YOLOv5s has higher detection confidence

scores for traffic sign targets.

Table 2. Comparison of SCB-YOLOv5 detection algorithm with other algorithms.

Method P R mAP@50 Inference time FPS

YOLOv3 71.1 67.0 73.5 21.0ms 46.9

YOLOv3-tiny 79.3 64.8 72.7 7.9ms 108.7

YOLOv5-Ghost 64.1 57.2 60.7 9.5ms 92.6

YOLOv5-MobileNet 62.4 48.8 53.5 9.3ms 94.3

SSD 71.9 60.1 69.7 18.5ms 50.5

RetinaNet 72.4 50.6 62.4 31.0ms 30.9

FCOS 72.3 65.4 70.1 56.0ms 17.5

YOLOv5s 75.1 70.2 75.1 8.6ms 101.0

ours 78.8 69.4 74.9 6.9ms 122.0

https://doi.org/10.1371/journal.pone.0310269.t002

Table 3. Comparison of the number of parameters and calculation of SCB-YOLOv5 detection algorithm with other algorithms.

Method Parameters Computational complexity (GFLOPs) Model size

YOLOv3 61394M 156.6G 123.9MB

YOLOv3-tiny 8.85M 13.3G 17.6MB

YOLOv5-Ghost 2.98M 6.7G 6.5MB

YOLOv5-MobileNet 2.39M 4.6G 5.3MB

SSD 24.86M 62.4G 192.2MB

RetinaNet 36.15M 82.04 290.5MB

FCOS 31.84M 78.67G 256.2MB

YOLOv5s 6.27M 14.2G 13.1MB

ours 3.08M 5.7G 6.7MB

https://doi.org/10.1371/journal.pone.0310269.t003
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3.4 Ablation experiment

To verify the effectiveness of adding each improved structure to the proposed SCB-YOLOv5

detection algorithm, this paper conducted ablation experiments. The results of ablation experi-

ments are shown in Table 4. As can be seen from Table 4, after replacing the backbone net-

work with ShuffleNet v2, the size of the space occupied by the model, the number of

parameters, and the amount of calculation are greatly reduced. Due to the simplification of the

network, the mAP is reduced and the inference speed of the model is greatly improved. After

adding the CA attention mechanism, the mAP is improved, but the speed is decreased. After

adding BCS-FPN, the number of parameters of the model decreases, the mAP is reduced, and

the inference speed is improved. Finally, compared with YOLOv5s, the proposed SCB-YO-

LOv5 model has the same accuracy, but the inference speed is greatly improved, and the num-

ber of parameters and calculations is greatly reduced.

3.5 Model deployment experiment

In order to verify the performance of the proposed SCB-YOLOv5 detection algorithm on

embedded devices, this paper also conducted model deployment experiments on Nvidia Orin

NX. The CPU of the Nvidia Orin NX is a 6-core NVIDIA CarmelARMv8.2 64-bit CPU. The

GPU for Nvidia Orin NX is the NVIDIA Volta architecture with 384 NVIDIA CUDA cores

Fig 11. The comparison curves of mAP@50 between SCB-YOLOv5 and YOLOv5s. The abscissa is the number of

training epochs, and the ordinate is mAP@50.

https://doi.org/10.1371/journal.pone.0310269.g011
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and 48 Tensor cores. And it has 8GB of RAM. A schematic of the deployment on Nvidia Orin

NX is shown in Fig 13.

In this paper, SCB-YOLOv5 is deployed with YOLOv5s, YOLOv3-tiny, YOLOv5-GhostNet,

and YOLOv5-MobileNet v3 on Nvidia Orin NX, and the experimental results are shown in

Table 5. It can be seen from Table 5 that the SCB-YOLOv5 detection algorithm proposed in

Fig 12. Comparison of detection effect between SCB-YOLOv5 and YOLOv5s.

https://doi.org/10.1371/journal.pone.0310269.g012
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this paper can perform real-time detection of traffic signs on embedded devices, and it is faster

than other lightweight algorithms such as YOLOv5s, and the model size is also the smallest. In

summary, the excellent performance of SCB-YOLOv5 on embedded devices is verified.

IV. Conclusion

Aiming at the problems of road traffic sign detection, such as complex traffic sign target back-

ground, low saliency, large scale difference, large parameter amount of common target detec-

tion algorithm, and complex model, this paper proposes a lightweight traffic sign detection

algorithm SCB-YOLOv5. Firstly, ShuffleNet v2 was used to replace the YOLOv5’s backbone

network for extracting features, which greatly reduces the number of network parameters and

improves the speed of network operation. And SimSPPF was used to replace SPPF, which

improves the feature extraction ability of the backbone network. Then, the CA attention mech-

anism is added to the backbone network, which enhances the saliency of the object at the cost

of a small computational cost. Finally, the BCS-FPN structure is designed to improve the fea-

ture fusion ability of multi-scale objects while reducing the amount of calculation. SCCBL is

used as the convolution module for the BCS-FPN to reduce the amount of model calculation

while ensuring the accuracy. The C2f-SCConv structure is designed to further reduce the num-

ber of network parameters and improve the detection speed. Moreover, the multi-scale feature

fusion mechanism is introduced to improve the network feature fusion ability. In this paper,

experiments are carried out on the TT-100K dataset. Experiments show that the mAP@50 of

Table 4. Comparison of algorithm results before and after adding different structures.

ShuffleNet+ SimSPPF CA C2f-SCConv mAP Inference time FPS
p

73.8 7.5ms 113.6
p p

74.4 7.7ms 111.1
p p

73.9 6.7ms 125.0
p p p

74.9 6.9ms 122.0

https://doi.org/10.1371/journal.pone.0310269.t004

Fig 13. Schematic diagram of the traffic sign detection model deployment.

https://doi.org/10.1371/journal.pone.0310269.g013
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SCB-YOLOv5 reaches 74.9%, and the inference speed is 6.9ms, which is 20.8% higher than

that of YOLOv5. This paper also conducts a deployment experiment on the embedded side.

Experiments show that SCB-YOLOv5 can detect traffic signs in real-time on embedded

devices. During the analysis of the data set, we found that the data set has fewer categories and

the training effect is general. The next step of this paper is to first expand the data set to make

the trained model generalize better. The second is to verify the detection ability of the algo-

rithm for small-scale targets, and enhance the detection effect of the algorithm for small-scale

targets. Finally, in the aspect of positive and negative sample matching and training strategy of

the algorithm, we will use more appropriate optimization algorithms and matching algorithms

[40, 41] to improve the efficiency of the model.

Supporting information

S1 File. Results for each epoch during model training. S1 File is the supporting information

of Fig 11. Among them, results_for_YOLOv5.csv is the data of YOLOv5 during the training

process, and results_for_SCB-YOLOV5.csv is the data of SCB-YOLOv5 during the training

process. In the data, the first column is the number of training epoch, and the 2–4 columns are

the changes in the value of each loss function during training. The 5–7 columns are the

changes of precision, recall, and mAP@0.5. The 8–10 columns are the changes in the value of

each loss function during validation process, and the last 3 columns are the change in learning

rate.
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S2 File. Public dataset sources have used in this paper. TT-100K dataset is used in this paper,

and we selected traffic signs with more than 100 labels in the dataset as detection targets.

(DOCX)

S3 File. SCB-YOLOv5 model configuration file and its core code. Among them, the core_-

code_for_SCB-YOLOv5_model_configuration_file.txt file is the core code of main structure

in SCB-YOLOv5, and the SCB-YOLOv5.yaml file is the model parameter configuration file of

SCB-YOLOv5.

(ZIP)
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Table 5. Embedded end deployment experimental results.

Method Inference time Model size

YOLOv3-tiny 27ms 17.6MB

YOLOv5-Ghost 35ms 6.5MB

YOLOv5-MobileNet 37ms 5.3MB

YOLOv5s 31ms 13.1MB

ours 14ms 6.7MB

https://doi.org/10.1371/journal.pone.0310269.t005
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