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1,7*

1 Infectious Diseases Division, Clinical Microbiology Laboratory, Instituto Nacional de Rehabilitación Luis

Guillermo Ibarra Ibarra, Mexico City, Mexico, 2 Programa “Investigadoras e Investigadores por México”,
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Abstract

Introduction

Myroides is a bacterial genus of opportunistic bacteria responsible for diverse infections

including in the skin and soft tissues, urinary tract, cardiovascular system, and bacteremia,

although the incidence of its reported infections is low, it is increasing, likely due the use of

better bacterial identification methods, but also perhaps due an increase in its prevalence.

In addition, their pathogenic role is limited in terms of reporting their microbial physiology, so

the present work provides information in this regard in addition to the information that is

available in the international literature.

Objective

To describe the microbiological and genetic characteristics of seven different Myroides spp.

clinical strains and comment on their phylum, pathogenic and resistance characteristics.

Methods

Seven Myroides spp., strains associated with infections were included from 1/January/2012

to 1/January/20 and identified by miniaturized biochemistry and MALDI-ToF. Susceptibility

tests were performed according to CLSI recommendations by broth microdilution. Whole

genome sequencing was performed for each strain and bioinformatics analysis were

performed.
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Results

Strains were identified at genus level by two methodologies. Our results revealed that likely

four strains belong to the species Myroides odoratimimus, while the other two may be unde-

scribed ones. Remarkably, all isolates harbored several genes encoding antibiotic resis-

tance determinants for ß-lactams, aminoglycosides and glycopeptides and in concordance,

presented high levels of resistance, against these antibiotics (AK and GN both 100%, ATM,

CAZ and FEP 100%, e.g.); moreover, the presences of carbapenemases were evidenced

by meropenem (mCIM) and imipenem (CARBA NP) degrading activity in six isolates and

two strains possessed plasmids harboring mainly ribosomal RNA genes, tRNAs and genes

encoding proteins with unknown functions.

Conclusions

Our study increases the knowledge about the biology of this understudied genus and high-

lights the potential of Myroides to emerge as a broader cause of recalcitrant opportunistic

infections.

Introduction

The genus Myroides, first isolated in 1923 in feces of patients with gastrointestinal infections

[1], belongs to phylum Bacteroidota, class Flavobacteriia, order Flavobacteriales and family

Flavobacteriaceae. Myroides is comprised of 13 species in NCBI Taxonomy Browser, which

comprise Myroides albus, Myroides fluvii, Myroides gitamensis, Myroides guanonis, Myroides
indicus, Myroides injenensis, Myroides marinus, Myroides odoratimimus, Myroides odoratus,
Myroides oncorhynchi, Myroides pelagicus, Myroides phaeus and Myroides profundi [2, 3]. Myr-
oides was initially included within Flavobacterium genus, specifically Flavobacterium odoratum
and described by Stutzer in 1929, however, Vancanneyt and coworkers reclassified it and cre-

ated a new genus, Myroides [4]. The given name came from Greek noun mýron which means

perfume and Latin suffix oides means similar, shape, form or resembling (used in taxonomy),

therefore Myroides resembling perfume, this due to the sweet odor, like fruits, characteristics

in this genus [5]. It is an aerobic strict, thus is positive for oxidase and catalase activity, Gram-

negative rod, 0.5 x 1–2 μm, non-motile, including gliding. Growing conditions characterizes

its ability to grow on MacConkey agar and non-hemolysis production, growth at 18–22˚ C,

and 37˚ C. Myroides produces, in the most of times, yellow or orange colonies [5].

Clinically, only four species of Myroides (M. odoratimimus, followed by M. odoratus. M.

injenensis and M. phaeus) have been related with different infections such as endocarditis,

pericarditis, urinary tract infections, skin and soft tissue infections, ventriculitis, liver abscesses

and bacteremia, either in immunocompromised or immunocompetent host, as well [6–9].

The number of reported infections by Myroides species have been documented in a major fre-

quency due the employment of more sensible and reliable techniques, such as matrix-assisted

laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S

ARN sequencing; Myroides species have been reported specially in hospital outbreaks causing

catheter related urinary tract infections [10, 11] associate, probable, to some factors such as

prolonged use of antibiotics, immunosuppression, and invasive procedures [12]. Furthermore,

it is linked to multiple antimicrobial resistance mechanisms [13]. However, as data expands,

there must be more species associated with different infections that might be added, in this
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sense, information, either microbiological or genetic, is limited and impact of Myroides spp.,

infections are not well understood, therefore, the role of infections is poorly documented. The

aim of this work was to describe the microbiological and genetic characteristics of seven differ-

ent Myroides spp. clinical strains and comment on their phylum, pathogenic and resistance

characteristics.

Material and methods

Clinical strains

We conducted a retrospective study seeking Myroides spp., isolates from a tertiary care Hospi-

tal in Mexico City. We included all strains isolated from invasive samples, including blood cul-

tures, lower respiratory samples, abscesses, and tissue biopsies, over an eleven-year period

from 1/January/2012 to 1/January/2023 and were accessed for research on 15/May/2023.

Duplicated samples were excluded. The collection and sample processing were conducted at

Clinical Microbiology Laboratory at Instituto Nacional de Rehabilitación Luis Guillermo

Ibarra Ibarra in Mexico City. All isolates were stored at -70˚C and subsequently inoculated

onto 5% sheep blood agar prior to their use. Identification at the beginning was performed

with the Vitek 2 compact (BioMérieux, Marcy 0Étoile, France) and was confirmed with Vitek

MS (MALDI-ToF, (BioMérieux, Marcy 0Étoile, France)) following manufacturer’s recommen-

dations. Information from clinical records was obtained. Current work only involves clinical

strains obtained by the typical procedures and guidelines, however, the strains used, and the

experimental plan was approved by the research committee of the Institute with the assigned

number 55/22 AC.

Minimal inhibitory concentrations determination

The antibiotics evaluated were: Amikacin (AK), Gentamicin (GN), Aztreonam (ATM), Cefta-

zidime (CAZ), Cefepime (FEP), Ciprofloxacin (CIP), Levofloxacin (LVX), Meropenem

(MEM), Imipenem (IMP), Colistin (CL), Piperacillin/Tazobactam (TZP), azithromycin

(AZT), Erythromycin (E), Doxycycline (DO), Tigecycline (TYG) and Sulfamethoxazole/tri-

methoprim (SXT) (Sigma Aldrich, Burlington, Massachusetts, USA). Broth microdilution

assay was performed following the recommendations by the CLSI [14]. E. coli ATCC 25922

was used for quality control. Due breakpoints are not defined for Myroides spp., neither in

CLSI or EUCAST MIC was defined as the lowest concentration that inhibits bacterial growth.

For AK, GN, ATM, CAZ and FEP concentrations tested were from 256 μg/mL to 0.25 μg/m,

while for CIP, LVX, MEM, IMP, AZT, E, DOX, and TYG concentrations were 64 μg/mL to

0.0612 μg/mL. On the other hand, for COL and TZP were 128 μg/mL to 0.125 μg/mL and 128/

4 μg/mL to 0.125/4 μg/mL respectively. Finally, SXT starting concentration 8/152 μg/mL to

0.00078/0.1484 μg/mL.

Phenotypic test to determine carbapenemase activity

Carbapenemase test was performed for each sample according to CLSI M100 2023 recommen-

dation [14]. First, modified carbapenem inactivation method (mCIM) was carried oud, briefly,

colonies were harvested with a 10 μL loop and deposited into a 2 mL polypropylene tube with

1.5 mL Trypticase soy broth, then a 10 μg MEM disc added into the tube. The tubes were incu-

bated during 4 h at 37˚ C. After that, E. coli ATCC 25922 pan susceptible at 0.5 McFarland

Scale was inoculated onto Mueller-Hinton plates. The same strain of E. coli ATCC 25922 was

used as negative control and Klebsiella pneumoniae ATCC BAA-1705 as positive control (car-

bapenemase producer). The interpretation of the test was according to CLSI M100 2023 [14].
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Due this method is validated just for Enterobacterales and Pseudomonas aeruginosa, a second

method was performed, CARBA NP, also referred in CLSI M100 2023, briefly, two 600 μL

conic tubes were labelled for each strain tested, then 100 μL of protein extraction buffer were

added to each tube (a and b) and vortexed for 5 seconds and subsequently 100 μL of solution A

(without IMP as substrate) and B (supplemented with IMP as substrate to carbapenemase)

were added to the respective tubes labelled and again vortexed and incubated at 35˚ C/2 hours.

Positive tests showed a change in color (yellow as positive and unchanged as negative). E. coli
ATCC 25922 was used as negative control and K. pneumoniae ATCC BAA-1705 as positive

control. The interpretation of the test was according to CLSI M100 2023 [14].

Whole genome sequencing

Genomic DNA was extracted with DNeasy Blood & Tissue (QIAGEN). Once extracted, DNA

quality and concentration were determined with the Qubit 3.0 fluorometer (Invitrogen, USA)

and the Nanodrop One/One spectrophotometer (Thermo Fisher Scientific, USA) and samples

were kept at -20˚C, until use. Library preparation was performed using the Illumina DNA

Prep (Illumina, USA) for the tagmentation, indexing and cleaning steps, as well as the employ-

ment of IDT for Illumina DNA/RNA UD Indexes (Illumina, USA) for the indexing step.

Library quality control was performed using the Qubit 3.0 fluorometer (Invitrogen, USA) and

the 4200 Tapestation System (Agilent, USA). Sequencing of pooled and normalized libraries

was made using the MiSeq Reagent Kit V2 (300 cycles) on the Illumina MiSeq platform in a

paired end configuration. Samples were sequenced at Centro Nacional de Referencia de Inocu-

idad y Bioseguridad Agroalimentaria from Servicio Nacional de Sanidad, Inocuidad y Calidad

Agroalimentaria [15].

Plasmid extraction and purification

In addition, plasmids were searched in all strains included. Plasmids were isolated and purified

with the E.Z.N.A Plasmid DNA Mini Kit I (Omega bio-tek, Norcross, Georgia, USA). Once

extracted, 5 μL of DNA were run in 1% agarose gel and visualized through Gel Doc XR+ with

Image Lab Software (Bio-Rad; Hercules, California, USA), a 100 bp molecular ladder was used

(Invitrogen; Waltham, Massachusetts, USA). Plasmid library preparation and sequencing were

performed in the same manner as for genomic DNA [15].

Genomic analysis

The Quality of the Sequenced Read Archives (SRA) generated was analyzed by using FastQC

[16]. The removal of contaminations and sequences with poor Phred values<30 was con-

ducted with Trimmomatic [17]. The SRA of each strain were assembled with SPAdes [18].

Each assembling quality were determined with QUAST [19]. The contigs of each genome were

subject to the removal of sequences with coverage values<200 by using the seqtk_seq included

in the sektq package [20]. A general annotation for the contigs was performed with Prokka

[21]. The evaluation of the annotation based on completeness determination was conducted

by using BUSCO [22].

A preliminary identification of the strains was performed with the generation of a phyloge-

netic tree based on the analysis of partial 16S rRNA. The sequences belonging to the 16S rRNA

gene of each sequenced genome for this study were extracted by using barrnap [23]. The

sequences of type strains were obtained from the non-redundant GenBank database [24]. A

multiple sequence alignment (MSA) of 16S sequences was obtained with MUSCLE [25]. The

Maximum Likelihood (ML) phylogeny was constructed in IQTREE employing the TVM + F

+ I + G4 evolutionary model with Ultrafast-Bootstrap determination of 10,000 replicates [26].
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The 16S-based phylogenetic trees were edited and visualized with iTOL v5 [27]. As comple-

mentary, pairwise gene identity scores were determined with Protologger [28].

The annotation of Antimicrobial Resistance Elements (ARE) was conducted with Abricate

[29], by using the Comprehensive Antibiotic Resistance Database (CARD) [30]. The annota-

tion of the virulence factors (VF) was performed by using Markov Hidden Models with

HMMER package [31] and custom scripts, based on the VF identified for M. odoratimimus
[32]. The plasmids were extracted and typed with MOB Suite [33]; annotated and visualized

with Proksee web server [34].

Results

Strains included

During the study period, a total of seven strains previously identified such as Myroides spp.,

which were confirmed with Vitek 2 compact and with Vitek MS, such as Myroides spp. Four

isolates affected males, five cases were associated with skin and deep tissue infections as

showed in Table 1.

Treatment chosen was different for each strain including fluoroquinolones, aminoglyco-

sides and carbapenems, meanwhile for osteomyelitis the antimicrobial selected was merope-

nem, with different time periods depending on the type of infection.

Susceptibility patterns

The greatest resistance rates were observed for aminoglycosides (AK and GN) with

MICs� 256 μg/mL, followed by ß-lactams (ATM, cephalosporins and TZP). On the other

hand, azithromycin had lower MICs (around 2 μg/mL the most) in comparison with erythro-

mycin which had the higher concentration with 4 μg/mL and the lowest with 0.5 μ/mL; how-

ever, tetracyclines showed similar MICs between members assessed. The lowest MICs

observed in antibiotics evaluated were in SXT as reported in Tables 2 and 3.

Phenotypic test to determine carbapenemase activity

Due to high MICs values for ß-lactam antibiotics, including carbapenem, we performed phe-

notypic assay looking for carbapenemases presence according to CLSI guidelines M100, how-

ever, this procedure is not yet validated and standardized for microorganisms different to

Table 1. Clinical characteristics, treatment given, and outcomes of clinical strains included.

Number Gender/ Age

(years)

Comorbidities Type of infection Clinical sample Isolation

Date

Treatment Outcome

EB1487 Male / 17 Congenital scoliosis Catheter related Urinary tract

infection

Urine 23/04/2014 Ciprofloxacin Cured

C1519 Female / 37 Spinal cord injury and

trauma

Osteomyelitis Bone biopsy 06/08/2015 Meropenem Cured

C1996 Female / 41 Burn injury Skin and Soft tissue infection Quantitative biopsy

(skin)

14/11/2016 Meropenem Died / Other

infections

C2723 Male / 11 Trauma Skin and Soft tissue infection Quantitative biopsy

(skin)

29/11/2018 Amikacin Cured

C4067 Male / 8 Trauma Skin and Soft tissue infection Quantitative biopsy

(skin)

15/07/2021 Ciprofloxacin Cured

C4256 Male / 24 Burn injury Osteomyelitis Bone biopsy 28/09/2021 Meropenem Cured

C4411 Female / 48 Ependymoma Catheter related urinary tract

infection

Urine 09/12/2021 None (catheter

changed)

Cured

https://doi.org/10.1371/journal.pone.0310262.t001
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Enterobacterales or Pseudomonas aeruginosa. We identified hydrolytic activity against MEM

in EB1487, C1519, C4411 with halos < 15 mm, on the other hand, C1996 and C4256 had halos

with 16 mm, according CLSI M100 definitions, for Enterobacterales and Pseudomonas aerugi-
nosa this measure corresponds with the definition of inconclusive. However, with CARBA NP

strain C1996 was interpreted as positive as well as C4256. Previously C4067 was defined to be

negative with mCIM however, once repeated with CARBA NP was defined as positive (S1

Fig). While the rest of the strains had halos > 19 mm (negative); however, as mentioned

above, this is not a validated strategy for this microorganism, so the negative result could be

due to a limitation of the strategy.

Molecular identification

The phylogenetic tree reconstructed exhibited the following: four strains (C4366, EB1487,

C4411 and C1996) were clustered with M. odoratimimus type strain, with an identity

percentage > 99% (Fig 1), in Table 4 are included all those non-repeated sequences down-

loaded to build the phylogeny. Hence, the results indicate that these four strains may be identi-

fied as M. odoratimimus. By the other hand, the strain C4067 evidenced a phylogenetic

relationship with Myroides marinus, however, they shared a 95.67% of identity. Likewise, the

strains C2723 and C1519 were clustered in the same clade with Myroides phaeus, showing a

96.3% of identity among them; consequently, we suspect the strains of Myroides C4067, C2723

and C1519 may be cataloged as new species.

Table 2. Myroides spp. minimum inhibitory concentrations of clinical strains.

Strain AK (μg/

mL)

GN (μg/

mL)

ATM (μg/

mL)

CAZ (μg/

mL)

FEP (μg/

mL)

CIP (μg/

mL)

LVX (μg/

mL)

MEM (μg/

mL)

IMP (μg/

mL)

COL (μg/

mL)

TZP (μg/

mL)

EB1487 256 > 256 128 256 64 4 4 4 4 > 128 128/4

C1519 > 256 > 256 64 128 32 0.5 0.5 8 4 > 128 128/4

C1996 > 256 > 256 256 256 64 64 32 2 2 > 128 128/4

C2723 256 64 256 64 8 2 4 1 0.25 > 128 32/4

C4067 > 256 > 256 256 256 64 2 2 8 4 > 128 128/4

C4256 > 256 > 256 256 256 64 2 2 8 4 > 128 128/4

C4411 > 256 > 256 256 256 64 2 2 8 4 > 128 128/4

AK: amikacin; GN: gentamicin; ATM: aztreonam; CAZ: ceftazidime; FEP: cefepime; CIP: ciprofloxacin; LVX: levofloxacin; MEM: meropenem; IMP: imipenem; COL:

colistin; TZP: piperacillin/tazobactam

https://doi.org/10.1371/journal.pone.0310262.t002

Table 3. Myroides spp. minimum inhibitory concentrations.

Strain AZT (μg/mL) E (μg/mL) DOX (μg/mL) TIG (μg/mL) SXT (μg/mL)

EB1487 1 4 0.5 2 1/19

C1519 1 0.5 0.125 1 0.5/9.5

C1996 2 4 2 2 1/19

C2723 0.5 2 0.5 0.25 2/38

C4067 2 2 1 0.5 1/19

C4256 2 4 1 0.5 1/19

C4411 2 2 1 0.5 2/38

AZT: azithromycin; DOX: doxycycline; E: erythromycin; TIG: tigecycline; SXT: sulfamethoxazole/trimethoprim.

https://doi.org/10.1371/journal.pone.0310262.t003
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Virulence Factors (VF) and Antimicrobial Resistance (AMR) genes

detection

A total of 15 elements associated with VF and classified in seven categories were recognized

and annotated. The summary of this result is displayed in Fig 2. All elements were identified in

all strains, nevertheless sodB (encoding for Superoxide dismutase) was not identified in the iso-

lates C1519 and C2723, whereas wecC, encoding for UDP-N-acetyl-D-mannosaminuronic

acid dehydrogenase was not detected in the isolate EB1487. The VF recognized maybe associ-

ated with production of capsular polysaccharide, cell wall peptidoglycan, heme biosynthesis

(oxidative respiration), intracellular survival factors (ISF), chaperones, streptococcal enolase

and type 4 secretion system effectors (T4SS effectors).

Also 8 kinds of elements associated with Antibiotic Resistance (ARE) were detected (Fig 3).

The strains showed an average of about 15 AMR genes, exhibiting an evident multidrug resis-

tance and harboring high diversity of AREs. The isolate Myroides spp. C4067 presented the

highest diversity and content of AREs, with a total of 22 genes. On the other hand, the strain

Myroides spp. C2723 exhibited the lowest content of AMR genes. In general, the drug class

assigned for the AMR genes identified was congruent with the MIC profiles obtained in exper-

imental assays. Even though the tet(X2) gene was identified in two strains, these displayed

Fig 1. ML phylogenetic tree of the 16S rRNA sequences. The strains evaluated in this study are marked in bold blue color into the tree. Numbers on the nodes

and branches represent the Ultrafast Bootstrap values of 10,000 replicates. Scale bar represents the number of nucleotide differences between branches.

https://doi.org/10.1371/journal.pone.0310262.g001
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susceptibility to tetracyclines. Also, the iri and rphA, linked with rifampicin resistance were

detected. The strains exhibited a significant abundance of AREs associated with ß-lactam, ami-

noglycosides, and glycopeptides resistance, matching with the resistance profiles to this antibi-

otic observed. Interestingly, all strains showed the presence of ereB, an erythromycin esterase-

like associated with resistance to macrolides, despite the strains being susceptible to azithro-

mycin. Interestingly, strains with GOB-16, a metallo ß-lactamase, were C4256, EB1487, C4067,

C4411, these same strains shared another metallo ß-lactamase belonging to the IMP family

(IMP-27), strain C1996 carried IMP-27 but not GOB-16. On the other hand, strains C4411

and C4256 co-carried two IMPs (IMP-27 and IMP-35) in addition to GOB-16. MUS-1 is a

metallo ß-lactamase identified in Myroides present in almost all isolates except C2723 and

C1519. Of the members of the oxacillinase (OXA) family with carbapenemase activity we

found OXA-229 (C4411, C4067 and C4256), OXA-351 (C4067) and OXA-97 (C4256). Of the

AmpC group, PDC-85 was found in C2723 and C1519. Genes associated with colistin resis-

tance were found in mcr3.10, mcr3.6 and mcr3.7. Strains C1996, C4256, C4067 shared the pres-

ence of mcr3.6 and mcr3.7 genes. EB1487 co-carried mcr3.10 and mcr3.6 while C4411 carried

only mcr3.7. Phenotypically, EB1487, C1519 and C4411 showed carbapenemase activity

against meropenem.

Table 4. Sequences of study for ML phylogenetic tree reconstruction.

Organism GenBank ID

Myroides odoratus M58777

Myroides fluvii MK129421

Myroides pelagicus AB176662

Myroides albus MK734183

Myroides injenensis HQ671078

Myroides phaeus GU253339

Myroides oncorhynchi OL437262

Myroides profundi EU204978

Myroides odoratimimus AJ854059

Myroides gitamensis HF571338

Myroides marinus GQ857652

Flavobacterium olei KX672808

Flavobacterium azizsancarii OQ024221

Flavobacterium soyangense KX061439

Flavobacterium dasani MH019224

Flavobacterium aquaticum HE995762

Flavobacterium vireti KM576853

Flavobacterium inkyongense KX025140

Flavobacterium fulvum KU052686

Flavobacterium yanchengense JX548325

Flavobacterium ardleyense KX911209

Flavobacterium aquimarinum KY612936

Flavobacterium ponti GQ370387

Flavobacterium shanxiense KJ641612

Cytophaga massiliensis EF394924

Flavobacterium naphthae MF405102

Myroides cloacae KU746272

Myroides anatoliensis JF825522

https://doi.org/10.1371/journal.pone.0310262.t004
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Plasmid identification and annotation

Two plasmids were detected (S2 Fig) in the strains Myroides spp. C2723 (Plasmid ID

C2723_C6) (Fig 4) and M. orodatimimus EB1487 (Plasmid ID EB1487_S7) (Fig 5). The

C2723_C6 showed an approximate size of 19 Kb, whereas EB1487_S7 exhibited a size of 150

Kb. Therefore, we consider EB1487_S7 as a megaplasmid. The annotation of the plasmid

showed that C2723_C6 harbors ribosomal RNA genes, as well as tRNA sequences. A total of

11 proteins were predicted, however, the annotation assigned them as hypothetical proteins.

By the other hand, the EB1487_S7 also harbored ribosomal RNA and tRNA genes, and 101

proteins were predicted, of which 75 were cataloged as hypothetical proteins. Twenty-six

genes were properly annotated for EB1487_S7 whose functional classification may be associ-

ated with mobile elements, DNA processing, amino acid metabolism, aerobic respiration, cell

wall peptidoglycan biosynthesis, carbon metabolism, ROS defense, and membrane transport.

Discussion

Since the reclassification of Flavobacterium odoratum and the creation of the new genus Myr-
oides by Dr. Vancanneyt M et al. in 1996 [4], very little evidence has been generated on the

role of Myroides associated with infections in patients, only 43 articles were found in PubMed

since 2000 using the search terms "Myroides" and "infection". Of these, bacteremia and urinary

tract infection were the most frequent. The most common species were M. odoratimimus and

M. odoratus [6–8, 10, 11, 35–71]

Myroides species are typically found in immunocompromised hosts, although there have

been a few cases reported in immune competent individuals [6, 68, 69]. In our series, skin, and

soft tissue infections, as well as deep infections, were the most common. This is likely since we

Fig 2. Virulence factors found in clinical strains of Myroides spp.

https://doi.org/10.1371/journal.pone.0310262.g002

Fig 3. Antimicrobial resistance elements presents in Myroides species strains.

https://doi.org/10.1371/journal.pone.0310262.g003
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Fig 4. Genomic map of the identified plasmid pM2723. The inner circle represents the genome size per region. The

outer circle marks all open reading frames and proteins predicted. Forms and letters in purple show the location of

ribosomal RNA genes. Forms and letters in orange indicate the location of tRNA genes. Forms and letters in blue

indicate the location of annotated and unannotated proteins.

https://doi.org/10.1371/journal.pone.0310262.g004

Fig 5. Genomic map of the identified plasmid EB1487_S7. The inner circle represents the genome size per region.

The outer circle marks all open reading frames and proteins predicted. Forms and letters in purple show the location of

ribosomal RNA genes. Forms and letters in orange indicate the location of tRNA genes. Forms and letters in blue

indicate the location of annotated and unannotated proteins.

https://doi.org/10.1371/journal.pone.0310262.g005
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are a tertiary care hospital specializing in orthopedics, rehabilitation, and burns. Except for

one patient, all were successfully treated despite having various comorbidities. The deceased

patient had burn injuries and was infected with Myroides, along with other Gram-negative

bacteria. Burn patients are severely immunosuppressed, making them more susceptible to

infections due to the loss of their skin barrier. No previous cases of Myroides infection have

been reported in burned patients.

The identification of rutinary cultures within a clinical microbiology lab is performed with

miniaturized biochemistry systems such as Vitek 2 [72] (BioMérieux, Marcy 0Étoile, France)

and Phoenix (Becton-Dickinson, New Jersey, USA) [43]. The introduction of instruments

with larger databases and better precision and sensitivity, such as MALDI-ToF, has increased

detection capacity, but even these types of systems, have methodological limitations for a suit-

able discrimination among species [73, 74]. Therefore, we recurred to a presumptive molecular

identification of pathogens based on phylogenetic analysis of 16S rRNA. The phylogenetic

reconstruction has been useful for other studies for resolving properly the identity of isolates

belonging to Stenotrophomonas genus [15]. The use of 16S analysis as a robust tool for identifi-

cation in the clinical routine is not common [75], but has been widely explored in clinical

research studies for a presumptive assignment of identity to bacteria species [76–79]. Accord-

ing to the criteria for assignment of bacterial species established by Roselló Mora [80], based

on 16S-rRNA identity percentage (>97%). We proposed that four isolated species were desig-

nated as M. odoratimimus, while the strains C2723, C1519 and C4067 may be cataloged as new

species of Myroides. The phylogenetic evidence as a robust tool for identification supports our

predictions. Nonetheless, further studies based on a more rigorous genome-based phyloge-

netic analysis are needed to validate our hypothesis.

Due to the broad AMR spectrum observed in the isolates of study, we decided to identify

the ARE presumptively involved in pan-drug resistance. For instance, previous reports

describe that M. odoratimimus may harbor up to 32 AMR genes [32, 81, 82] of which ß-lacta-

mases and efflux pumps are the most abundant AREs observed. From 2014 until now, the

main AREs identified for Myroides spp., has been the following: ß-lactamases: blaVIM, blaIMP,

blaNMD, blaOXA-78, blaOXA-209, blaOXA-347, blaKPC, blaTUS, blaEBR-1, blaMOC and blaMUS-1; tetracy-

cline resistance: tet(X6); efflux pumps: abeS, msrB, qacH, rosA; macrolides: erm(F), ere(D) [12,

32, 55, 83–85]. Here, we were able to detect the AREs aforementioned; however, it is important

to highlight that the isolates analyzed in this work also displayed AREs and a phenotype associ-

ated with resistance to colistin, glycopeptides and rifampicin, a resistance trait not observed

previously. These results suggest that the resistome of Myroides spp. is expanding remarkably,

and probably soon the species of this genus might convert into an important health threat.

Other important trait is that multidrug resistance genotype was observed in the presump-

tive new species, although only M. orodatimimus, M. odoratus, M. phaeus and M. injerensis
have been cataloged as relevant AMR pathogens [45, 57, 82, 83], our results indicate that the

multidrug resistance phenotype possibly is highly expanded and extended in several species of

Myroides. In the case of M. orodatimimus a chromosomic metallo ß-lactamase has been

describe, the MUS-1 [86]. Two strains had an undetermined phenotype, however carrier, this

due the phenotypic assay is not validated for bacteria different to Enterobacterales or Pseudo-
monas spp,

Pathogen Myroides species have been shown to possess a number of VF that are associated

with a range of processes, including cell adherence, intracellular survival, and capsule produc-

tion [32, 82]. Nevertheless, a more comprehensive investigation into the molecular mecha-

nisms underlying the pathogenicity of Myroides spp. has yet to be conducted. Therefore, the

current state of knowledge regarding the infection process and disease-causing mechanisms of

Myroides is limited. Based on the identified VF, the results suggest that the isolates under study
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possess the ability to survive and replicate within host cells, evade phagocytic cells of the

immune system, and are able to cause disease. This is a virulence trait observed in other oppor-

tunistic pathogens, including Mycobacterium spp., Pseudomonas spp., Serratia spp., and others

[87–89].

Certainly, our work has limitations, design nature without doubts since is centered only the

background of clinical strains of Myroides spp., the number of strains included, in this sense

information about prevalence around the world is limited beside we included all references

published. The correlation with a in vivo model could evaluate the impact of virulence factors

and the need of phenotypic methods to explore the activity of carbapenemases in this genus.

Conclusions

The Myroides genus is a rare microorganism that can cause infections in both immunosup-

pressed and immune competent hosts. The outcome of infection varies depending on the anti-

microbial profile of the bacteria. Molecular techniques are essential for accurately identifying

these bacteria, characterizing potential species, and exploring therapeutic options for achieving

clearance of infections. More studies are needed to prove that strains C2723, C1519 and C4067

are new species within the Myroides genus. Finally, the species analyzed in the present work

showed reduced susceptibility patterns for aminoglycosides, ß-lactams, cyclic lipopeptides,

this was corroborated with the genes found in the genome, therefore, susceptibility tests should

be performed in the clinical microbiology laboratory and the Infectious diseases specialists

staff should consider these susceptibility patterns for the treatment scheme of patients suffer-

ing infections by microorganisms of this genus.
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