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Abstract

Background

There had been extensive research on the role of the gut microbiota in human health and
disease. Increasing evidence suggested that the gut-brain axis played a crucial role in Par-
kinson’s disease, with changes in the gut microbiota speculated to be involved in the patho-
genesis of Parkinson’s disease or interfere with its treatment. However, studies utilizing
deep learning methods to predict Parkinson’s disease through the gut microbiota were still
limited. Therefore, the goal of this study was to develop an efficient and accurate prediction
method based on deep learning by thoroughly analyzing gut microbiota data to achieve the
diagnosis of Parkinson’s disease.

Methods

This study proposed a method for predicting Parkinson’s disease using differential gut
microbiota, named the Parkinson Gut Prediction Method (PGPM). Initially, differential gut
microbiota data were extracted from 39 Parkinson’s disease (PD) patients and their corre-
sponding 39 healthy spouses. Subsequently, a preprocessing method called CRFS (com-
bined ranking using random forest scores and principal component analysis contributions)
was introduced for feature selection. Following this, the proposed LSIM (LSTM-penultimate
to SVM Input Method) approach was utilized for classifying Parkinson’s patients. Finally, a
soft voting mechanism was employed to predict Parkinson’s disease patients.

Results

The research results demonstrated that the Parkinson gut prediction method (PGPM),
which utilized differential gut microbiota, performed excellently. The method achieved a
mean accuracy (ACC) of 0.85, an area under the curve (AUC) of 0.92, and a receiver oper-
ating characteristic (ROC) score of 0.92.

Conclusion

In summary, this method demonstrated excellent performance in predicting Parkinson’s dis-
ease, allowing for more accurate predictions of Parkinson’s disease.
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1.Contexis

Parkinson’s disease [1] is a common multifunctional dysfunction and neurodegenerative dis-
order among elderly people, and its prevalence is second only to that of Alzheimer’s disease
[2]. With the increase in population size and the intensification of aging trends, the burden of
Parkinson’s disease on society and individual health will continue to increase. According to
research predictions, by 2040, the global number of diagnosed cases of Parkinson’s disease [3]
will exceed 10 million.

Research indicates that the gut microbiota interacts with the autonomic and central nervous
systems through various pathways, and dysbiosis of the gut microbiota may affect both the
enteric nervous system and the central nervous system. Previous studies have revealed the exis-
tence of the brain-gut-microbiota axis, where bidirectional interactions between the gut
microbiota and the human nervous system could lead to central nervous system diseases. The
gut microbiota, also known as the "second brain," can influence brain activity under both phys-
iological and pathological conditions through the gut-microbiota-brain axis. Changes in the
gut microbiota have been linked to several psychiatric and neurological diseases, including
schizophrenia [4], depression [5,6], and autism [7]. Recently, numerous studies have shown
significant differences in the composition of the gut microbiota between Parkinson’s disease
patients and healthy controls, with metagenomic [8] studies further revealing the correlation
between Parkinson’s and abnormalities in the gut microbiome. However, research on the use
of the gut microbiota as a predictive tool for Parkinson’s disease is still relatively scarce. There-
fore, exploring a method to predict Parkinson’s disease using the gut microbiota is highly
important. Therefore, the aim and objective of this study are to develop an efficient and accu-
rate method for predicting Parkinson’s disease based on gut microbiota, in order to achieve
the diagnosis of Parkinson’s disease. By incorporating deep learning technology, we aim to
capture subtle differences in gut microbiota to provide new perspectives and tools for predict-
ing Parkinson’s disease, thereby offering scientific support for its diagnosis.

The diagnosis of Parkinson’s disease relies on core clinical features and follows standard
clinical criteria to improve accuracy. For example, the UK Parkinson’s Disease Society Brain
Bank (UKPDSBB) has established comprehensive standards, including criteria such as brady-
kinesia and exclusion of other potential causes. However, these standards still have limitations
and rely on the expertise of neurologists. With the development of artificial intelligence and
the increasing demand for healthcare, Al-based methods have been applied to the automated
diagnosis of Parkinson’s disease. Common methods, such as EEG [9], gait analysis [10], voice
analysis, and brain imaging, use biomarkers of Parkinson’s disease for automated detection.
Traditional machine learning models need to extract features from biomarkers and select sig-
nificant features for model training. Although Al-based methods have potential in the auto-
mated diagnosis of Parkinson’s disease, they have limitations. These methods may be
constrained by technical limitations and challenges in data collection during practical applica-
tions. Additionally, the accuracy and reliability of biomarkers still have certain limitations.
Furthermore, individual differences and the complexity of cases may affect the applicability
and generalizability of the models. Moreover, these methods are typically used as auxiliary
diagnostic tools and still require the professional judgment and clinical experience of doctors.
It is worth noting that there is relatively limited research on the use of the gut microbiota to
predict PD. Therefore, this study utilized gut microbiota prediction combined with artificial
intelligence methods to predict Parkinson’s disease.

In this article, a Parkinson’s disease prediction method called Differential Gut Microbiota
for Parkinson’s Prediction (PGPM), which can predict Parkinson’s disease more accurately, is
proposed. First, the PGPM method introduces the CRFES preprocessing method for feature
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selection, reducing the dimensionality of features; second, PGPM differs from individual clas-
sifiers, improving prediction accuracy; and finally, the final prediction result is obtained
through soft voting. Under 10-fold cross-validation, PGPM achieves mean ACC, AUC, and
ROC values of 0.85, 0.92, and 0.92, respectively, which are significantly higher than those of
existing methods.

2. Materials and methods
2.1 Microbiota datasets

The data for this study were obtained from a cross-sectional study of the gut microbiota of Par-
kinson’s disease patients in the Central China region [11]. The dataset included 39 Parkinson’s
disease patients (PD) with a BMI of 23.15 kg/m2 and their healthy spouses (SP) with a BMI of
24.22 kg/m2. The diagnosis of Parkinson’s disease was based on the 2015 Movement Disorder
Society Parkinson’s diagnostic criteria, with the core criterion being the presence of Parkinso-
nian symptoms. If a patient exhibited bradykinesia along with either resting tremor or rigidity,
they were considered to have Parkinson’s syndrome.

2.2 Transcriptome sequencing

The data were collected by sampling the subjects’ feces, which were then stored at -80°C. DNA
was extracted from the feces using the MetaHIT protocol, and the DNA concentration was
estimated using a Qubit instrument. After DNA extraction, gene libraries were prepared
according to the manufacturer’s instructions and sequenced. The raw sequencing data have
been deposited under the accession number PRINA588035. The quality of the raw metage-
nomic data was checked using the FastQC tool, followed by trimming low-quality data and
removing unwanted genomes. Subsequently, taxonomic analysis was performed, and the read
abundance was estimated after processing. The relative abundance was calculated by multiply-
ing the sequence count and rounding the result.

2.3 Overall framework of the forecasting methodology

In this study, a method for predicting Parkinson’s disease patients using differential micro-
biota was implemented. Building upon previous research, improvements were made in data
preprocessing, specifically in feature selection and dimensionality reduction, and a method
combining neural networks and machine learning was developed. The overall framework of
the PGPM method constructed in that article was illustrated in Fig 1, which consisted of three
modules: the CR (CRFS Preprocessing Layer) layer, the LS (LSTM-SVM Layer) layer, and the
OP (Output Layer) layer. The CR layer was responsible for the initial processing and selection
of the raw Parkinson’s gut microbiota data to meet the network input requirements. The LS
layer utilized LSTM and SVM as shown in Fig 1 to construct the network, while the OP layer
provided Parkinson’s prediction results through soft voting. The training of the PGPM
method network employed the Adam optimization algorithm. Unlike traditional methods that
used a single classifier for training, the PGPM method significantly improved model perfor-
mance by not relying on a single classifier.

2.4 CREFS preprocessing methods

In previous studies, a single feature selection method was often used. While this approach
could yield simplified features and to some extent improve model performance by reducing
model complexity, to enhance the reliability of the selection, the PGPM introduced the CRFS
data preprocessing method, as illustrated in Fig 2. Unlike previous research, the CRFS data
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Fig 1. PGPM framework diagram.
https://doi.org/10.1371/journal.pone.0310005.9001

preprocessing method comprehensively considered the advantages of both random forest (RF)
[12] and principal component analysis (PCA) [13] feature dimensionality reduction methods.

Parkinson’s gut microbiome data typically contained multiple variables, i.e., different types
of microbial populations. One of the advantages of random forest was that it could estimate
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Fig 2. Diagram of the CRFS preprocessing process.

https:/doi.org/10.1371/journal.pone.0310005.9002
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the importance of each feature and identify the most important features during classification.
By selecting important microbes as inputs, the model complexity could be simplified, compu-
tational efficiency could be improved, and overfitting risk could be reduced [14].

On the other hand, principal component analysis (PCA) could be used for dimensional-
ity reduction by explaining most of the variance in the variables with a few principal compo-
nents. This helped to better understand the data and extract the most informative microbial
populations. In PCA, covariance played a crucial role. By calculating the covariance matrix
between microbial variables, relationships and correlations could be understood. The
covariance matrix could represent the trend of how different microbial populations
increased or decreased together. If two microbial populations had high positive covariance,
it indicated they had similar patterns of variation in the sample. Conversely, high negative
covariance indicated opposite trends in variation. By arranging the covariance matrix
according to the size of variance and selecting the top principal components, most of the
variance in the data could be explained, achieving dimensionality reduction and retaining
the most informative microbial populations. The main method of extracting features was to
transform the feature space through the relationships between attributes and map the origi-
nal feature space to a lower-dimensional feature space, thus accomplishing dimensionality
reduction. PCA (Principal Component Analysis) reduced dimensionality through the prior
inertia between multidimensional datasets.

The primary method for feature extraction was to transform the feature space by exploring
the relationships among attributes and mapping the original feature space into a lower-dimen-
sional feature space to achieve dimensionality reduction. PCA (Principal Component Analy-
sis) achieved dimensionality reduction by leveraging the inertia between multidimensional
data groups.

The preprocessing method for feature selection in CRFS involves the following steps:

Step 1: After the distinct gut microbiota associated with Parkinson’s disease species are
extracted, where the original gut microbiota data in each column represent a sample, the
microbiota needs to be transposed. This transformation changes the data so that each row rep-
resents a sample, and each column corresponds to a distinct gut microbiota.

Step 2: For the transposed data, feature selection is conducted using two methods: random
forest (RF) and principal component analysis (PCA). The distinct gut microbiota were ranked
based on importance scores using random forest, and the top 20 were selected. Subsequently,
PCA was used to rank the distinct microbiota, selecting the top 20. The shared top 20 micro-
biota from both methods were chosen as input features. The covariance calculation formula
for PCA is shown below (Eq 2-1).

X - X)(Y, - Y)
n—1

cov(X,Y) =

2-1

Step 3: Extract the corresponding data of the common features from the top 20 features
sorted by both methods. The highlighted green portion in Fig 2 represents the identical
features.

Step 4: Normalize the extracted data. As the species abundance of the gut microbiota is
purely numerical, if the abundance of a certain microorganism is too large, it may lead to an
overly significant weight for that microorganism. Therefore, after feature selection and
dimensionality reduction, the abundance of each microorganism was normalized to ensure
equal weight for each microorganism during the training process, thus ensuring the model’s
accuracy. The normalization calculation Formula (2-2) is as follows, where x represents the
original data, Min represents the minimum value of the data, Max represents the maximum
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Step 5: Add the corresponding disease status labels to the extracted data after each sample.

2.5 LSIM

In that study, the classifier for the PGPM method was based on a combined classification strat-
egy of LSTM-SVM [15]. The structure of the LSIM [16] classifier model was illustrated in Fig
3. By leveraging the advantages of LSTM neural networks in storing long-term information
and the generalization and accuracy advantages of SVM in handling classification problems,
these two methods were integrated. The LSIM method utilized SVM as the classifier, where the
output from the second-to-last layer of LSTM was transformed into the input feature vector
for SVM. This approach further involved training SVM using the previous feature vectors,
which meant extracting features with LSTM and then classifying them with SVM. The combi-
nation of LSTM and SVM not only enhanced the precision and effectiveness of feature extrac-
tion but also improved the accuracy of classification results.

The Support Vector Machine (SVM) was a classic machine learning method commonly
used for binary classification tasks. Its principle involved constructing an optimal decision
hyperplane to separate data samples of different classes. For new input data, classification was
determined based on which side of the hyperplane it fell on, thus achieving the classification
task. In that study, the SVM utilized the Radial Basis Function (RBF) kernel. The RBF kernel
was one of the commonly used kernel functions. It measured the similarity of sample points in
a high-dimensional space by calculating the Euclidean distance between the sample points and
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Fig 3. LSIM structure.
https://doi.org/10.1371/journal.pone.0310005.g003
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support vectors. The role of the kernel function in the SVM model was to introduce nonlinear
transformations, map the data from the input space to a higher-dimensional feature space,
making the data more easily separable in the new feature space. The formula for the RBF ker-
nel function is shown below:

K(x,y) = exp(—y|lx = y|I*) (2-3)

y was a parameter in the RBF kernel function that controlled the rate of decay of the dis-
tance between samples, with a larger ¥ causing the similarity between samples to decrease
faster, i.e., the similarity between samples that were farther away decreased, and vice versa.
Therefore, choosing a suitable y value was highly important for SVM performance and classifi-
cation results. Too large or too small ¥ values could lead to overfitting or underfitting of the
model. In this study, the framework was used to automatically adjust the y values in the frame-
work to adaptively select the appropriate ¥ values. The Formula (2-4) is shown below:

1
" nfeaturesxX.var()

Y (2-4)

Where n_features denoted the number of features, and X. var() denoted the variance of
each feature in the input data X. The method could automatically adjust the input data accord-
ing to the different scales of its y values to better fit the data.

However, in some tasks, the "sparse” and "discrete" features in the input data made it diffi-
cult to detect relationships between data points, which were often crucial for determining the
overall relationships in the input. In contrast, Long Short-Term Memory (LSTM) networks
could capture dependencies in input information, and were particularly suitable for handling
sequential data. LSTMs excelled at handling long-term dependencies and temporal relation-
ships within sequences.

LSTM was a special type of RNN. LSTM introduced the concepts of memory cells, input
gates, output gates, and forget gates, enabling it to capture dependencies in input information.
The input gate selected relevant information to update the input memory cell. The forget gate
determined whether the input and output information should pass through. If the result of the
forget gate was close to zero, the information was forgotten, while if it was close to one, the
information was retained. This operation at the forget gate allowed LSTM to address the issues
of gradient explosion and vanishing gradients. LSTM overcame the short-term memory limi-
tations of RNNs; when a sequence was long, an RNN struggled to propagate information from
earlier time steps to later ones, whereas LSTM could learn long-term dependencies, remember
information from earlier time steps, and thus establish context.

The LSTM is calculated using the following information:

1. x; Enter the data at time t.
2. h,_;: the hidden state at time t-1.
3. ¢.p: the state of the cell at time t.

Given x,h, 12 and ¢,_;, the LSTM prioritizes the computation of forgetting gates, input
gates, output gates and candidate contexts with the Formulas (2-5) to (2-8):

fi=o(lx;hJW; + b)) (2-5)

it = O-([xt; ht—l]Wi + bz) (2 - 6)
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0, = 0([361; ht—l]Wo + bo) (2 - 7)

¢, = F([x;h_ W, + b,) (2-8)

The LSTM is based on f,c, 1, the i, and ¢, are used to calculate the cell state at the current
step ¢y, as shown in Eq (2-9):

G :frct—l + itEt (2 - 9)

LSTM utilizes the o, and ¢, to compute the hidden state of the current step as shown in Eq
(2-10):

h, = 0,%F(c,) (2-10)

Finally, the hidden state h, is the same as the output given by the LSTM at time t.

LSTM was commonly used for classification tasks, and the softmax layer was a commonly
used classification layer for performing binary classification tasks. The output of the softmax
layer could be interpreted as the estimated probability of the sample belonging to a certain
class. In binary classification tasks, a threshold was applied to convert the probability value
into a specific class label. If the probability was greater than the threshold, the sample was pre-
dicted to belong to the positive class; otherwise, it was predicted as the negative class. In this
experiment, the cross-entropy loss function, which affected the classification layer of LSTM,
was used. Therefore, when the features of the data were linearly inseparable, combining SVM
with LSTM could address the same classification problem from different perspectives. This
combination may have rendered the originally inseparable classification problem linearly sepa-
rable, thereby further improving the classification performance.

3 Experimental results
3.1 Network training

This study is implemented based on Python (3.9.12) using publicly available standard libraries:
pandas (1.5.2), numpy (1.22.4), scikit-learn (1.2.0), torch (1.12), and matplotlib (3.6.2). To
avoid underfitting or overfitting, the DataLoader method is used to randomly shuffle the sam-
ples in the dataset at the beginning of each epoch. This helps the model better learn the data
distribution and improves its generalization ability.

The network training mainly focuses on the hidden layers. In this study, 10-fold cross-vali-
dation is used to evaluate the model’s performance. First, the entire dataset is divided into 10
parts, each of which is used as a training set in turn, with the rest used as a test set. Then, the
dataset undergoes 10 rounds of training, and during each training loop, an internal epoch is
used for multiple rounds of training. The training set is divided into small batches for training,
and the model’s parameters are updated through backpropagation and the Adam optimizer.
After the training is completed, the penultimate layer output of the LSTM is extracted as a fea-
ture vector. These feature vectors and the test set are used for training, prediction, and accu-
racy calculation. Finally, after each round of validation, the accuracy is stored in a list.

This experiment conducts comparative tests on multiple models with the same hyperpara-
meter settings. The specific settings are as follows: the training epoch is 300, the initial learning
rate is 0.001 [17], the batch size is set to 6, and the optimization algorithm used is Adaptive
Moment Estimation (Adam) [18]. The GPU used for training is an NVIDIA GeForce
GTX1060 laptop GPU, with 16GB of memory and 1280 CUDA cores.
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Table 1. CRFS preprocessing results.

RF Species name PCA Species name

1 Bilophila_unclassified 1 Rothia_dentocariosa

2 Bifidobacterium_dentium 2 Bifidobacterium_dentium

3 Ruminococcaceae_bacterium_D16 3 Scardovia_inopinata

4 Alistipes_putredinis 4 Scardovia_unclassified

5 Alistipes_indistinctus 5 Scardovia_wiggsiae

6 Scardovia_wiggsiae 6 Olsenella_unclassified

7 Gemella_haemolysans 7 Bacteroides_coprocola

8 Subdoligranulum_unclassified 8 Bacteroides_sp_3_1_19

9 Peptostreptococcaceae_noname_unclassified 9 Butyricimonas_synergistica
10 Clostridium_leptum 10 Parabacteroides_goldsteinii
11 Clostridium_hathewayi 11 Alistipes_indistinctus
12 Lachnospiraceae_bacterium_3_1_57FAA_CT1 12 Alistipes_putredinis
13 Clostridium_citroniae 13 Alistipes_sp_AP11
14 Bilophila_wadsworthia 14 single_cell_isolate_TM7b
15 Subdoligranulum_variabile 15 Gemella_haemolysans
16 Bacteroides_coprocola 16 Lactobacillus_gasseri
17 Parabacteroides_goldsteinii 17 Lactobacillus_salivarius
18 Lactobacillus_salivarius 18 Leuconostoc_pseudomesenteroides
19 Clostridium_symbiosum 19 Streptococcus_pasteurianus
20 Oxalobacter_formigenes 20 Clostridium_asparagiforme

https://doi.org/10.1371/journal.pone.0310005.t001

3.2 CREFS preprocessing results

To address the issue of redundant information in the data that may lead to suboptimal classifi-
cation, the CRFS preprocessing method is used to retain relevant information and eliminate
irrelevant information. Table 1 presents partial results of feature selection using the CRFS data
preprocessing method.

Table 1 shows that, within the CRES preprocessing method, the Random Forest (RF) and PCA
(Principal Component Analysis) methods share 8 identical microbes among their top 20 features,
which are highlighted in bold, including Bacteroides_coprocola, and Alistipes_putredinis, among
others. Fig 4 illustrates the corresponding importance scores and contribution rates of these 8 shared
features among the top 20 features in the CRFS preprocessing method. Ultimately, these 8 features
are incorporated into the model, indicating their significant role in the prediction process.

3.3 PGPM classifier performance analysis

3.3.1 Evaluation of the performance of different models. In this study, ACC stands for
accuracy, which refers to the proportion of correctly classified instances out of the total num-
ber of instances when using the test set to evaluate a model in classification tasks. However,
ACC has certain limitations and may not fully reflect the performance of a model. For exam-
ple, it does not consider situations of class imbalance, where one class has significantly more
samples than others. As a result, the model’s performance cannot be fully assessed, leading to
the introduction of the Area Under the Curve (AUC) and the ROC curve. The term ncorrect
represents the number of correctly classified records, while ntotal represents the total number
of test data. The calculation formulas are shown as follows in Eqs (3-1) to (3-2):

n
ACC — correct (3 _ 1)
ntotal
TP
TPRate = —— 3-2
TP + FN ( )
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FP
FPRate = —— 3-3
TP N (3-3)

Among them, True Positives (TP) refer to positive samples correctly predicted as positive,
representing the number of positive instances correctly predicted; False Positives (FP) refer to
negative samples incorrectly predicted as positive, representing the number of negative
instances incorrectly predicted; True Negatives (TN) refer to negative samples correctly pre-
dicted as negative, representing the number of negative instances correctly predicted; False
Negatives (FN) refer to positive samples incorrectly predicted as negative, representing the
number of positive instances incorrectly predicted.

To compare the effectiveness of the PGPM proposed in this study with that of other com-
monly used neural networks for processing gut microbiota data, training and testing were con-
ducted on this dataset, and the results are presented in Table 2. Table 2, shows that the
classification performance of the PGPM method overall surpasses that of other commonly
used classification models. For a more intuitive comparison of the differences in Mean Acc,

Table 2. Experimental results of different models.

methodologies Mean Acc AUC ROC
PGPM 0.85 0.92 0.92
DNN 0.55 0.73 0.73
LSTM 0.50 0.58 0.58
CNN 0.53 0.60 0.60
SVM 0.78 0.88 0.88

https://doi.org/10.1371/journal.pone.0310005.t002
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Fig 5. Histograms of the different models and ROC curves of the different models.
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AUC, and ROC among the various models, this study provides bar graphs of the three indica-
tors, as shown in Fig 5A. The ROC curve plot for the PGPM method is illustrated in Fig 5B.

Fig 5A, clearly shows that the PGPM exhibits significant advantages in Mean Acc, ROC,
and AUGC, and the comprehensive performance across all three indicators is notably high.

3.3.2 PGPM ablation experiments. In this experiment, to assess the individual impact of
each module on the model’s predictive ability, ablation experiments were conducted, as shown
in Table 3. By comparing these experiments, we can observe the effects of different modules
on the experimental results. The baseline was set as the LSTM model.

Based on the experimental list in Table 1, the corresponding model structures are con-
structed using the same hyperparameters, experiments are conducted using the same dataset,
and the experimental results of the five methods are compared, as shown in Table 4. The com-
parison line graph is depicted in Fig 6.

From Table 4 and the line graph in Fig 6, it can be observed that as the methods continue to
improve, the experimental results also show consistent enhancement. Comparing the results
between Experiment 1 and Experiment 2, as well as between Experiment 1 and Experiment 3,
it is evident that incorporating a single feature selection method improves the LSTM model’s
classification performance in terms of mean accuracy, AUC, and ROC. This suggests that fea-
ture simplification can reduce model complexity and enhance model performance to a certain
extent.

Comparing Experiment 2, Experiment 3, and Experiment 4, it is apparent that the perfor-
mance of the CRFS module surpasses that of a single feature selection method. Contrasting
Experiment 1 with Experiment 5, it is clear that all metrics have improved. By combining the
LSTM and SVM classification methods, the model’s performance is further boosted.

Comparing Experiment 2, Experiment 3, Experiment 4, Experiment 5, and Experiment 6, it
becomes evident that the contributions of the CRFS module and the PGPM method to the

Table 3. List of ablation experiments.

serial number Description of the experiment

1 baseline (in geodetic survey)
Addition of PCA module to the baseline
Adding RF modules to the baseline
Inclusion of the CRFS module in the baseline
Adding SVM modules to the baseline

6 PGPM

https://doi.org/10.1371/journal.pone.0310005.t003
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Table 4. Experimental results.

Experiment number Mean Acc AUC ROC
1 0.50 0.58 0.58
2 0.64 0.58 0.58
3 0.50 0.53 0.53
4 0.70 0.74 0.74
5 0.80 0.86 0.86
6 0.87 0.92 0.92

https://doi.org/10.1371/journal.pone.0310005.t1004

model’s improvement exceed those of the individual methods, leading to superior overall per-
formance. The experimental results demonstrate that the effectiveness of the PGPM surpasses
previous research efforts. The experimental results consistently prove that the PGPM method
is more effective than the methods used in previous studies.

4 Discussion

The gut microbiota played a crucial role in predicting Parkinson’s disease [19]. Previous stud-
ies had clearly indicated the close relationship between the gut microbiota and Parkinson’s dis-
ease. For example, the study by Bedarf et al. [20] found significant differences in the gut
microbiota composition of Parkinson’s disease patients compared to healthy controls. These
differences were mainly reflected in the abundance changes of specific microorganisms, which
might reveal particular pathophysiological processes of Parkinson’s disease, providing new
clues for its diagnosis and prediction. The core objective of this study was to develop an effi-
cient and accurate prediction method for the early diagnosis of Parkinson’s disease through
in-depth analysis of gut microbiota data. The close relationship between the gut microbiota
and Parkinson’s disease has been widely studied. We propose a differential gut microbiota-
based Parkinson’s prediction method (PGPM) based on deep learning, aiming to capture the
subtle differences in the gut microbiome that traditional machine learning [21] methods
might miss, offering new perspectives and tools for Parkinson’s disease prediction.

In this study, we explored different methods for predicting Parkinson’s patients’ perfor-
mance. Compared to traditional methods (including DNN, LSTM, CNN, and SVM), our pro-
posed method performed better, demonstrating its high capability in Parkinson’s prediction
classification. Precision, AUC, and ROC values were selected as key indicators to evaluate
method performance, and the research results showed that the PGPM method achieved the
best performance. In the comparison of classification performance after feature selection, it
was found that feature dimensionality reduction could simplify the model complexity and
improve model performance to a certain extent. Additionally, the combination of preprocess-
ing methods led to more significant improvements in classification performance.

Our PGPM method achieved significant results in the classification prediction of Parkin-
son’s disease, with a mean accuracy (Mean ACC) of 0.85, and both the area under the curve
(AUC) and receiver operating characteristic curve (ROC) reaching 0.92. These results indi-
cated that by deeply analyzing gut microbiota data, we could accurately distinguish Parkin-
son’s disease patients from healthy individuals, providing strong support for the early
diagnosis of Parkinson’s disease.

Given the high-dimensional feature space and high redundancy of medical data, feature
selection was necessary in data analysis. In this study, using the CRES preprocessing method,
eight gut microbiota features were selected, resulting in higher prediction accuracy for subse-
quent classification, with an increase of about 0.2 compared to single feature selection meth-
ods. This demonstrated the importance of feature selection for disease prediction. A study on
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the gut microbiota of diabetic patients also confirmed this, showing that selected gut micro-
biota features were crucial for the predictive ability of the model [22].

Furthermore, like other classifiers such as DNN, LSTM, CNN, and SVM, when dealing with
high-dimensional feature spaces, redundant features, noisy features, and class imbalance in the
data posed challenges to classification performance. Therefore, in this study, we combined
LSTM with SVM, which improved the accuracy by about 0.3 compared to other methods
(DNN, LSTM, CNN, and SVM). The experimental results also fully demonstrated the effective-
ness of combining feature dimensionality reduction and combined classification models.

Compared to some methods developed for the microbiome in recent years, our method
was simple, robust, and effective. Despite the significant achievements of this study, we
acknowledged certain limitations. Future work would focus on expanding the sample size,
improving result stability, and validating the external applicability and generalizability of this
prediction model in larger independent validation groups. Additionally, we would further
explore the deep relationship between gut microbiota and Parkinson’s disease to achieve
broader applications in personalized medicine.

In conclusion, the Parkinson’s disease prediction model established in this study had
achieved significant results, revealing the potential association between gut microbiota and
Parkinson’s disease. These findings might provide new ideas and methods for the early diagno-
sis and treatment of Parkinson’s disease. Further research could deepen the understanding of
the relationship between gut microbiota and Parkinson’s disease and explore its potential in
personalized medicine.

5 Conclusion

Support Vector Machine (SVM) and other machine learning methods are mainstream
approaches for processing various gut microbiota data. In addition to the large volume of data,
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there are many implicit correlations among the data. Moreover, the complex background of
gut microbiota data makes it challenging for traditional machine learning and LSTM to obtain
accurate features. Furthermore, there is a lack of research on the use of deep learning for classi-
fication prediction using gut microbiota data. Therefore, the PGPM method includes a com-
plete set of methods ranging from feature selection to classification prediction. It accurately
selects relevant features through the preprocessing process and utilizes a classification strategy
combining LSTM-SVM to accomplish the classification prediction task. Overall, PGPM out-
performs existing models and can effectively classify and predict Parkinson’s gut microbiota.
In future research, efforts will continue to accurately capture relevant features and focus on
more precise classification model predictions. Additionally, this method can be extended to
predict other diseases related to the gut microbiota.
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