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Abstract

Traffic signs detection is an important and challenging task in intelligent driving perception
system. This paper proposes an improved lightweight traffic signs detection framework
based on YOLOVS. Firstly, the YOLOv5'’s backbone is replaced with ShuffleNet v2, which
simplifies the calculation complexity and reduces the parameters of backbone network. Sec-
ondly, aiming at the problem of inconspicuous traffic sign characteristics in complex road
environment, we use the CA attention mechanism in this paper to improve the saliency of
the object. Finally, aiming at the large-scale difference between the traffic signs and the high
proportion of small objects, we design the BCS-FPN to fuse multi-scale features and
improve the representation ability of the small-scale objects. The TT-100K dataset is also
analyzed and the dataset is collated. We test on the collated TT-100K dataset for the
improved YOLOVS5 in this paper. And the results show that compared with YOLOv5s, the
mAP of our algorithm is equivalent to that of YOLOv5s, and the speed is improved by
20.8%. This paper also has carried on the experiment on embedded devices, experimental
results show that our framework in computing power less embedded devices has a better
effect.

l. Introduction

With the rapid development of autonomous driving technology, the intelligent perception
technology and vehicle communication technology of intelligent vehicles are also constantly
updated and iterated [1-4]. Among them, road traffic signs detection [5, 6] is the key task of
intelligent driving perception system. Road traffic signs of effective identification are the basis
of the intelligent transportation system and unmanned technology, as well as the accuracy of
the subsequent unmanned intelligent decision-making provides a convenient condition.
Recently, more and more traffic sign detection frameworks use CNNs, and the object detec-
tion algorithm based on CNNs has also achieved a lot of achievements. All the time, object
detection has been the most fundamental and challenging branch of computer vision. The
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object detection frameworks based on CNNs are mainly divided into two categories. One is a
two-stage object detection algorithm that pursues accuracy, and the other is a single-stage
object detection algorithm that pursues speed. The difference between the two types of algo-
rithms is based on whether the proposal region is further divided. Among them, the two-stage
object detection algorithms will filter the proposal region and then match the prediction box.
And the two-stage object detection algorithms mainly include R-CNN [7-9] series, Mask-
RCNN [10] and Cascade R-CNN [11]. Domen Tabernik et al. [12] a CNN-based method to
solve the whole process of target detection and recognition by training the model in an auto-
matic end-to-end way. Y. Qian et al. [13] identified the problem of the single function of cur-
rent deep learning models and proposed a unified neural network that can simultaneously
detect drivable areas, lane lines, and traffic targets. The one-stage object detection algorithm
will directly match the proposed region. And the single-stage object detection algorithms
mainly include YOLO series [14-16] and SSD [17]. T. Suwattanapunkul et al. [18] used the
YOLO series of algorithms to perform experiments on the Tsinghua-Tencent 100K (TT-100k),
the Taiwan Traffic Signs (TWTS), and a hybrid dataset combining traffic scenes between
TT100k and TWTS datasets. Y. Cao et al. [19] proposed a multi-scale small object detection
structure to solve the problem of small-scale road traffic targets, and conducted experiments
on the autonomous driving dataset BDD-100K.

The network frameworks of the existing algorithms are complex, the computational
complexity is high, and the running memory occupied by the model is also large when it is
deployed, which requires the device to have strong computing power support. In general,
the computing power of vehicle processors is often poor, and the running memory is rela-
tively small, so the above algorithm is not suitable for direct application in road traffic
detection. For the problem of insufficient computing power of the device, some scholars
have focused on lightweight detection networks. Andrew G. H et al. design MobileNet [20]
network based on streamlined architecture, which uses depthwise separable convolution to
build lightweight deep neural network. Subsequently, Andrew G. H et al. optimize Mobile-
Net and propose MobileNet v2 [21] and MobileNet v3 [22] networks. Among them, the
inverted residual with linear bottleneck structure is introduced in MobileNet v2, which has
higher accuracy and smaller model than v1. MobileNet v3 updates the inverted residual
structure of MobileNet v2, uses Neural Architecture Search (NAS) parameters, and finally
redesigns the structure of the time-consuming layer. Huawei has also proposed a light-
weight series network with similar performance to MobileNet, the GhostNet series [23-25].
The core idea of GhostNet is to generate feature maps that express intrinsic feature informa-
tion with low-cost linear transformations. In addition, in a complex road environment, the
above algorithms cannot effectively extract the object features, the detection effect of traffic
signs with large-scale differences is not good, and the detection accuracy is not very high.
For this problem, some scholars have paid attention to the attention mechanism which is
widely used in the field of natural language processing. The essence of attention mechanism
is to locate interesting information and suppress useless information. Hu J et al. propose a
SENet [26] attention mechanism with low complexity, fewer parameters and less computa-
tion, including Squeeze part and Excitation part. Woo S et al. propose the CBAM [27] atten-
tion mechanism, emphasizing the features along the two main dimensions of the channel
axis and the spatial axis.

Therefore, in view of the problems of large scale difference of traffic sign targets in complex
road environment, complex detection model, and model deployment limited by equipment,
this paper proposes a lightweight algorithm for traffic signs detection based on YOLOVS5 [28]
named SCB-YOLOV5. The main innovation and contribution are as follows:
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1. To solve the problems that the complex model, the large number of model parameters, and
the limited model by equipment during deployment, ShuffleNet v2 [29, 30] is used to
replace the YOLOV5’s backbone network for extracting features, which greatly reduces the
number of network parameters and improves the speed of network operation. And
SimSPPF [31] is used to replace the SPPF structure, which improves the feature extraction
ability of the backbone network.

2. Aiming at the problem that it is difficult to effectively extract object features in complex
road environment, a lightweight CA [32] attention module is added to the backbone net-
work, which enhances the saliency of the object at the cost of a small computational cost.

3. For the problem of large differences in target scales, the BCS-FPN is designed to replace the
FPN+PAN structure of YOLOv5. SCCBL is used as the convolution module for the
BCS-FPN to reduce the amount of model calculation while ensuring the accuracy. The C2f-
SCConv structure is designed to further reduce the number of network parameters and
improve the detection speed. Moreover, the multi-scale feature fusion mechanism is intro-
duced to improve the network feature fusion ability.

The paper structure is as follows: Section II introduces the SCB-YOLOv5 and improves the
details of each part, section III is the experimental results and analysis, and section IV is the
conclusion.

Il. Methodology of the proposed approach
2.1 YOLOvV5

YOLOVS5 is the YOLO series algorithm used in most of the algorithms [33]. YOLOVS5 is similar
to YOLOV4 [34], but there are some differences. YOLOV5 algorithm than YOLOv4 backbone
network part added Focus structure and CSP [35] structure. YOLOV5 is mainly divided into
four parts, respectively input part, backbone network part, neck feature extraction part, and
prediction part as shown in Fig 1.

The backbone network part mainly includes the Focus structure and the CSP structure.
Focus mainly performs a slicing operation, which can reduce the size of the feature map by
increasing the dimension of the feature map without losing any information. CSPNet takes the
CSP structure for reference design train of thought, and joined the residual structure for effec-
tively preventing the gradient from disappearing.

The Neck feature extraction network part adopts the FPN+PAN structure, which can effec-
tively transfer semantic information and fuse multi-scale features. The Neck part also designs a
CSP structure, which enhances the ability of the network to fuse multi-scale features while
reducing the amount of calculation. At the prediction end, CIoU loss [36] is used as the
bounding box regression loss, and NMS(non-maximum suppression) is used to screen the tar-
get box.

2.2 The improvements of the backbone network

We use the ShuffleNet v2 to replace the original YOLOvV5’s backbone network for feature
extraction. ShuffleNet series network is a kind of lightweight structure, its structure is
clear and concise, and has verified on the multiple data sets its good generalization
performance.

ShuffleNet v2 is the latest version of the ShuffleNet network family and proposes 2 princi-
ples for effective network architecture design, namely use direct metrics (such as speed)
instead of indirect metrics (such as FLOPs) when designing networks and such metrics should
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Fig 1. YOLOV5 algorithm structure.
https://doi.org/10.1371/journal.pone.0310269.9001

be evaluated on the target platform. Based on these two principles, four principles for efficient
network design are derived:

1. When the channels of the input feature matrix and the output feature matrix of the convo-
lutional layer are equal, the MAC (memory access cost) is minimized, and FLOPs (floating-
point operations) remain unchanged. For a convolutional layer with a 1x1 kernel, hwc, is
the memory consumption of the input feature matrix, hwc, is the memory consumption of
the output feature matrix, and 1x1xc;c, is the memory consumption of the convolution
kernel parameters, which can be obtained using the mean inequality since this condition is
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that FLOPs remain constant
MAC = hw(c, + ¢,) + ¢,c,
> 2hw, /c/c, + ¢, (1)
FLOP
— 9/AWELOPs 4 ——°

hw '

where, FLOPs =hwc,c,, h and w are the height and width of the input and output feature
matrices respectively, c; and c, are the number of channels of the input and output feature
matrices respectively, and the condition for the above equation to take the equal sign is ¢; =
.

. When the Group of GConv(Group Convolution) increases, the MAC will also increase

(keeping FLOPs constant). For a 1x1 convolutional layer in Group Conv, hwc, is the mem-
ory consumption of the input feature matrix, hwc, is the memory consumption of the out-
put feature matrix,and 1 x 1 X (¢, /g) % (c,/g) % g is the memory consumption of the
convolution kernel parameters. Among them, g is the number of Groups. Thus, it can be
obtained
)
MAC = hw(c, +¢,) + —
g

FLOPs x g n FLOPs )

= hwce
1+ I hw

Among them, FLOPs =hwec;c,/g, when the fixed FLOPs are unchanged, the increase of g
will cause the increase of MAC.

. When the network design is more fragmented, the processing speed is slower. There are

many branches in networks such as Inception and SPP block, and the degree of fragmenta-
tion is also the degree of branches, which can be in parallel or series. Although the frag-
mented structure can improve the accuracy, it will decrease the efficiency of the model. The
fragmented structure is also not suitable for running on GPU devices with strong parallel
capabilities, and the start and synchronization of convolution kernels are also involved in

the case of many branches. So the more fragmented the network design, the slower it will
be.

. Element-wise overhead also slows things down. Element-wise operations include activation

functions, Element addition (residual structure), etc., and bias in convolutions. The com-
monality of Element-wise operations is that FLOPs are small, but MAC is large. Moreover,
the DW Conv(Depthwise Convolution) can also be seen as an Element-wise operation. In
practice, Element-wise operations are more time-consuming than expected.

According to the above four design criteria, the ShuffleNet v2 can be designed, and the

structure is shown in Fig 2. For the basic unit of the ShuffleNet v2 network shown in Fig 2(A),
the channel of its feature input matrix is split into two branches. Firstly, aiming at the principle
of simplifying the complexity of the network, the degree of fragmentation is reduced in the
design of the subsequent network. No operation is added in the left branch, and the number of
channels of the three Conv inputs and outputs in the right branch is the same, which also
meets the principle of the equal number of input and output channels. After Conv, the two
branches are concatenated using Concat, which also makes the number of front and back
channels consistent for the whole unit. Channel reorganization is then performed at the end of
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Fig 2. The ShuffleNet v2 network structure diagram. The Fig 2(A) on the left is the basic feature extraction unit with residual structure, and the Fig 2(B) on
the right is the down-sampling unit.

https://doi.org/10.1371/journal.pone.0310269.9002

the unit. Add operations are no longer performed in the whole basic unit, and the ReLU acti-
vation function and DW Conv only exist in one branch, reducing Element-wise operations as
much as possible. For the ShuffleNet v2 down-sampling unit shown in Fig 2(B), the operation
of channel splitting is canceled, and finally, the channels of the output feature matrix are dou-
bled after Concat. The 3x3 average pooling of one of the branches is turned into a 3x3 DW
Conv, which can be regarded as a DW Conv with a weight of one-ninth, which can increase
more possibilities, and x finally adds a 1x1 convolution. In particular, in both units of Shuffle-
Net v2, DW Conv is followed only by the BN layer, cancelating the ReLU layer.

In this paper, after extracting features in the backbone network, to strengthen the saliency
ability of feature expression, the CA attention mechanism is added to the back of the backbone
network. CA attention mechanism is a lightweight attention mechanism that can effectively
enhance the expression ability of network learning features, and its implementation process is
shown in Fig 3.

The main implementation process of the CA attention mechanism is that location informa-
tion is embedded in channel attention to encode channel relationships and long-term depen-
dencies through accurate location information. In the left part of Fig 3, to capture the attention
and encode the position information in the width and height of the image, the input feature
map is first divided into two directions of width and height, and the global average pooling is
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performed respectively, so that the feature maps in the width and height directions are
obtained, as shown in the following equation:

1
Z? = WO;ch(h’ 1)7
) ()
z) = i Z x,(j, w).
0<j<H

Among them, 2! is the output of the c—th channel with height / and 2" is the output of the ¢
—th channel with width w. These two transformations aggregate features along two spatial
directions, respectively, resulting in a pair of direction-aware feature maps. Then, the two fea-
ture maps are concatenated together by the Concat operation and fed into the shared convolu-
tion module to reduce its dimension to the original C/r, as shown in the following equation:

f=0(E (")) (4)

Among them, [-,-] is the Concat operation along the spatial dimension, ¢ is the nonlinear
activation function, and f1is the intermediate feature map that encodes the spatial information
both horizontally and vertically. fis then decomposed into two separate tensors f*€ R/
F*€RY™W along the spatial dimension. Then two other 1x1 convolution transformations are
used to transform f* and f* into tensors with the same number of channels, resulting in:

gh = G(Fh(.fh))v
g" =a(E,(f");

where ¢ is the Sigmoid activation function. Finally, the weight ¢" in the height direction and

and

(5)
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After adding attention mechanism

Fig 4. Comparison of thermodynamic diagrams before and after adding the CA attention mechanism.

https://doi.org/10.1371/journal.pone.0310269.9004

the weight ¢" in the width direction of the obtained input feature map are jointly weighted on
the original feature map to obtain the feature map with weights in the height direction and
width direction, as shown in the following equation:

Ye(isj) = x.(i,j) x & (i) x &'(j)- (6)

In this paper, the CA attention mechanism is added to the tail of the backbone network.
Fig 4 shows the comparison before and after adding the CA attention mechanism. In Fig 4, red
regions indicate regions with high saliency for a certain object, and darker colors indicate
higher saliency.

In this paper, the SPP structure is improved by using SimSPPF for replacement and replac-
ing the Leaky ReLU activation function with the ReLU activation function, and the specific
structure is shown in Fig 5.

Finally, the backbone network parameters used in this paper are shown in Fig 6.

In Fig 6, the parameters in parentheses after Conv_BN_Relu and SimSPPF represent the
number of input channels, the number of output channels, and the number of parameters,
respectively. The parameters in parentheses after ShuffleNet_Block represent the number of
input channels, the number of output channels, the module category, and the number of
parameters, respectively, where, when the module category is 1, it is the base module of Shuf-
fleNet v2, and when the module category is 2, it is the down-sampling module of ShuffleNet
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Fig 6. The parameters of the backbone.
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v2. CA modules after the parameters in parentheses, respectively for the number of input
channel, output channel number, and reference number. After calculation, the improved back-
bone network parameter quantity is 0.49M, and the calculation amount is 1.4GFLOPs, while
the backbone network parameter quantity of YOLOV5s is 3.82M, and the calculation amount
is 9.6GFLOPs. Thus, after replacement of backbone network, the model parameter was
reduced by 69.1%, the amount of calculation was reduced by 78.1%.

2.3 The improvements in feature fusion networks

The neck of YOLOVS5 uses the FPN+PAN structure. Because this method is a top-down and
then bottom-up feature fusion mechanism, it can only fuse the feature map features of adjacent
scales, and it is difficult to effectively fuse the cross-scale features. To explore a feature fusion
network that can fully fuse multi-scale feature maps, so that the three outputs of the network
can fully fuse the features of different levels, and can only increase a small amount of parame-
ters to ensure the detection speed of the network, this paper designs a lightweight cross-scale
feature fusion mechanism named BCS-FPN, which is the FPN [37] with BiFPN [38] and C2f-
SCConv, as shown in Fig 7.

The improvement of BCS-FPN compared with the FPN+PAN structure in YOLOVS5 is that
a lightweight module is designed for the feature fusion network to reduce redundant calcula-
tions and a multi-scale feature fusion mechanism is introduced to enhance the feature fusion
ability. In Fig 7, C2f-SCConv is the designed lightweight module, among which, the SCCBL
module is an efficient convolution module and uses SCConv [39] as the basic unit of convolu-
tion. SCConv uses characteristics between space and channel redundancy to compress the
CNN, which reduces the representative characteristics of redundant computation and is easy
to learn. The implementation process of BCS-FPN is as follows: Firstly, the feature map output
by the C1 layer is connected to the prediction end of the F1 layer, and the feature map output
by the C2 layer is connected to the prediction end of the F2 layer, so that an edge from the orig-
inal input node to the output node is added, which can fuse as many target features as possible
under the premise of increasing a small amount of calculation. Secondly, the convolution
module is replaced by the SCCBL module to further reduce the amount of calculation while
ensuring accuracy. Finally, the C2f-SCConv structure was designed for the feature fusion net-
work to further reduce the number of parameters and improve the detection speed.

SCConv structure is shown in Fig 8. In the first part of Fig 8, SCConv(Spatial and Channel
reconstruction Convolution) consists of a spatial reconstruction unit (SRU) and a channel
reconstruction unit (CRU). SRU utilizes a separate-and-reconstruct method to suppress the
spatial redundancy while CRU uses a split-transform-and-fuse strategy to diminish the chan-
nel redundancy. Concretely, for the intermediate input feature X in the bottleneck residual
block, the spatial refinement feature X" is firstly obtained by SRU operation, and then the
channel refinement feature Y is obtained by CRU operation. Exploiting the spatial and channel
redundancy between features in the SCConv module, it can be seamlessly integrated into any
CNN architecture to reduce redundancy between intermediate feature maps and improve the
feature representation of CNNs.

The role of SRU is to exploit the redundant features of the space, as shown in the SRU struc-
ture in the middle part of Fig 8, with the operation of separation reconstruction. The purpose
of separation operation is characteristic of the information rich content for less characteristic
figure and space separation. The scaling factor in the Group Normalization(GN) layer is then
used to evaluate the information content of the different feature maps. And we leverage train-
able parameters in the GN layer to measure the variance of spatial pixels for each batch and
channel. Then the weight values of the feature map are mapped to [0,1] by sigmoid function.
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Fig 7. Diagram of the BCS-FPN structure.

https://doi.org/10.1371/journal.pone.0310269.9007

Finally, the input features are multiplied by the weight values W and W, respectively to obtain
two weighted features X}" and X}, and the Spatial-Refined features are obtained by adding
them by the Reconstruct operation. CRU’s role is to use the channel characteristic of redun-
dancy, the CRU structure as shown in the last part of Fig 8, the split-transform-fusion strategy,
further reducing space refined characteristic figure X" along the channel dimension redun-
dancy. The Split operation splits the channel of the spatially refined feature into two parts, one
with a-C channels and the other with (1-a)-C channels, where 0<a<1 is a split ratio. Then
1x1 convolution is used to compress the channels of the feature map to improve efficiency. In
Transform operation, efficient convolution operations (GWC and PWC) are used instead of
standard convolution to extract high-level representative information and reduce the compu-
tational cost. In Fuse operation, global average Pooling is first applied to collect global spatial
information. The global channel descriptors S; and S, of the upper and lower parts are then
stacked together and the channel attention operation is used to generate the feature impor-
tance vector B; and f,. Finally, Y; and Y, are merged in a channel manner under the guidance
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Fig 8. Diagram of the SCConv structure.
https://doi.org/10.1371/journal.pone.0310269.9008

of the feature importance vector. In addition, rich representative features can be extracted by
CRU, and redundant features can be handled through low-cost operations and feature reuse
while lightweight convolution operations.

After calculation, the parameter amount of BCS-FPN is 1.9M, and the calculation amount is
3.6 GFLOPs. The parameter amount of YOLOV5s neck part is 2.45M, and the calculation amount
is 4.6 GFLOPs. It can be seen that after replacing the FPN+PAN of the YOLOv5s with BCS-FPN,
the parameter amount is reduced by 22.4%. The amount of calculation is reduced by 21.7%.

2.4 SCB-YOLOV5

The lightweight traffic sign detection framework based on YOLOv5 named SCB-YOLOVS5 is
shown in Fig 9. The SCB-YOLOVS5 is that the YOLOv5 with ShuffleNet, CA attention mecha-
nism, and BCS-FPN.
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Fig 9. Diagram of the SCB-YOLOV5 structure.
https://doi.org/10.1371/journal.pone.0310269.9g009

As shown in Fig 9, SCB-YOLOVS5 is mainly divided into four parts, namely input, backbone,
neck and prediction. First, images are fed to the network from the input, and after being scaled
and padded, 640%640*3 images are fed to backbone. Secondly, the ShuffleNet v2 network is
used for feature extraction, the CA attention mechanism is used to enhance the saliency of the
target, and the SimSPPF module is used to handle the distortion of the image to enhance the
feature extraction ability. Then, multi-scale feature fusion is performed through the BCS-FPN
network. Finally, inference of prediction boxes is performed at three scales. The process of the
detection framework in this paper is as follows:
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1. The TT-100K data set is analyzed and divided into the training set, validation set, and test
set.

2. The optimal weights of the model are obtained by training the network with the divided
training set and validation set.

3. The obtained model training weights are used to perform a validation test on the test set.

lll. Experimental results and comparative analysis

In the experiments of this paper, the SCB-YOLOv5 model is comprehensively analyzed on the
TT-100K dataset. The experiment is carried out under the Pytorch framework. The operating
system of the server is Linux Ubuntu 18.04, the CPU model is Intel(R) Xeon(R) Gold 6248R,
the CPU frequency is 3.00GH, and the memory of the server was 128GB DDR4. The GPU is
RTX A6000, with memory of 48 GB.

3.1 Analysis of the TT-100K dataset

In this section, we first present an analysis of the TT-100K dataset. TT-100K dataset is a com-
monly used traffic sign dataset jointly produced by Tsinghua University and Tencent. Among
them, the training set contains 6105 images and the test set contains 3071 images, and the data
set contains 232 kinds of traffic signs in total. In this paper, the number of targets and the scale
of targets in the TT-100K dataset are first counted, and the statistical results are shown in Fig 10.
We then classify the objects into three categories based on their pixel size. The small-scale

I [arge object
[ medium object
[ Jsmall object

large object medium object small object

Fig 10. Scale statistical plot of the TT-100K dataset.

https://doi.org/10.1371/journal.pone.0310269.9010
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Table 1. After screening of TT-100K data set object and quantity.

Labels Numbers Labels Numbers Labels Numbers
pne 2091 pn 2963 pl40 1356
p5 393 i2r 417 p150 1027
pl60 820 i5 1582 w57 393
pl8o 865 pl12 181 pl120 296
pr40 200 pl5 484 w59 196
pl30 596 i4 733 pm20 156
ip 340 pl100 664 p23 281

pm30 107 pg 154 p26 812
w55 175 p10 358 pll 1535
pl3 353 p19 122 i4l 330

ph4.5 186 pl20 158 p3 169
pl70 149 180 294

https://doi.org/10.1371/journal.pone.0310269.t001

objects, whose pixel size is less than 32x32. The mesoscale objects, whose pixel size is between
32x32 and 96x96. Large scale objects, whose pixel size is greater than 96x96.

Because the data set of some categories of quantity is less, easy to cause in the process of
training network owe fitting. So to ensure the validity of the model, this paper only chooses a
target quantity is more than 100 categories to continue training. Finally, the categories of the
filtered dataset and their numbers are shown in Table 1.

3.2 Network model training

Before training the model, the ratio of the training set to the validation set was divided into
7:3. The image input model, carries on the pretreatment, and adjust the picture size is 640 x
640. The training method uses SGD with a momentum parameter size of 0.937, an initial
learning rate of 0.01, and 16 images for each batch. All models are trained for 300 epochs
according to these parameters.

3.3 Experimental results and analysis

To objectively evaluate the advantages of the SCB-YOLOV5 algorithm proposed in this paper,
Precision, Recall, average precision mAP@50, and average inference time are selected as evalu-
ation indicators, and the calculation formula is as follows.

. TP 7)
recision — ——————
P TP + EP’
TP
N=— " 8
T = TP T EN (8)
1
AP = /0 P dR,
mAP = =1L
N

where, TP is the number of correct detections, FP is the number of false detections, is the num-
ber of missed detections, FN is the integral of the Precision-Recall curve, AP is the number of
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Table 2. Comparison of SCB-YOLOVS5 detection algorithm with other algorithms.

Method P R mAP@50 Inference time FPS
YOLOvV3 71.1 67.0 73.5 21.0ms 46.9
YOLOV3-tiny 79.3 64.8 72.7 7.9ms 108.7
YOLOvV5-Ghost 64.1 57.2 60.7 9.5ms 92.6
YOLOv5-MobileNet 62.4 48.8 53.5 9.3ms 94.3
SSD 71.9 60.1 69.7 18.5ms 50.5
RetinaNet 72.4 50.6 62.4 31.0ms 30.9
FCOS 72.3 65.4 70.1 56.0ms 17.5
YOLOvV5s 75.1 70.2 75.1 8.6ms 101.0

ours 78.8 69.4 74.9 6.9ms 122.0

https://doi.org/10.1371/journal.pone.0310269.t002

detection categories, and the average inference time in this paper is the average time calculated
after 500 images which are selected for testing.

The SCB-YOLOVS5 traffic sign detection algorithm proposed in this paper is compared with
SSD, RetinaNet, FCOS, YOLOv3, YOLOv3-Tiny, YOLOv5-GhostNet, YOLOv5-MobileNet,
and YOLOvV5s on the TT-100K dataset The experimental results are shown in Table 2. It can
be seen from Table 2 that the proposed SCB-YOLOV5 algorithm has little difference from
YOLOV5s in terms of accuracy and recall. However, the mAP@50 of SCB-YOLOV5 is 0.2% less
than that of YOLOV5s, and the inference speed is 20.8% faster than that of YOLOv5s. Com-
pared with other algorithms, SCB-YOLOVS5 has obvious advantages in speed and accuracy.

Table 3 shows the comparison between SCB-YOLOV5 and other algorithms in terms of the
number of parameters, amount of computation, and model size. Among them, SCB-YOLOV5
has the smallest model size, the least number of parameters, and the least amount of calcula-
tion. Compared with YOLOV5s, the number of parameters of SCB-YOLOV5 is reduced by
50.8%, the amount of calculation is reduced by 59.8%, and the model size is reduced by 48.8%.

It can be seen from Tables 2 and 3 that SCB-YOLOVS5 has obvious advantages over other
mainstream detection algorithms in the number of model parameters, calculation, accuracy,
and speed indicators.

In the training process, the mAP@50 curves of SCB-YOLOv5 and YOLOv5s with epoch are
shown in Fig 11. It can be seen from Fig 11 that SCB-YOLOVS5 has a faster training conver-
gence speed.

Finally, in order to observe the comparison of the detection effect of SCB-YOLOvV5 and
YOLOvV5s more intuitively, Fig 12 shows the comparison of the detection effect of SCB-YO-
LOv5 and YOLOV5s. As can be seen in Fig 12, SCB-YOLOv5s has higher detection confidence
scores for traffic sign targets.

Table 3. Comparison of the number of parameters and calculation of SCB-YOLOV5 detection algorithm with other algorithms.

Method Parameters Computational complexity (GFLOPs) Model size
YOLOv3 61394M 156.6G 123.9MB
YOLOV3-tiny 8.85M 13.3G 17.6MB
YOLOV5-Ghost 2.98M 6.7G 6.5MB
YOLOv5-MobileNet 2.39M 4.6G 5.3MB
SSD 24.86M 62.4G 192.2MB
RetinaNet 36.15M 82.04 290.5MB
FCOS 31.84M 78.67G 256.2MB
YOLOV5s 6.27M 14.2G 13.1MB
ours 3.08M 5.7G 6.7MB

https://doi.org/10.1371/journal.pone.0310269.t003
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Fig 11. The comparison curves of mAP@50 between SCB-YOLOvV5 and YOLOV5s. The abscissa is the number of
training epochs, and the ordinate is mAP@50.

https://doi.org/10.1371/journal.pone.0310269.9011

3.4 Ablation experiment

To verify the effectiveness of adding each improved structure to the proposed SCB-YOLOV5
detection algorithm, this paper conducted ablation experiments. The results of ablation experi-
ments are shown in Table 4. As can be seen from Table 4, after replacing the backbone net-
work with ShuffleNet v2, the size of the space occupied by the model, the number of
parameters, and the amount of calculation are greatly reduced. Due to the simplification of the
network, the mAP is reduced and the inference speed of the model is greatly improved. After
adding the CA attention mechanism, the mAP is improved, but the speed is decreased. After
adding BCS-FPN, the number of parameters of the model decreases, the mAP is reduced, and
the inference speed is improved. Finally, compared with YOLOVS5s, the proposed SCB-YO-
LOv5 model has the same accuracy, but the inference speed is greatly improved, and the num-
ber of parameters and calculations is greatly reduced.

3.5 Model deployment experiment

In order to verify the performance of the proposed SCB-YOLOV5 detection algorithm on
embedded devices, this paper also conducted model deployment experiments on Nvidia Orin
NX. The CPU of the Nvidia Orin NX is a 6-core NVIDIA Carmel ARMv8.2 64-bit CPU. The
GPU for Nvidia Orin NX is the NVIDIA Volta architecture with 384 NVIDIA CUDA cores
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Detection effect of YOLOvVSs

Detection effect of SCB-YOLOvVS
Fig 12. Comparison of detection effect between SCB-YOLOv5 and YOLOV5s.

https://doi.org/10.1371/journal.pone.0310269.9012

and 48 Tensor cores. And it has 8GB of RAM. A schematic of the deployment on Nvidia Orin
NX is shown in Fig 13.

In this paper, SCB-YOLOVS5 is deployed with YOLOv5s, YOLOv3-tiny, YOLOv5-GhostNet,
and YOLOv5-MobileNet v3 on Nvidia Orin NX, and the experimental results are shown in
Table 5. It can be seen from Table 5 that the SCB-YOLOV5 detection algorithm proposed in
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Table 4. Comparison of algorithm results before and after adding different structures.

ShuffleNet+ SimSPPF CA C2f-SCConv mAP Inference time FPS
v 73.8 7.5ms 113.6
Vv v 74.4 7.7ms 111.1
v V/ 73.9 6.7ms 125.0
v Vv V/ 74.9 6.9ms 122.0

https://doi.org/10.1371/journal.pone.0310269.1004

this paper can perform real-time detection of traffic signs on embedded devices, and it is faster
than other lightweight algorithms such as YOLOV5s, and the model size is also the smallest. In
summary, the excellent performance of SCB-YOLOvV5 on embedded devices is verified.

IV. Conclusion

Aiming at the problems of road traffic sign detection, such as complex traffic sign target back-
ground, low saliency, large scale difference, large parameter amount of common target detec-
tion algorithm, and complex model, this paper proposes a lightweight traffic sign detection
algorithm SCB-YOLOWS5. Firstly, ShuffleNet v2 was used to replace the YOLOvV5’s backbone
network for extracting features, which greatly reduces the number of network parameters and
improves the speed of network operation. And SimSPPF was used to replace SPPF, which
improves the feature extraction ability of the backbone network. Then, the CA attention mech-
anism is added to the backbone network, which enhances the saliency of the object at the cost
of a small computational cost. Finally, the BCS-FPN structure is designed to improve the fea-
ture fusion ability of multi-scale objects while reducing the amount of calculation. SCCBL is
used as the convolution module for the BCS-FPN to reduce the amount of model calculation
while ensuring the accuracy. The C2f-SCConv structure is designed to further reduce the num-
ber of network parameters and improve the detection speed. Moreover, the multi-scale feature
fusion mechanism is introduced to improve the network feature fusion ability. In this paper,
experiments are carried out on the TT-100K dataset. Experiments show that the mAP@50 of

WUy B gy

Camera

Nvidia Orin NX LED screen

Fig 13. Schematic diagram of the traffic sign detection model deployment.

https://doi.org/10.1371/journal.pone.0310269.g013
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Table 5. Embedded end deployment experimental results.

Method Inference time Model size
YOLOV3-tiny 27ms 17.6MB
YOLOvV5-Ghost 35ms 6.5MB
YOLOv5-MobileNet 37ms 5.3MB
YOLOV5s 31ms 13.1MB
ours 14ms 6.7MB

https://doi.org/10.1371/journal.pone.0310269.t005

SCB-YOLOVS5 reaches 74.9%, and the inference speed is 6.9ms, which is 20.8% higher than
that of YOLOVS5. This paper also conducts a deployment experiment on the embedded side.
Experiments show that SCB-YOLOV5 can detect traffic signs in real-time on embedded
devices. During the analysis of the data set, we found that the data set has fewer categories and
the training effect is general. The next step of this paper is to first expand the data set to make
the trained model generalize better. The second is to verify the detection ability of the algo-
rithm for small-scale targets, and enhance the detection effect of the algorithm for small-scale
targets. Finally, in the aspect of positive and negative sample matching and training strategy of
the algorithm, we will use more appropriate optimization algorithms and matching algorithms
[40, 41] to improve the efficiency of the model.

Supporting information

S1 File. Results for each epoch during model training. S1 File is the supporting information
of Fig 11. Among them, results_for_ YOLOV5.csv is the data of YOLOV5 during the training
process, and results_for_SCB-YOLOV5.csv is the data of SCB-YOLOV5 during the training
process. In the data, the first column is the number of training epoch, and the 2-4 columns are
the changes in the value of each loss function during training. The 5-7 columns are the
changes of precision, recall, and mAP@0.5. The 8-10 columns are the changes in the value of
each loss function during validation process, and the last 3 columns are the change in learning
rate.
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S2 File. Public dataset sources have used in this paper. TT-100K dataset is used in this paper,
and we selected traffic signs with more than 100 labels in the dataset as detection targets.
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in SCB-YOLOVS5, and the SCB-YOLOv5.yaml file is the model parameter configuration file of
SCB-YOLOV5.
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