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Abstract

Deep learning and artificial intelligence offer promising tools for improving the accuracy and

efficiency of diagnosing various lung conditions using portable chest x-rays (CXRs). This

study explores this potential by leveraging a large dataset containing over 6,000 CXR

images from publicly available sources. These images encompass COVID-19 cases, nor-

mal cases, and patients with viral or bacterial pneumonia. The research proposes a novel

approach called "Enhancing COVID Prediction with ESN-MDFS" that utilizes a combination

of an Extreme Smart Network (ESN) and a Mean Dropout Feature Selection Technique

(MDFS). This study aimed to enhance multi-class lung condition detection in portable chest

X-rays by combining static texture features with dynamic deep learning features extracted

from a pre-trained VGG-16 model. To optimize performance, preprocessing, data imbal-

ance, and hyperparameter tuning were meticulously addressed. The proposed ESN-MDFS

model achieved a peak accuracy of 96.18% with an AUC of 1.00 in a six-fold cross-valida-

tion. Our findings demonstrate the model’s superior ability to differentiate between COVID-

19, bacterial pneumonia, viral pneumonia, and normal conditions, promising significant

advancements in diagnostic accuracy and efficiency.

1. Introduction

COVID-19 pandemic is the greatest incident affecting the lives of many people and thus a

major issue concerned is the need to have an accurate diagnosis. However, [1] researchers

stress that diagnosing the disease can be done with the help of the Real-Time reverse transcrip-

tion-Polymerase Chain Reaction (RT-PCR) method, whereas some researchers [2] indicate

that biomarkers are of great value during the early ages of the disease diagnosis. The pandemic

has also been responsible for a shift in the mortality rates, with older people being the ones
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who have mostly died [3,4] draws our attention to various comorbidities and organ injuries

which transform the treatment plan of COVID-19 in the clinical setting. These research, by

virtue of the fact, stress the existence and severity of dire results associated with delayed and

improper diagnosis which can be a real threat to the survival of humankind. The latest studies

have revealed that deep learning models can be used for coronavirus image classification. The

researchers [5] managed to achieve an accurate detection COVID-19 from X-ray images with

ResNet101. The researchers of [6] also reported a high accuracy using the CNN. In the paper

authored by [7], the same Xception model was combined with an additional channel attention

mechanism for the automated classifier of the Computed Tomography (CT) scan of COVID-

19 case making it extremely precise. The studies taken together imply that the deep learning

models can identify COVID-19 cases through images, which is useful in medical diagnosis and

disease detection. It is said that the sophisticated and palatial deep learning model is much

greater than its thinner versions. This is because the deeper complex models and algorithms

that are sized bigger have their own advantages and disadvantages. From one point of view,

the large size of deep learning models allows them to capture more complicated and subtle pat-

terns in the data, thus, improving their performance and accuracy [8].

While deep learning models have shown promise in classifying COVID-19 images, there

are still limitations that need to be addressed. One such limitation is the lack of research on

applying domain adaptation techniques to overcome the challenge of the cross-dataset prob-

lem. Existing solutions, such as COVID19-DANet, have shown some promise but still require

further improvement to achieve better results across different datasets [9]. Deep learning mod-

els, including Convolutional Neural Networks (CNNs), perform well when trained and tested

on the same dataset but show significantly lower performance when applied to different data-

sets. This indicates a lack of generalization across different data sources. The problems of

COVID-19 classification, also problem that the quality and quantity of available COVID-19

image datasets vary significantly, which affects the training and performance of deep learning

models. Inconsistent data quality can lead to unreliable model predictions [10]. Data enhance-

ment methods are crucial for improving model performance, but there is a need for more

sophisticated techniques to handle the variability in COVID-19 image datasets effectively.

Supervised learning methods, while effective, require large amounts of labelled data, which is

often scarce in the context of COVID-19. The researchers [11] highlights the challenges of

extensive computational resources, limited annotated datasets, and a large amount of unla-

beled data. The researchers [12] further emphasizes the difficulty of assessing severity due to

small datasets and the high dimensionality of images. The authors [13,14] both note the limita-

tions of single task learning and the need for more efficient models. These studies collectively

underscore the need for more robust and efficient deep learning models in COVID-19 image

classification. These limitations hamper the development of robust models. Semi-supervised

and unsupervised learning methods have been explored, but they still face challenges in achiev-

ing high accuracy and reliability in COVID-19 image classification.

The authors [15]proposed a novel automated framework for the classification of tuberculo-

sis, COVID-19, and pneumonia from chest x-ray images using deep learning and an improved

optimization technique. The proposed deep learning-based framework achieved high classifi-

cation accuracy 98.2%, 99.0%, and 98.7%) on three different datasets for tuberculosis, COVID-

19, and pneumonia detection from chest X-ray images. The authors employed the Wilcoxon

signed-rank test to statistically validate the superior performance of their proposed method.

The integration of feature fusion was instrumental in enhancing the method’s accuracy. The

researchers [16] proposed a wrapper-based technique to improve the classification perfor-

mance of chest infection (including COVID-19) detection using X-rays by extracting deep fea-

tures using pretrained deep learning models and optimizing them using various optimization
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Cohen et al. via GitHub (https://github.com/

ieee8023/covid-chestxray-dataset). Additional CXR

images were sourced from Radiopaedia (https://

radiopaedia.org/), The Cancer Imaging Archive

(TCIA) (https://www.cancerimagingarchive.net/),

and SIRM (https://www.sirm.org/category/senza-

categoria/covid-19/ & https://sirm.org/?s=COVID-

19). The pneumonia CXR images (N = 3863) and

normal (healthy) CXR images were acquired from

the Kaggle repository (https://www.kaggle.com/

paultimothymooney/chestxray)."
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techniques, while also using a network selection technique to select the deep learning models.

The proposed deep learning framework achieved a high classification accuracy of 97.7% in

detecting chest infections, including COVID-19. Rigorous validation confirmed the frame-

work’s reliability for classifying both COVID-19 and other chest infections, suggesting its

potential as a valuable tool for clinicians.

If we further look into the problems of COVID-19, the one major constraint is the reliance

on binary classifiers or building classifiers based on only a few classes, hindering comprehen-

sive classification [17]. Additionally, most studies focus on flat single-feature imaging modali-

ties without incorporating clinical information or utilizing the hierarchical structure of

pneumonia, leading to clinical challenges [18]. The availability of limited COVID-19 imaging

data poses a challenge for developing effective automated picture segmentation methods,

impacting quantitative assessment and disease monitoring [19]. Moreover, the biggest chal-

lenge lies in the availability of training data, with data augmentation methods like Generative

Adversarial Networks (GAN) -based augmentation found to be subpar compared to classical

methods for COVID-19 image classification [19,20].

This paper explores how the size of a deep learning model influences different tasks and

identifies certain implications when working with such models. Larger models have been seen

to be associated with higher computational costs and more parameters especially when dealing

with complex models meaning that the models cannot be easily deployed in any device with

limited resource capabilities [21]. However, prior research has demonstrated that such

approaches may not always be the case, such as in the application of CNNs to detect brain

tumours where less input sizes describe heightened accuracy coupled with enhanced training

times, evidenced from the use of the 64px inputs models as opposed to the larger input models

[22]. However, in practice, when using models such as autoencoders in deep learning on data-

sets where features are globally similar but locally dissimilar, the authors noted that using

smaller batch sizes improve model performance and yield better biologically relevant informa-

tion, which raises the cost of batch size when design the model [23]. The measures regarding

challenges of large deep learning (DL) models consists of methods like degree of parallelism,

lighter data matrices and system enhancement to increase the potential [24].

Lightweight deep learning models have the capability to reduce the model size and memory

requirements, and to optimize the model in order to make it efficient to implement on edge

device. The primary goal of these models is to minimize computational complexity while still

delivering high performance [25,26]. For example, a lightweight deep learning model created

for identifying human posture exhibited a significantly smaller size of 46.2 MB, in contrast to

the baseline model’s 227.8 MB [27]. Similarly, a model developed for detecting ophthalmic dis-

eases was reported to be ten times lighter than the popular biomedical segmentation model

UNet, with a memory size of around 35 MB. These smaller models play a critical role in facili-

tating real-time processing on battery-operated devices and enable efficient deployment on

edge devices with limited resources.

The advancement of lightweight CNN models proves beneficial for diverse applications,

particularly in situations with constrained computational resources. These models offer advan-

tages such as reduced inference delay, minimal memory requirements for deployment on

embedded devices, and the ability to swiftly update over-the-air [28]. For deployment on

mobile devices with limited resources, lightweight Convolutional Neural Network (CNN)

models are crucial. These models achieve high accuracy while keeping computational costs

low. MobileNetV2 model utilizes depth-wise separable convolutions and inverted residual

connections to reduce computations without sacrificing accuracy. It achieves state-of-the-art

performance on various tasks, making it ideal for mobile vision applications [29]. ShuffleNet is

another lightweight architecture specifically designed for mobile devices with limited
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computational power. It employs pointwise group convolutions and channel shuffle opera-

tions to achieve lower computational demands while maintaining accuracy [30]. EfficientNet

is from the family of models surpasses previous CNNs in both accuracy and efficiency.

Obtained by scaling up MobileNets and ResNets using neural architecture search, Efficient-

Nets achieve state-of-the-art accuracy on diverse datasets while being smaller and faster during

inference compared to other models [31]. Furthermore, techniques such as pruning, quantiza-

tion, and knowledge distillation can further reduce the size of CNN models. This makes them

even more suitable for deployment on resource-constrained devices [32].

Lightweight CNN models are a game-changer for real-time video surveillance. They offer

several key advantages: minimal inference delay, meaning they process video frames quickly

for real-time analysis, low memory requirements allowing them to run on resource-con-

strained devices, and the capability to be trained, fine-tuned, and deployed in a distributed

manner [28]. This makes them ideal for embedded systems and facilitates efficient processing

of large video datasets for wider deployment. The emergence of lightweight deep learning

methodologies has gained prominence due to their ability to facilitate efficient and real-time

processing on edge devices. These methodologies can be broadly categorized into two

approaches: developing lightweight deep learning algorithms from scratch and transforming

existing models into more compact versions. Researchers have explored various lightweight

models, such as SqueezeNet, ShuffleNet, and MobileNet, comparing their performance param-

eters with conventional models like AlexNet and GoogleNet [33]. These lightweight models

have shown promising results across numerous daily life applications. Moreover, lightweight

deep learning algorithms have been applied to studying slip performance in composite materi-

als used in construction, showcasing their versatility [34]. Overall, lightweight deep learning

techniques offer a promising avenue for efficient processing in resource-constrained environ-

ments, facilitating real-time processing and reducing computational complexity.

The size of trained models presents deep learning models for COVID-19 classification on

edge devices hence important to design light models. Various studies have pointed out that, it

is beneficial to exist in the method to decrease the number of model parameters while retaining

high accuracy in order to optimize model implementation in the edge environment [35, 36,

37]. Such as attention modules and mixed loss functions has been suggested to reduce the size

of models while incurring a similar level of performance so that the models can effectively be

deployed on edge devices that have restricted resources [38]. While models such as Mobile-

NetV2 are more lightweight, they have emerged dominant in performance with constrained

memory needs to increase the efficacy of deploying the model within edge devices [39]. The

efficient deep learning neural networks combined with wearable medical sensors can be

embedded in smartphone applications and similar other devices, preserving patient privacy

and ensuring efficient resource use[40]. Based on all above evidence we suggest that the size of

trained models depends heavily on machine learning and AI implementation when deployed

for COVID-19 classification on edge devices. They will remain pertinent due to the need for

model compression, selective ensemble methods, and other developments like mixed-preci-

sion training. The idea is to allow the precise and real-time execution of deep learning models

on source devices, which may help accelerate and improve the COVID-19 detection.

Distinguishing COVID-19 from other lung infections remains a challenging task. While

researchers are actively developing tools to improve prediction performance, limitations persist

in the preprocessing and processing stages. This study addresses these challenges by focusing on

the preprocessing stage. We propose a novel approach that utilizes median filtering and interpo-

lation methods to remove noise from the imaging data. Additionally, we address data imbalance

using data augmentation techniques and a stratified 5-fold cross-validation strategy to prevent

overfitting and ensure a balanced distribution for training and validation purposes.
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Furthermore, we optimize the hyperparameters of the VGG-16 deep learning algorithm

through a grid search method. Finally, we introduce the ESN-MDFS system, a novel approach

that combines an Extreme Smart Network (ESN) with a Mean Dropout Feature Selection Tech-

nique (MDFS). This system aims to improve multi-class detection (COVID-19, normal, viral

pneumonia, and bacterial pneumonia) by extracting static features using Grey Level Co-occur-

rence Matrix (GLCM) analysis and dynamic features through the pre-trained VGG-16 model.

2. Materials and methods

2.1. Proposed model

This study enhances multiclass COVID-19 prediction through a novel approach encompassing

the following key elements as reflected in Fig 1A and 1B:

• Optimized pre-processing: Chest X-ray image quality was improved using techniques such

as interpolation, data cleaning, augmentation, feature engineering, image enhancement,

morphological operations, segmentation, and transformation.

• Feature extraction: Dynamic VGG-19 and static GLCM features were computed from mul-

ticlass data to capture diverse image characteristics.

• Feature selection: A hybrid feature space (HFS) was refined using feature selection methods

to eliminate redundant features, thereby improving prediction performance and model size

for efficient deployment on edge devices

• The optimal HFS was then utilized to the robust optimized XGBoost algorithm for improved

prediction

• Hyperparameter tuning: The hyperparameters of the XGBoost machine learning algorithm

were meticulously optimized.

Deep features extracted from VGG-19 provide a powerful representation of image con-

tent. They capture high-level semantic information about the image, such as the presence of

specific objects or patterns. In the context of COVID-19 classification, these features can effec-

tively discriminate between different lung pathologies, including pneumonia, viral pneumonia,

and COVID-19. By leveraging the hierarchical structure of VGG-19, these features can capture

subtle visual patterns that are often challenging for traditional image processing techniques.

Static GLCM features, on the other hand, provide complementary information about the

texture and spatial relationships between pixels in an image. These features are sensitive to

image patterns and structures, which can be crucial for differentiating between different types

of lung abnormalities. By combining deep features and GLCM features, it is possible to create

a more robust and discriminative feature space for multi-class COVID-19 classification.

The hybrid feature space (HFS)

• Deep features and GLCM features capture different aspects of image information, leading to

improved classification performance.

• The combination of these features can better differentiate between subtle visual patterns

associated with different lung diseases.

• The use of multiple feature types can help to reduce the impact of noise and variations in

image quality.
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By effectively fusing these features and employing appropriate machine learning techniques,

we developed highly accurate and reliable COVID-19 classification models.

Fig 1. The proposed Enhancing Multiclass COVID Prediction with ESN-MDFS: Extreme Smart Network using Mean

Dropout Feature Selection Technique Diagram (a) shows the entire workflow of the proposed technique {B: Bacterial,

C: Covid-19, N: Normal and V: Viral}, whereas diagram (b) shows the phases of the proposed technique in detail.

https://doi.org/10.1371/journal.pone.0310011.g001
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2.2. Proposed model algorithm: Enhancing COVID Prediction with

ESN-MDFS

• Preprocessing Step:

foreach image in imageDataset

Apply interpolation during image resizing (224,224)

Apply medianBlur for denoising

Apply intensity Normalization

• end foreach

• Data Augmentation:

foreach class in classes

find difference in classes

apply data augmentation using library imageDataGenerator

• end foreach

• Data Split
Split dataset into train and test using train_test_split method

train = 0.8

test = 0.2

• Features Selection:

Static Features–using GLCM (25 Features)

Dynamic Features–using VGG16 (1024 Features)

• Hybrid Features Space:

Combined Static and Dynamic Features–HFS

Apply Mean Dropout Technique for Selection of Important Features from HFS

• Train Models on Train and Test

Train XGBoost Model on HFS

generating ROC, Confusion_matrix, Classification_Report

• Deploy Model

Deploy smart model on edge devices

2.3. Dataset

To train our deep CNN for distinguishing COVID-19 from other pneumonia types, we lever-

aged a diverse dataset compiled from several publicly available sources, similar to the approach

used in previous studies [41–43]. This dataset incorporates chest X-ray images of COVID-19

(N = 1525): sourced from Cohen et al. via GitHub [44], Radiopaedia, SIRM, TCIA, and Pneu-

monia (N = 3863): retrieved from the Kaggle repository, Normal individuals (N = 1525):

sourced from the Kaggle repository and the NIH dataset. This multifaceted dataset,
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encompassing images from various public sources, strengthens the generalizability and robust-

ness of our model.

2.4. Preprocessing

2.4.1. Image preprocessing. To unlock valuable insights from images, we employ image

preprocessing. This vital step refines image quality and readies it for further analysis. Fig 2

showcases three key aspects of this transformation: noise reduction for a clearer view, feature

enhancement for sharper details, and normalization for seamless integration into subsequent

steps.

Fig 2. Image pre-processing steps.

https://doi.org/10.1371/journal.pone.0310011.g002
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1. Interpolation:

• Interpolation deals with the problem of missing data in an image. It fills in the gaps in the

image data with estimated values based on the surrounding pixels. This can be important

for tasks such as image resizing, scaling, and registration.

2. Noise Removal:

• Noise is unwanted information that can corrupt an image and interfere with subsequent

analysis. It can originate from various sources, such as sensor imperfections, environmen-

tal factors, and data transmission errors.

• Noise removal aims to remove or suppress this noise while preserving the true image con-

tent. Various noise removal filters are available, each targeting specific types of noise.

Common filters include median blur filter.

3. Intensity Normalization:

• Intensity normalization aims to adjust the intensity values of an image to a desired range.

This can be necessary for tasks such as image registration, segmentation, and feature

extraction.

• We utilized histogram equalization.

2.4.2. Data augmentation. To compensate for potential limitations in the dataset, we

employed two crucial strategies: data augmentation and stratified splitting. Data augmentation

artificially expands the dataset by generating variations of existing samples, making the model

more robust to real-world variations and preventing overfitting [45]. Techniques like adding

noise, applying transformations, and generating synthetic data were utilized to achieve equal

representation of all classes, further enhanced by stratified splitting during data division. This

ensures each training and test set accurately reflects the distribution of classes in the original

data. The Fig 3 depicts the data augmentation methods.

• Rotation:

Randomly rotates the image by an angle within a predefined range. This can help the model

learn to recognize objects from different angles. Range: -50 to 20 degrees, probability: 0.2.

• Horizontal Flipping:

Flips the image horizontally (left-right). This can help the model learn to recognize objects

that are not symmetrically aligned. Probability: 1.0

• Vertical Flipping:

Flips the image vertically (top-bottom). This can help the model learn to recognize objects

that are not symmetrically aligned. Probability: 1.0

• Image Shearing:

Definition: Applies a shearing transformation to the image, distorting it in a parallelogram-

like shape. This data augmentation technique helps the model develop viewpoint invariance,

allowing it to recognize objects even when viewed from different angles. Angle: -40 to 40,

probability: 0.2.

• Gamma Contrast:

Adjusts the gamma value of the image, changing the overall brightness and contrast. This

data augmentation technique can enhance the model’s illumination invariance, allowing it

to recognize objects even under varying lighting conditions. Range: 0.5 to 2, pobability: 0.2.
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• Sigmoid Contrast:

Applies a sigmoid function to the image’s pixel intensities, enhancing the contrast between

dark and bright areas. This can help the model learn to recognize objects with different

brightness levels. Coefficient: 5 to 10, probability: 0.2.

• Linear Contrast:

Adds or subtracts a constant value to all pixel intensities of the image, adjusting the overall

brightness. This can help the model learn to recognize objects under different lighting condi-

tions. Delta: -0.2 to 0.2, probability: 0.2.

• Elastic Transform:

Applies an elastic transformation to the image, distorting it in a rubber-like manner. This

can help the model learn to recognize objects under different deformations. Alpha: 60,

Sigma: 4, Probability: 0.2

• Polar Transform:

Converts an image from Cartesian coordinates to polar coordinates, applies random rota-

tions and shifts, and then converts back to Cartesian coordinates. This can help the model

learn to recognize objects under different rotational perspectives. Max magnitude: -0.2 to

0.7, probability: 0.2.

• Jigsaw Transform:

Divides an image into multiple smaller patches and randomly rearranges them, creating a

new image. This can help the model learn to recognize objects from fragmented views.grid

size: 4x4 to 8x8, Pixel interpolation: 3 to 7, Probability: 0.2.

• Invert Image:

Negates all pixel intensities of the image, creating a negative image. This can help the model

learn to recognize objects based on their shape and texture, not just their color. Probability: 1.0

• Polarize Image:

Randomly increases or decreases the saturation of the image, creating a more intense or

Fig 3. Data Augmentation techniques on multiclass.

https://doi.org/10.1371/journal.pone.0310011.g003
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muted color palette. This can help the model learn to recognize objects under different color

conditions. Factor: 0.5 to 2, Probability: 0.2.

After the augmentation is applied the images are equalized to N = 2521.

2.4.3. Image resize. For image resizing, we opted for the "inter area" interpolation

method, a technique often used in computer vision to estimate the value of a pixel based on its

surroundings [46]. This specific method, utilizing the average values of nearby pixels, excels at

producing smooth and accurate results, especially when downscaling images. Unlike some

other interpolation methods, "inter area" considers the contributions of multiple surrounding

pixels, leading to a visually pleasing and artifact-free outcome.

2.4.4. Hyperparameters optimization. Optimizing hyperparameters plays a crucial role

in fine-tuning the performance of deep learning models like VGG-16. By adjusting these set-

tings, we can achieve optimal accuracy, minimize overfitting, and improve the model’s gener-

alizability to unseen data.

Here’s a breakdown of key VGG-16 hyperparameters and their potential grid search values:

1. Learning Rate: The learning rate governs the step size taken during gradient descent, affect-

ing the speed of weight updates in the model. Grid Values: [0.0001, 0.001, 0.01, 0.1]

2. Momentum: Helps the model overcome shallow local minima by incorporating the direc-

tion of past gradients. Grid Values: [0.0, 0.5, 0.9, 0.99]

3. Weight Decay: Regularizes the model by penalizing large weights, preventing overfitting.

Grid Values: [1e-4, 1e-5, 1e-6, 0]

4. Batch Size: Number of samples processed together during training. Grid Values: [8, 16, 32, 64.

5. Optimizer: Algorithm used to update the model’s weights based on the loss function. Grid

Values: [Adam, SGD, RMSprop]

6. Number of Training Epochs: Epochs (number of training dataset passes). Grid Values: [10,

20, 50, 100]

7. Activation Function: Embeds non-linear decision boundaries, empowering the network to

capture intricate interactions between features. Grid Values: [ReLU, Leaky ReLU, tanh]

8. Dropout Rate: Randomly drops out neurons during training, preventing co-adaptation and

improving generalizability. Grid Values: [0.2, 0.3, 0.4, 0.5]

9. Early Stopping: Monitors a validation metric and stops training when it stagnates, prevent-

ing overfitting. Grid Values: [Patience: 5, 10, 15]

2.4.5. VGG-16 hyperparameter optimization. To optimize the performance of our

model, we employed a grid search method to identify the most effective hyperparameter set-

tings. Following optimal values were selected as optimal: Learning Rate: 0.001, Momentum:

0.9, Weight Decay: 1e-5, Batch Size: 32, Optimizer: Adam, Epochs: 50, Activation: ReLU,

Dropout: 0.3, Early Stopping Patience: 10.

2.5. Feature extraction

Deep features extracted from VGG-19 provide a powerful representation of image content.

They capture high-level semantic information about the image, such as the presence of specific

objects or patterns. In the context of COVID-19 classification, these features can effectively
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discriminate between different lung pathologies, including pneumonia, viral pneumonia, and

COVID-19. By leveraging the hierarchical structure of VGG-19, these features can capture

subtle visual patterns that are often challenging for traditional image processing techniques.

Static GLCM features, on the other hand, provide complementary information about the

texture and spatial relationships between pixels in an image. These features are sensitive to

image patterns and structures, which can be crucial for differentiating between different types

of lung abnormalities. By combining deep features and GLCM features, it is possible to create

a more robust and discriminative feature space for multi-class COVID-19 classification.

2.5.1. Static feature extraction based on Grey-level Co-occurrence Matrix (GLCM).

This approach utilizes GLCM, a texture feature extraction method introduced by Haralick in

1973, to analyze the input image [47].

The Gray Level Co-occurrence Matrix (GLCM) is a statistical technique used to extract tex-

ture features from images by analyzing the spatial relationships between pixel intensities. Its

applications span various domains, including SAR imagery for land cover classification (water,

vegetation, urban areas) [48] and medical imaging for detecting retinal abnormalities [49],

where color features have shown superior accuracy. Gray Level Co-occurrence Matrix

(GLCM) analysis computes the frequency of pixel pairs with specific intensity values and spa-

tial relationships, forming a matrix from which statistical features can be extracted. In this

study, 25 GLCM features were initially calculated and subsequently reduced to 17 through

MeanDropout feature selection.

GLCM characterizes texture by analyzing the spatial relationships between neighboring

pixels. This is achieved in two steps:

Step 1: Building the GLCM. Pixel pairs separated by a specific distance (d) and direction (θ)

are counted and tabulated. This establishes a spatial relationship between a reference pixel and

its neighbors.

Step 2: Feature extraction. From the GLCM, a set of scalar quantities is computed, each cap-

turing different aspects of the original texture. These quantities, collectively forming the

GLCM features, represent the frequency of various gray-level combinations occurring within

the image [47].

The GLCM extracts texture features from images by analyzing the spatial relationships

between pairs of pixels. Introduced in 1973 by Haralick et al. [34. GLCM characterizes texture

through various statistical measures derived from the second-order statistics of the image.

Obtaining GLCM features involves two steps:

1. Spatial Co-occurrence Calculation: For each pixel in the image, the frequency of its gray

level co-occurring with the gray levels of its neighbors at a specific distance (d) and direc-

tion (θ) is tabulated. This establishes a spatial relationship between the reference pixel and

its neighbors.

2. Feature Extraction: From the co-occurrence matrix, a set of scalar features are computed.

These features capture various aspects of the original texture, such as contrast, homogene-

ity, and directionality.

The resulting GLCM matrix encodes the frequency of different gray level combinations

within the image, providing valuable information about the underlying texture patterns [47].

Texture features computed from GLCM are Inverse Difference Moment [50], Contrast,

Energy [50], Entropy [50], Cluster Shade, Sum of Average, Homogeneity [50–52], Sum of

Square Variance [53], and Correlation [52] etc. The GLCM features are detailed and utilized in

studies [53–56].
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2.5.2. Dynamic feature extraction from VGG-16 CNN model. VGG-16 is a convolu-

tional neural network (CNN) architecture that was proposed by researchers at the Visual

Geometry Group (VGG) at the University of Oxford in 2014. It is named after the group that

developed it and the fact that it has 16 weight layers (excluding the pooling and fully connected

layers). The VGG-16 architecture was designed to participate in the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) in 2014. The challenge involved classifying images

into one of 1,000 categories. VGG-16, a convolutional neural network introduced by the Visual

Geometry Group at Oxford University in 2014,achieved prominence through its success in the

ImageNet Large Scale Visual Recognition Challenge. Its architecture, characterized by a series

of small 3x3 convolutional filters, led to a model with 13 convolutional and 3 fully connected

layers. While its depth enhanced feature extraction capabilities, it also increased susceptibility

to overfitting on smaller datasets. Nevertheless, VGG-16 remains influential due to its strong

performance on large-scale image classification tasks.

The VGG16 model was employed for feature extraction, generating 1024-dimensional fea-

ture vectors for each image in the dataset. To adapt the model to the specific characteristics of

our target problem, the final four fully connected layers of VGG16 were re-trained on the

selected datasets. Total trainable parameters for VGG-16 were 1,051,648 (first Dense)

+ 2,099,328 (second Dense) + 4,100 (final Dense) = 3,155,076 trainable parameters. To adapt

the model to the specific task, the final four layers were fine-tuned using the selected datasets.

Optimal performance hinges on careful selection of hyperparameters and we chosen the learn-

ing rate, optimizer, batch size, epochs, and regularization techniques by optimizing the hyper-

parameters using Bayesian optimization to fine-tune these hyperparameters.

2.5.3. Hybrid feature model. By fusing static GLCM features with dynamic features

learned from the VGG-16 model, a robust hybrid feature space is created. This approach effec-

tively leverages the complementary strengths of both modalities: GLCM’s emphasis on textural

information and VGG-16’s extraction of high-level visual representations. The resulting fea-

ture space significantly enhances image analysis tasks, including classification, object recogni-

tion, and texture analysis.

2.5.4. Mean dropout feature selection method for Hybrid Feature space (HFS). We

proposed a Mean dropout technique for feature selection, it define as follows:-

Let X be the set of data represented by the All_Features.

Let C be the last column index of the All_Feature, which contain the class of the features.

Let F be the set of features (columns other than the Class column).

Let Y be the set of unique class labels form the last column.

The equation of Mean Dropout represented as:

AllFeaturesMeanðy; f Þ ¼
1

Ny

X

x2X

x½f � � y ¼ x½C�
� �

Where:

• AllFeaturesMean(y,f) represents the mean value of feature f with class y.

• Ny is the number of instances in class y.

• x[f] represents the value of feature f for data point x

• [y = x[C]] is an indicator function that equals 1 if y is equal x[C], and 0 otherwise.
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• The sum is taken overall datapoints x in the dataset.

In more concise manner we can represent above equation as below:

AllFeaturesMeanðyÞ ¼
1

Ny

X

x2X

x½f � �
�
y ¼ x½C�

�
j f 2 F

( )

Where:

• AllFeaturesMean(y) is a set of mean values for all feature within class y

• f � F iterates over all features in the dataset.

dropping all those features where mean values are different classes of same features is same,

we can modify the above equation as follows:

SelectedFeatures ðyÞ ¼ f 2 F j AllFeaturesMeanðy; f Þ 6¼ AllFeaturesMean ð�y; f Þ for all �y 2 Y;�y 6¼ y

Where:

• SelectedFeatures(y) is the set of features within class y after filtering out those with equal

mean values.

• AllFeaturesMean(y,f) represents the mean value of feature f within class y.

• y0 6¼ y ensures that we are comparing distinct classes.

• The condition AllFeaturesMean ðy; f Þ 6¼ AllFeaturesMean ðy0 ; f Þ checks if the mean values

of features f are not equal across different classes.

To represent the Selected features for all classes:

SelectedFeaturesAllClasses ¼ \
y2Y

SelectedFeatures ðyÞ

Where:

• SelectedFeaturesAllClasses is the set of features that have distinct mean values across all

classes.

• \. represent the intersection operation over all classes.

2.5.5. Extreme Boosting (XGBoost) model for classification. The combined static and

dynamic feature set was input into an XGBoost model for multiclass classification. XGBoost

[57], an ensemble learning algorithm, constructs multiple models sequentially, with each sub-

sequent model addressing the shortcomings of its predecessors. This approach, rooted in gra-

dient boosting, incorporates regularization to prevent overfitting and accommodate various

loss functions [58].

XGBoost traditionally uses convex loss functions, recent research has explored custom and

non-convex loss functions to enhance performance in specific applications [59]. For instance,

[60] investigated the use of squared logistics loss (SqLL) to improve accuracy. [59] developed

weighted softmax loss functions for industrial applications, while [61] proposed a generalized

XGBoost method accommodating both convex and some non-convex loss functions. These

advancements demonstrate XGBoost’s versatility and potential for tailored solutions in various
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domains, including big data analysis and multi-objective parameter regularization. The pur-

pose of the XGBoost classifier is multifaceted and versatile, as evidenced by various research

studies. XGBoost is utilized for enhancing prediction accuracy in diverse fields such as meteo-

rology for hailstorm forecasting [62], detecting patterns in financial datasets to differentiate

between solvable and bankrupt situations [63], improving learner performance prediction in

Intelligent Tutoring Systems by enhancing models like Performance Factor Analysis and

DAS3H [64], and detecting malware in Internet of Medical Things (IoMT) data for better

medical assistance through dimensionality reduction and efficient classification [65]. The

XGBoost algorithm’s scalability, robustness, and proficiency with complex datasets make it a

valuable tool for increasing prediction accuracy, addressing class imbalances, enhancing per-

formance prediction models, and improving data analysis in various domains.

By building upon these principles, XGBoost has demonstrated superior performance in

tasks such as lung cancer detection. While traditional gradient boosting involves a single opti-

mization step, XGBoost employs a two-stage approach. This separation aims to improve both

the optimization process itself and the selection of the step direction. But the XGBoost solve,

@S y; f ðm� 1ÞðxÞ þ fmðxÞð Þ

@fmðxÞ
¼ 0 ð1Þ

For every x in data to directly fix the step. We have,

S
�
y; f ðm� 1ÞðxÞ þ fmðxÞ

�
ð2Þ

� S
�
y; f ðm� 1ÞðxÞ

�
þ gmðxÞfmðxÞ þ

1

2
hmðxÞfmðxÞ

2
ð3Þ

� S
�
y; f ðm� 1ÞðxÞ

�
þ gmðxÞfmðxÞ þ

1

2
hmðxÞfmðxÞ

2
ð4Þ

Leveraging the second-order Taylor expansion to approximate the loss function, where gm
(x) is gradient and hm (x) is Hessian.

hmðxÞ ¼
@2SðY; f ðxÞÞ
@f ðxÞ2

; here f ðxÞ ¼ f ðm� 1ÞðxÞ

Then, loss function can be rewritten as:

S fmð Þ �
Xn

i¼1
gm xið Þfm xið Þ þ

1

2
hm xið Þfmx

2

� �

þ const ð5Þ

/
Xpm

j¼1

X

i2Rjm
gm xið ÞKjm þ

1

2
hm xið ÞK

2
jm

� �

ð6Þ

In region j, lets Gjm denotes sum of gradient and the sum of Hessian is represented by Hjm,

then equation will be,

S fmð Þ /
XPm

j¼1
GjmKjm þ

1

2
HjmK

2

jm

� �

ð7Þ
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The optimal value can be computed using below function

Kjm ¼ �
Gjm

Hjm
; where j ¼ 1; 2; . . . ; Pm ð8Þ

We get loss function when we plug it back

S fmð Þ / �
1

2

XPm

j¼1

G2
jm

Hjm
ð9Þ

The tree structure is marked using this function. The lesser the score indicates better struc-

ture [57]. The maximum gain for every split is:

gain ¼
1

2

G2
jm Left

Hjm Left
þ
G2

jm Right

Hjm Right
�
G2

jm

Hjm

" #

ð10Þ

Which is,

gain ¼
1

2

G2
jm Left

Hjm Left
þ
G2

jm Right

Hjm Right
�

Gjm Left þ Gjm Right

� �2

Hjm Left þHjm Right

2

6
4

3

7
5: ð11Þ

For improved performance, we can rewrite the loss function as follows, incorporating regu-

larization criteria:

S fmð Þ /
XPm

j¼1
GjmKjm þ

1

2
HjmK

2
jm

� �

þ gPm þ
1

2
l
XPm

j¼1
K2

jm þ a
XPm

j¼1
jKjmj ð12Þ

¼
XPm

j¼1
GjmKjm þ

1

2
Hjm þ l
� �

K2
jm þ ajKjmj

� �

þ gPm ð13Þ

Where γ penalizes the number of leave, α denotes L1 regularization while λ denotes L2 reg-

ularization. The optimal weight can calculate for each region j as:

Kjm ¼

�
Gjm þ a

Hjm þ l
Gjm < � a

�
Gjm � a

Hjm þ l
Gjm > a

0 else

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

ð14Þ

And the gain is,

gain ¼
1

2

Pa G2
jm Left

� �

Hjm Left þ l
þ
Pa G2

jm Right

� �

Hjm Right þ l
�
Pa Gjm

� �2

Hjm þ l

2

6
4

3

7
5 � g ð15Þ
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Where,

PaðGÞ ¼

Gþ a G < � a

G � a G > a

0 else

8
><

>:

9
>=

>;
ð16Þ

The XGBoost classifier stands out for several reasons. It offers a rich set of randomization

and regularization options during the learning process, which helps to prevent overfitting and

improve model generalizability. Additionally, XGBoost boasts faster training times and user-

friendliness. To leverage these advantages in our study, we employed the following hyperpara-

meters as reflected in Table 1.

The core challenge in optimizing the loss function is finding the minimum value, which

can be local or global depending on the function’s shape (e.g., quadratic functions). To address

overfitting, XGBoost introduces new regularization features, enhancing its ability to resist this

common problem. The detailed structure of XGBoost is illustrated in Fig 4.

2.6. Performance evaluations measures

We employ standard performance evaluation metrics as outlined in [66]:

2.6.1. Precision.

Precion ¼
Number of relevant items retreived

Number of retrieved items
¼ P relevent j retreivedð Þ

2.6.2. Recall. Recall (R) represents the proportion of relevant documents that the model

successfully retrieves out of all the relevant documents in the dataset.

Recall ¼
Number of relevant items retreived
Total Nuber of Relevent Document

2.6.3. F-measure. The F1-measure calculation treats each record as a query-class pair. In

this context, each class represents the desired documents for the query (record), and we com-

pute both recall and precision for each class within that record. The F1-measure of record j

Table 1. Hyperparameters optimization of XGBoost algorithm.

Model Hyperparameters Tunned Parameters

XGBoost 1- booster

-: gbtree, gblinear

2- colsample_bytree

-: 0.4, 0.6, 0.8, 1

3- learning_rate

-: 0.01, 0.1, 0.2, 0.4

4- max_depth

-: 2, 3, 4, 6

5- n_estimators

-: 200, 300, 400, 500

6- subsample

-: 0.4, 0.6, 0.8, 1

1- subsample

-: 0.8

2- n_estimators

-: 200

3- max_depth

-: 6

4- learning_rate

-: 0.1

5- colsample_bytree

-: 1

6- booster

-: gbtree

https://doi.org/10.1371/journal.pone.0310011.t001
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and class i is defined as follows:

Fij ¼
2∗Recallði; jÞ∗precionði; jÞ
Recallði; jÞ þ precionði; jÞ

2.7. Receiver operating characteristic (ROC) curve. To assess our classifier’s ability to

distinguish between COVID-19 and non-COVID-19 cases, we employed sensitivity (True Pos-

itive Rate) and specificity (1-False Positive Rate). We assigned binary labels to cases and gener-

ated a Receiver Operating Characteristic (ROC) curve. This curve plots sensitivity against

specificity. The ROC curve’s shape and the Area Under the Curve (AUC) quantify the classifi-

er’s performance. Higher AUC indicates better separation between the two classes. Sensitivity

reflects the proportion of correctly identified COVID-19 cases, while specificity reflects the

proportion of correctly identified non-COVID-19 cases [67]. The ROC curve and AUC pro-

vide a visual and numerical assessment of the classifier’s ability to differentiate between the dis-

ease and healthy cases [68].

Fig 4. General architecture of XGBoost algorithm.

https://doi.org/10.1371/journal.pone.0310011.g004
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3. Results

This section presents a detailed analysis of the proposed ESN-MDFS model’s performance

through confusion matrices, tabular data, and AUC values. Additionally, a comparative evalu-

ation with existing studies is provided.

Fig 5 presents the multi-class COVID-19 detection results exclusively based on VGG-16

deep features, as visualized through confusion matrices (5a), classification reports (5b), AUC

curves (5c), and accuracy loss curves (5d). Relying solely on deep features, the model achieved

Fig 5. Multi-class Covid-19 detection using VGG-16, a) Confusion Matrix, b) Classification Report, c) AUC, d) Accuracy-Loss Curve.

https://doi.org/10.1371/journal.pone.0310011.g005
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an overall accuracy of 93% in classifying the four target classes. Notably, the AUC for multi-

class differentiation (bacterial, COVID-19, viral) was 0.99, while perfect discrimination (AUC

of 1.00) was observed for the normal class.

Fig 6 illustrates the multi-class COVID-19 detection performance solely based on

XGBoost-processed static features, as depicted in the confusion matrix (6a), classification

report (6b), and AUC curve (6c). Relying exclusively on static features, the model achieved an

overall accuracy of 86% in classifying the four target classes.

Fig 6. Multi-class Covid-19 detection using XGBoost, a) Confusion Matrix, b) Classification Report, c) AUC, d) Accuracy-Loss Curve.

https://doi.org/10.1371/journal.pone.0310011.g006
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The Fig 7 reflected the confusion matrix distinguish the four classes by utilizing Multiclass

(COVID-19, normal, bacterial, viral pneumonia,) detection by utilizing Intelligent Extreme

Smart Deep Network without mean dropout.

The Table 2 reflects the multiclass classification performance by utilizing Intelligent

Extreme Smart Deep Network Hybrid Feature Space without mean dropout. The model

achieved an impressive accuracy of 95.54% in classifying images into four classes: Bacterial,

COVID-19, Normal, and Viral. This indicates that the model correctly classified 95.54% of the

images in the dataset. To detect the Bacteria, the model demonstrated excellent performance

with a precision, recall, and F1-score of 99.20%, 98.21%, and 98.70% respectively. This suggests

that the model is highly effective in correctly identifying bacterial infections. To predict

COVID-19, while the performance for COVID-19 is still good, it is slightly lower compared to

the other classes. The precision, recall, and F1-score are 93.66%, 90.69%, and 92.15% respec-

tively. This indicates that there might be some room for improvement in accurately identifying

COVID-19 cases. To detect the normal subject, the model achieved a precision of 92.10%,

recall of 94.84%, and F1-score of 93.45% for the normal class. These metrics suggest reasonable

Fig 7. Confusion Matrix to distinguish Multiclass COVID-19 detection by utilizing ESN: Extreme Smart Network without MeanDropout feature space.

https://doi.org/10.1371/journal.pone.0310011.g007
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performance in identifying normal cases. To predict the viral, similar to bacterial, the model

showed excellent performance in classifying viral infections with a precision, recall, and

F1-score of 97.25%, 98.41%, and 97.83% respectively.

The Fig 8 reflected the confusion matrix distinguish the four classes by utilizing the pro-

posed ESN-MDFS Covid model.

The Table 3 reflects the multiclass classification performance by using ESN-MDFS Covid

model. The model achieved an impressive accuracy of 96.18% in classifying images into four

classes: Bacterial, COVID-19,Normal, and Viral. This indicates that the model correctly classi-

fied 96.18% of the images in the dataset. For Bacterial and Viral, the model demonstrated

exceptional performance with precision, recall, and F1-score values close to 98% for both clas-

ses. This suggests that the model is highly effective in correctly identifying bacterial and viral

infections. To detect COVID-19 and Normal, while the performance for COVID-19 and Nor-

mal classes is also good, it is slightly lower compared to Bacterial and Viral. The model

achieved precision, recall, and F1-score values around 94% for both classes, indicating room

for improvement in accurately differentiating between these two classes. The results suggest

that the ESN-MDFS model is a promising approach for classifying lung conditions from medi-

cal images. It achieves high accuracy and performs well across all four classes, even better than

the model presented in Table 2.

The Fig 9 reflects the accuracy-loss graph for multi-class Covid-19 detection at 150 epochs

and using the proposed ESN-MDFS Covid model. The highest AUC of 0.99 was yielded to

detect bacterial and viral pneumonia followed by AUC of 0.96 to detect normal and AUC of

0.95 to detect the COVID-19 from multiclass.

Fig 10 illustrates the accuracy of the ESN-MDFS model across seven cross-validation folds.

The model achieved a mean accuracy of 95.57% with a standard deviation of 0.54, demonstrat-

ing consistent performance across different data subsets.

Table 4 presents a comparison of the proposed ESN-MDFS model with several existing light-

weight models for multiclass COVID-19 detection. The comparison focuses on model size and

accuracy. For Model Size, there’s a significant difference in model sizes, with the proposed

ESN-MDFS being significantly smaller (889 KB) compared to other models. To compute accu-

racy, the proposed ESN-MDFS model outperforms all other lightweight models in terms of accu-

racy (96.18%). Trade-off between Size and Accuracy: While larger models like DL trained Model

Size and EfficientNetV2L offer higher accuracy, they also demand significantly more computa-

tional resources. ESN-MDFS model demonstrates a compelling balance between model size and

accuracy, making it a potential candidate for deployment on resource-constrained devices.

This study identified redundant information within the static features, necessitating param-

eter reduction. The high dimensionality of GLCM-extracted texture features, especially when

considering multiple distances and angles, posed a significant challenge. To address this, we

introduced ESN-MDFS, which employs Mean Dropout to refine the hybrid feature space

Table 2. Multiclass COVID-19 detection by utilizing ESN: Extreme Smart Network without MeanDropout feature space.

Class Precision Recall F1-Score Support

Bacterial 99.20% 98.21% 98.70% 504

COVID-19 93.66% 90.69% 92.15% 505

Normal 92.10% 94.84% 93.45% 504

Viral 97.25% 98.41% 97.83% 504

Accuracy 95.54% 2017

Macro Avg 95.55% 95.54% 95.53% 2017

Weighted Avg 95.55% 95.54% 95.53% 2017

https://doi.org/10.1371/journal.pone.0310011.t002
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(HFS) by eliminating less informative features. This approach yielded a substantial reduction

in model size, resulting in a remarkable accuracy of 96.18%. The resulting lightweight model

prioritizes performance and efficiency, making it ideal for resource-constrained edge devices.

Reduced storage requirements, faster computation, and lower power consumption are key

advantages of this compact architecture.

4. Discussions

The COVID-19 pandemic has led to a global health crisis, marked by millions of confirmed

cases and substantial mortality rates. While numerous studies have explored the application of

Convolutional Neural Networks (CNNs) for COVID-19 classification using chest X-rays and

CT scans, most research has been limited to binary comparisons, differentiating COVID-19

from pneumonia or normal conditions. This binary approach falls short of the diagnostic com-

plexities often inherent in infectious diseases.

Fig 8. Confusion matrix to distinguish multiclass COVID-19 detection by utilizing ESN-MDFS: Extreme Smart Network using mean dropout feature

selection technique.

https://doi.org/10.1371/journal.pone.0310011.g008
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Table 5 presents a comparative analysis of several studies focused on COVID-19 lung infec-

tion detection using AI-based methods. The comparison encompasses key factors such as

modality (X-ray or CT), dataset size, methodology, and performance metrics. Regarding

modality, most studies utilized X-ray imaging for analysis, except for Ying et al., which

employed CT scans. For Dataset Size, there’s a significant variation in dataset sizes across stud-

ies, ranging from relatively small datasets (Sethy et al.) to larger ones (Ying et al. and this

study). Regarding methodology, a diverse range of methods was employed, including CNN,

ResNet50, SVM, DRE-Net, texture features with machine learning, and the proposed

ESN-MDFS. To compute performance, the proposed ESN-MDFS method achieved the highest

accuracy (96.18%) among the compared studies, surpassing other methods in terms of overall

classification performance. Ghoshal et al. and Sethy et al. used smaller datasets and simpler

models, resulting in lower accuracy compared to the proposed method. Ying et al. used CT

scans, which provide more detailed information than X-rays, but still achieved a lower accu-

racy than the proposed method. Hussain et al. focused on two-class classification, while this

study addressed a more complex four-class classification problem and achieved higher

accuracy.

The primary outcome measured in this study [73] is the accuracy of COVID-19 detection

using CT-scan images and various preprocessing methods. The main findings of this study are

that different preprocessing methods, including resizing, enhancement, and normalization,

had an impact on the accuracy of COVID-19 classification using a deep learning model

(VGG-16), and the highest accuracy of 88.54% was achieved using a combination of deformed

resizing, CLAHE enhancement, and normalization to the range of [0 1] and [-1 1].

The proposed ESN-MDFS model surpasses existing methods in accurately classifying mul-

ticlass COVID-19 infections. By integrating Mean Dropout Feature Selection, the model effec-

tively balances performance and computational efficiency. Leveraging X-ray imaging, the

model effectively differentiates between COVID-19, bacterial pneumonia, viral pneumonia,

and normal conditions. Demonstrating exceptional accuracy across various lung infection

types, the model’s compact size makes it suitable for resource-constrained environments.

Although not explicitly evaluated, the model’s strong performance suggests potential adapt-

ability to diverse datasets and clinical contexts.

5. Conclusion

Our proposed ESN-MDFS model significantly advances COVID-19 detection by accurately

differentiating chest X-rays into four categories: COVID-19, bacterial pneumonia, viral pneu-

monia, and normal. This multi-class classification system has the potential to revolutionize

patient care by streamlining clinical workflows, enabling early diagnosis, optimizing patient

triage, and facilitating disease progression monitoring. These capabilities position ESN-MDFS

Table 3. Multiclass COVID-19 detection by utilizing ESN-MDFS: Extreme Smart Network using mean dropout feature selection technique.

Class Precision Recall F1-Score Support

Bacterial 98.03 98.81% 98.42% 504

COVID-19 94.34% 92.48% 93.40% 505

Normal 94.27% 94.64% 94.46% 504

Viral 98.03% 98.81% 98.42 504

Accuracy 96.18% 2017

Macro Avg 96.17% 96.18% 96.17% 2017

Weighted Avg 96.17% 96.17% 96.17% 2017

https://doi.org/10.1371/journal.pone.0310011.t003
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as a critical tool in combating COVID-19. This innovative approach maintains high model

accuracy while drastically reducing memory footprint, making it suitable for resource-con-

strained edge devices. Deploying this optimized model enables real-time, point-of-care lung

nodule detection, eliminating the need for centralized servers. Clinicians can benefit from

immediate diagnostic insights, facilitating faster treatment decisions and improved patient

outcomes. Beyond accuracy, this approach streamlines workflows by automating chest X-ray

analysis, reducing diagnostic turnaround times, and enhancing overall efficiency. Early disease

Fig 9. Area under the receiver operating characteristic curve (AUC) to distinguish Multiclass COVID-19 detection by utilizing ESN-MDFS.

https://doi.org/10.1371/journal.pone.0310011.g009
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detection, particularly for conditions like COVID-19, is facilitated by the model’s improved

sensitivity and accuracy. Moreover, the ability to differentiate between various pneumonia

types enables effective patient triage and resource allocation. By tracking changes in chest X-

ray features over time, clinicians can gain valuable insights into disease progression and tailor

treatment strategies accordingly.

5.1. Limitations and future directions

While the ESN-MDFS model demonstrates promising results, several limitations and opportu-

nities for improvement exist. The model’s performance is influenced by dataset quality,

Fig 10. Fold vs accuracy curve to distinguish multi-class using ESN-MDFS.

https://doi.org/10.1371/journal.pone.0310011.g010

Table 4. Comparison of Multiclass COVID-19 detection by utilizing ESN-MDFS with existing Lightweight models.

S# Size comparison

(Non-Lightweight VS Lightweight)

Accuracy comparison

(Non-Lightweight VS Lightweight)

Model Size Model Accuracy

1 DL trained Model Size 616 MB DL trained Model Size 95.54%

2 EfficientNetV2L 455 MB EfficientNetV2L 73.00%

3 ConvNeXtTiny 108 MB ConvNeXtTiny 72.00%

4 MobileNetV2 12 MB MobileNetV2 67.00%

5 Proposed ESN-MDFS 889 KB Proposed ESN-MDFS 96.18%

https://doi.org/10.1371/journal.pone.0310011.t004
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diversity, and image acquisition protocols. Although GLCM features enhance performance,

manual feature engineering is time-consuming. Additionally, the model’s black-box nature

hinders interpretability and clinical adoption. To address these challenges, future research

should focus on expanding the dataset, automating feature extraction, improving model

interpretability, incorporating additional data modalities, optimizing for real-time perfor-

mance, and conducting rigorous benchmarking. By pursuing these directions, the model’s

potential can be fully realized.
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Table 5. Comparison of AI-assisted recent studies for COVID-19 lung infection.

Authors Modality Subjects Method Performance

Ghoshal

et al. [69]

X-Ray COVID-19 90 and other conditions CNN 92.9% (Acc.)

Sethy et al.

[70]

X-ray COVID-19 and Normal 25 images ResNet50 and SVM 95.33%(Acc.)

Ying et al.

[71]

CT COVID-19 777 images and 708 images of Normal DRE-Net 86% (Acc.)

Hussain

et al. [72]

X-Ray COVID-19 Bacterial & Viral 145 images and 138 Normal Texture features using Machine learning.

Two-class classification

i) covid-19 vs normal

ii) Covid-19 vs viral pneumonia

iii) Covid-19 vs Bacterial pneumonia

iv) Four-class (Covid-19, Bacteria, Viral and Normal)

100% accuracy

97.56% Accuracy

97.44% Accuracy

79.52% Accuracy

Pratiwi et al.

[73]

CT Covid—(1251)

Non-Covid–(1229)

Two Classes

Deep learning VGG-16

88.54% Accuracy

This study X-Ray COVID-19 (N = 1525), non-COVID-19 normal (N = 1525), viral

pneumonia (N = 1342) and bacterial Pneumonia (N = 2521)

After augmentation

N = 2521

4-class (Normal, Bacterial Pneumonia, viral

Pneumonia and COVID-19) using ESN-MDFS

approach

96.18% Accuracy

AUC of 0.99

https://doi.org/10.1371/journal.pone.0310011.t005
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