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Abstract

Timely and accurately estimating rice yields is crucial for supporting food security manage-

ment, agricultural policy development, and climate change adaptation in rice-producing coun-

tries such as Bangladesh. To address this need, this study introduced a workflow to enable

timely and precise rice yield estimation at a sub-district scale (1,000-meter spatial resolution).

However, a significant gap exists in the application of remote sensing methods for govern-

ment-reported rice yield estimation for food security management at high spatial resolution.

Current methods are limited to specific regions and primarily used for research, lacking inte-

gration into national reporting systems. Additionally, there is no consistent yearly boro rice

yield map at a sub-district scale, hindering localized agricultural decision-making. This work-

flow leveraged MODIS and annual district-level yield data to train a random forest model for

estimating boro rice yields at a 1,000-meter resolution from 2002 to 2021. The results revealed

a mean percentage root mean square error (RMSE) of 8.07% and 12.96% when validation

was conducted using reported district yields and crop-cut yield data, respectively. Additionally,

the estimated yield of boro rice varies with an uncertainty range between 0.40 and 0.45 tons

per hectare across Bangladesh. Furthermore, a trend analysis was performed on the esti-

mated boro rice yield data from 2002 to 2021 using the modified Mann-Kendall trend test with

a 95% confidence interval (p < 0.05). In Bangladesh, 23% of the rice area exhibits an increas-

ing trend in boro rice yield, 0.11% shows a decreasing trend, and 76.51% of the area demon-

strates no trend in rice yield. Given that this is the first attempt to estimate boro rice yield at

1,000-meter spatial resolution over two decades in Bangladesh, the estimated mid-season

boro rice yield estimates are scalable across space and time, offering significant potential for

strengthening food security management in Bangladesh. Furthermore, the proposed workflow

can be easily applied to estimate rice yields in other regions worldwide.
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1. Introduction

Rice is the staple food for more than half of the world’s population, constituting 20% of the

world’s food supply [1]. By 2050, the world’s population is expected to exceed 9.8 billion, and a

60% increase in food consumption is anticipated [2]. This growing global demand for food is

underscored by the fact that 90% of the world’s rice is cultivated in developing nations such as

India, China, and Bangladesh [3], emphasizing its critical role in ensuring both regional and

global food security [4].

Rice production in Bangladesh holds a critical place in the country’s agricultural and eco-

nomic landscape, with more than 165 million people in Bangladesh dependent on rice for

their livelihoods, calorie intake, and food security [5, 6]. Furthermore, Bangladesh is a major

exporter of rice [7], which accounts for 70% of the agricultural Gross Domestic Product

(GDP) and one-sixth of the national income in Bangladesh [8].

In recent years, Bangladesh has experienced adverse effects on rice yields due to climate

change, characterized by increased extreme weather events, such as droughts and floods dur-

ing critical phases of rice cultivation [9]. This impact is attributed to the strong dependence of

rice yields on weather conditions throughout the cultivation stages [10]. Moreover, Bangla-

desh’s high vulnerability to climate change, reflected in its seventh-place ranking on the Global

Climate Risk Index, raises significant concerns, especially in agriculture and rice production

[11]. Moreover, Sarker et al., predicted that between 2005 and 2050, rice production in Bangla-

desh will decline by an average of 7.4% every year due to climate change [12]. Likewise, the

National Adaptation Plan of Bangladesh (2030–2050) published by the Ministry of Environ-

ment, Forest and Climate Change (MEFCC), Bangladesh [13], along with the findings from

Kaur el al., highlighted the looming threat posed to this crucial agricultural sector, particularly

rice, by the escalating impacts of climate change [14]. Ghose et al. (2021) recently revealed that

an increase in temperature by 1˚C and rainfall by 1% results in a decrease in aman rice yields

by 33.59% and 3.37%, respectively [15].

The country’s vulnerability to these climatic challenges poses a potential threat to food secu-

rity. It heightens Bangladesh’s susceptibility, impacting livelihoods, economic stability, and

food security at both national and global levels. This will also pose a significant obstacle to the

United Nations Sustainable Development Goals (SDGs), prioritizing achieving zero hunger

and promoting sustainable agriculture by 2030 [12]. To manage food security, it is therefore

important to accurately estimate rice yields, production and trends, which could also signifi-

cantly contribute to efforts to lessen climate-related risks to rice production in Bangladesh.

Hence, accurate and timely statistics on rice yields, and long-term trends could assist the gov-

ernment of Bangladesh in managing food security and contribute to efforts to lessen climate-

related risks to rice production in Bangladesh.

Globally, efforts to quantify rice yield have traditionally focused on field-based sampling

using crop cut surveys, which provide accurate yield estimates [13, 16, 17]. Such field-based

sampling techniques are extensively used by government agencies in Bangladesh to estimate

rice yields for national-level reporting [16, 18]. This involves a systematic selection of represen-

tative rice fields, physical harvesting of rice samples, and measurement and documentation of

grain weights, followed by the extrapolation of these data to broader areas using statistical

methods. However, these techniques cannot provide wide spatial and temporal coverage, and

they are labor-intensive, time-consuming, and subject to sampling bias [19]. As a result, these

methods cause delays in estimating rice yield and impede timely food management decision-

making.

Conversely, remote sensing datasets, either optical or synthetic aperture radar (SAR), have

shown their potential to quantify rice yield globally [20–22]. These datasets employ crop yield
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data based on ground surveys and leverage dynamic crop growth simulation [23, 24], regres-

sion [25, 26], machine learning (ML) [27–29], and deep learning models to estimate rice yield

[30, 31]. Moreover, these models make use of satellite-derived vegetation indices, including

the normalized difference vegetation index (NDVI) [32, 33], enhanced vegetation index (EVI)

[30, 34], soil-adjusted vegetation index (SAVI) [35]. Additionally, they incorporate meteoro-

logical data (rainfall and land surface temperature), soil information, and crop-specific param-

eters to estimate rice yields before the harvesting stage [36].

Similar remote sensing methods are utilized in Bangladesh to estimate rice yield, employing

spectral bands and vegetation indices from optical and SAR images [37–39]. These methods

also include regression-based approaches [40], ML models [41], and deep learning (DL) mod-

els [42]. However, these methods are primarily utilized for research purposes and need to be

integrated into official reporting procedures. In addition, the rice yield maps developed from

these studies need to be updated, and their coverage is limited to particular geographic regions

within the country. Moreover, the rice yield estimation is often conducted at a coarse scale,

typically encompassing districts, divisions, or the entire nation, thus needing more spatial and

temporal precision. Currently, annual boro rice yield statistics are available from inventory

data at the district level; however, no consistent yearly boro rice yield map is available for Ban-

gladesh at a subdistrict spatial scale, such as a 1,000-meter spatial resolution. Due to this limita-

tion, rice trend analyses conducted in other studies [9, 43] are typically done at district and

national scales, rendering them less useful for planning and implementing policies at the

micro-scale (sub-district level).

This study aimed to evaluate the potential of MODIS data and a random forest (RF) ML-

based method to develop a rice yield model for estimating boro rice production in Bangladesh

from 2021 to 2022 at a spatial resolution of 1,000 meters. Specific objectives were to 1) evaluate

RF models for estimating rice yield in Bangladesh, 2) report the accuracy and uncertainty of

boro rice yield estimation by RF models, and 3) understand the spatial and temporal trends of

rice yield in Bangladesh from 2002 to 2021.

2. Methods

2.1 Study area

Bangladesh, a tropical nation with a land area of 148,460 km2, is located in south Asia

between the latitudes of 20˚4400000 and 26˚3705100N and the longitudes of 88˚001400 and 92˚

4000800E (see Fig 1A–1C, [44]). The dominant land use in the country is agriculture (65%),

followed by forests (18%), urban areas (8%), and water bodies (6%). Bangladesh has 64 dis-

tricts (Fig 1B) within eight administrative zones [45]. In addition, the agricultural areas in

the county are classified into fourteen crop zones by the Bangladesh Agriculture Research

Council (BARC, Fig 1B). The majority of land in Bangladesh is flat (with elevations below

10 meters above mean sea level), except for the Chittagong Hill Tracts in the southeast,

where the average elevation ranges between 300 and 1,063 meters. Bangladesh has fertile

agricultural land due to three major rivers—Ganga, Brahmaputra, and Meghna—which

cater to the country’s water needs.

Bangladesh has a tropical monsoon climate favorable for rice cultivation, and 75% of its

agricultural activities involve rice production, which plays a significant role in the country’s

agricultural landscape. The country experiences three distinct rice-growing seasons in a year:

winter (boro, planted from November to February), summer (aus, planted from March to

May), and monsoon (aman, planted from June to October). The dominance of rice cultivation

makes Bangladesh the world’s third-largest rice producer [46, 47].
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Fig 1. Map of the study area in Bangladesh showing a) the location of Bangladesh on the world map, highlighted in the red box,

b) boro rice area published by Tiwari et al., [48], and the sample points from crop cut yield collected for the year 2019–2020 (blue

circle) and 2020–2021 (maroon circle) respectively. The bold black lines represent crop zones, and the narrow gray lines represent

district boundaries. The shapefile reprinted from GADM database under a CC BY license, with permission from Global

Administrative Areas (www.gadm.org), original copyright 2018.

https://doi.org/10.1371/journal.pone.0309982.g001
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2.2 Dataset used

2.2.1. Crop calendar. The Crop Calendar is a tool that provides information on the trans-

plantation (sowing), growing, and harvest times of crops. The growing stage is particularly

important for estimating boro rice yields. The boro rice crop calendar was developed by the

Bangladesh Agriculture Research Council (BARC) and hosted on the Bangladesh Agro-Meteo-

rological Information System (BAMIS) (Fig 2A and 2B). This calendar divides Bangladesh into

fourteen distinct zones called “crop zones.” This crop calendar was employed to identify the

dates of the growing stage for boro rice. These dates were then used to select satellite datasets

that covered the extent of the boro rice crop growing season.

2.2.2. Reference data. District-level rice yield data for boro rice was obtained as published

by the Bangladesh Bureau of Statistics (http://www.bbs.gov.bd/site/page/453af260-6aea-

4331-b4a5-7b66fe63ba61/Agriculture), a government agency in Bangladesh. The data repre-

sented rice yields for each district and were measured in units of metric tons per hectare

(tonn/ha). The district level yield data from 2006 to 2021 from all districts were downloaded

and subsequently employed to train and validate the RF machine learning model. Additionally,

crop yield data for rice were obtained through a collaborative effort involving the International

Maize and Wheat Improvement Center (CIMMYT), the Bangladesh Agricultural Research

Council (BARC), and the Bangladesh Rice Research Institute (BRRI) for boro rice crops. The

crop-cut data measure the yield of specific rice crops in particular fields. This is accomplished

by physically harvesting and weighing the crops to assess their productivity. The crop yield

data was collected during the years 2019–2020 (n = 2,946) and 2020–2021 (n = 1845), specifi-

cally focusing on five districts (Dinajpur, Rajshahi, Khulna, Jashore and Rangpur) within Ban-

gladesh (Fig 1B). These districts were chosen due to the availability of qualified scientific staff

in these districts that could facilitate an ambitious yield measurement program from farmer’s

fields. Unfortunately, other districts were out of scope for grant funds to permit additional

crop yield estimates. This dataset was a validation resource for the rice yield maps developed at

1,000 meters spatial resolution. However, this dataset was not incorporated into the training of

Fig 2. a) The crop calendar of boro rice across all fourteen crop zones of Bangladesh (sourced from https://www.bamis.gov.bd/calendar), b) the unique crop

zones of Bangladesh (https://www.bamis.gov.bd/calendar). The shapefile reprinted from GADM database under a CC BY license, with permission from Global

Administrative Areas (www.gadm.org), original copyright 2018.

https://doi.org/10.1371/journal.pone.0309982.g002
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the RF model because the data needed to encompass all districts and, therefore, lacked variabil-

ity. Moreover, the field collected data struggled to adequately capture the inherent variability

present in rice yield patterns, a factor that could potentially limit the performance of RF regres-

sion models [49].

2.2.3. Satellite data. Remote sensing data were obtained from the MODIS,

MOD09GA.061 product, Terra Surface Reflectance Daily Global data (surface reflectance

band 1–7) at a spatial resolution of 500 m available on Google Earth Engine (GEE) [50]. The

surface reflectance quality assurance band (QC_500m) was employed to identify and exclude

bad pixels (cloudy, hazy pixels) from the surface reflectance dataset. Daily data was used from

January to April from 2002 to 2021. The January to April time frame was specifically selected

as this was the main boro rice growing season in all crop zones in Bangladesh (Fig 2A) [5].

Considering the emphasis on characterizing the overall surface state during broadly defined

growing periods rather than relying on traditional phenological analysis, the daily data were

transformed into 16-day mean composites for each year, resulting in 8 composite images per

year. This was done because crop phenology does not change daily, and previous studies have

used 16-day composite data for rice monitoring-related studies. Furthermore, using 16-day

composites aligns with the methodology employed in previous rice monitoring-related studies

[51, 52].

Vegetation and other indices were calculated, such as NDVI, EVI, Simple Ratio Water

Index (SRWI), Land Surface Water Index (LSWI), Simple Ratio Tillage Index (SRTI), Normal-

ized Difference Tillage Index (NDTI), Crop Residue Cover Index (CRCI), Modified CRC

index (MCRC), SAVI, and Normalized Difference Senescent Vegetation Index (NDSVI)

(Table 1), which are relevant and have shown importance in yield estimation in the past [53,

54]. In addition, the LST_Day_1km band from the MODIS MOD11A1 product was used for

the same period (January to April), from 2002 to 2021. This data provides daily Land Surface

Temperature (LST) at 1,000-meter spatial resolution. Bad pixels were masked using the

QC_Day band to ensure data accuracy, and the LST values were subsequently converted from

Kelvin to degrees Celsius. The mean monthly LST was computed for the period (January to

April 2002 to 2021). The MODIS surface reflectance bands and indices were resampled to a

1000-meter spatial resolution and stacked together with MODIS LST to derive seven surface

reflectance bands, ten indices, and one LST band, equivalent to eighteen bands per composite.

These images were stacked together to contain seven surface reflectance bands, ten indices,

and one LST band, equivalent to eighteen bands per composite. European Space Agency

Table 1. Indices calculated using MODIS bands (B1-B7) which were used to estimate boro rice yields, where MODIS bands relate to indices as follows: B1 = RED,

B2 = NIR1, B3 = BLUE, B4 = GREEN, B5 = SWIR1, B6 = SWIR2.

Indices Full Name Formula References

NDVI Normalized

Vegetation Index

NDVI = (NIR—RED) / (NIR + RED) Gorten et al., [56]

EVI Enhanced Vegetation Index EVI = 2.5 * ((NIR1—RED)/ (NIR1 + 6 * RED—7.5 *
BLUE +1)

Bolton at al., [57]

SRWI Simple Ratio Water Index NIR1/NIR2 Basso et al., [58]

LSWI Land Surface Water Index (NIR1—SWIR1) / (NIR 1+SWIR1) Chandrasekar et al., [59]

SRTI Simple Ratio Tillage Index SWIR1/SWIR2 Hatfield et al., [60]

NDTI Normalized Difference Tillage Index (SWIR1-SWIR2)/ (SWIR1-SWIR2) Memon et al., [61]

CRCI Crop Residue Cover Index (SWIR1 -BLUE)/ (SWIR1 + BLUE) Gao et al., [62]

MCRC Modified CRC index (SWIR1 -GREEN)/ (SWIR1 + GREEN) Bannari et al, [63]

SAVI Soil Adjusted Vegetation Index SAVI = (NIR1-RED) *(1 + 0.5)/(RED+NIR1 + 0.5) Venancio et al., [64]

NDSVI Normalized Difference Senescent Vegetation Index (SWIR1—RED)/(SWIR1 + RED) Hill et al., [65]

https://doi.org/10.1371/journal.pone.0309982.t001
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(ESA) World Cover 2020, with an overall accuracy of 75% and a spatial resolution of 10 m

[55], was used to generate a cropland mask. The cropland mask was resampled to 1,000 meters

to match the MODIS resolution. Subsequently, it was used to exclude non-agricultural pixels

from MODIS composite data and indices, which could introduce noise into the RF models.

2.3 Methodology

The methodology comprises three key steps: the establishment of the RF model, an evaluation

of accuracy, and an analysis of yield trends.

2.3.1 Setting up, random forest machine learning model. An RF machine learning

model was employed to estimate the boro rice yields (Fig 3). RF is a supervised ensemble

method that leverages a collection of decision trees and utilizes the bagging technique (boot-

strap and aggregation). Instead of relying solely on individual decision trees, the RF approach

aggregates the results of multiple trees to determine the final output [65].

We chose the RF model because it has demonstrated its capabilities in crop yield estimation,

including rice yield estimation [66–68]. This is due to the RF model’s ability to capture the

nonlinear relationships between biophysical parameters (input data) and crop yields more

effectively than other ML-based models. Additionally, RF is robust to noise, which is crucial

since satellite data and crop yield data often contain noisy information that can lead to inaccu-

rate estimates. Furthermore, RF helps prevent overfitting. These factors make the RF model an

ideal choice for crop yield estimation. Zonal statistics were computed to determine the dis-

trict’s mean values, considering both spatial and temporal dimensions, for all the bands in the

stacked composite (MODIS bands and indices). This was done within 16-day composites and

monthly LST measurements from January to April, covering 2006 to 2021 (with input vari-

ables = 148) across all 64 districts.

The variables in the stacked composites were used as input variables ’x’ for the RF model.

Simultaneously, the corresponding district-level boro rice yield data from 2006 to 2021, as pub-

lished by BBS, were employed as the output variable (’y’) in the RF model. In total, 960 obser-

vations were used in the RF model for training and testing.

Initially, the RF model was fitted with all 148 input variables (‘x’) and 960 observations in

the stacked composites to perform hyperparameter tuning, employing the grid search method

[66]. Hyperparameter tuning was used to enhance the effectiveness of an RF regression model.

This process encompasses systematically adjusting critical model parameters to improve its

predictive capabilities while minimizing the risk of overfitting. The parameters subjected to

this optimization included variables such as the number of trees, tree depth, and the rate at

which features are subsampled. Upon identifying the optimal parameters, the RF model was

rerun, and model training and testing were carried out using the k-fold cross-validation tech-

nique to estimate district-level rice yields. However, we also test additional cross-validation

techniques like hold-one-year-out, leave-one-out, and 70:30 train-test splits (S2 Table). A

value of k = 5 was used in the k-fold validation technique, where k denoted the number of sub-

sets into which the dataset was divided [67]. During each iteration, distinct subsets were desig-

nated as the test set, while the remaining data served for model training. After evaluating the

performance of the RF model using accuracy metrics (Section 2.3.2), we calculated the Gini

index to evaluate the effectiveness of splits and determine the relative importance of predictor

variables in explaining the variability of the target variable. The top 30 input variables with the

highest rankings in the Gini index were selected to re-run the RF forest regression model. The

selection process for these 30 input variables involved iterative steps of the RF model, incre-

menting by five each time, starting from the top 10 variables. The model accuracy remained

consistent with the initial accuracy (% RMSE) achieved using all 148 input variables. Finally,
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the trained RF model and the top 30 input variables were used to estimate boro rice yield maps

from 2002 to 2021.

2.3.2 Accuracy assessment. Standard accuracy metrics, widely utilized in remote sensing

studies, were used to assess the accuracy of the RF regression model [21, 68]. These included root

mean squared error (RMSE), percentage root mean squared error (% RMSE), mean square error

(MSE), and coefficient of determination (R2). These statistical metrics were employed in the

5-fold cross-validation technique, and the mean values of these metrics were calculated to evalu-

ate the accuracy of the RF model in 5-fold cross-validation. In addition, we calculated the uncer-

tainty associated with the estimated boro rice yield map by estimating the uncertainty of

predictions made by an RF ensemble. This estimation appears to be based on the standard devia-

tion of predictions from individual trees in the ensemble [69]. Furthermore, the accuracy of the

sub-district scale yield map (1,000 m spatial resolution) was assessed for the years 2019–2020 and

2020–2021 using crop cut yield data and the same statistical metrics (Fig 1B).

2.3.3 Trend analysis. A trend analysis was conducted on the yearly RF-modeled boro rice

yield from 2002 to 2021, employing the modified Mann-Kendall (MK) trend analysis method.

Modified MK is a non-parametric trend test used to detect trends or monotonic patterns in

time series data by adjusting for autocorrelation present in the data. The modified MK test was

chosen over the MK trend test due to its susceptibility to positive annual autocorrelation in

data [70]. This susceptibility heightens the risk of detecting trends that might not truly exist,

thus favoring the modified version for enhanced accuracy [71]. Additionally, we calculated sig-

nificant upward and downward trends at a 95% confidence interval (p-value< 0.05). This

analysis enabled us to determine the areas with significant increasing and decreasing trends in

boro rice yield.

3. Results

3.1 Hyperparameter tuning results and Gini index

The importance of all input variables in the RF model, computed using the Gini index, is

shown in S1 Table. The 30 input variables that exhibited the highest Gini index values in the

RF model are given in (Fig 4). Indices calculated from the February composites (SRWI, LSWI,

Surface reflectance band 6) appeared high in the ranking, indicating their strong influence on

the RF regression estimations. In contrast, data from April showed a lower Gini index, suggest-

ing that they have a lesser impact on the target variable (boro rice yield) than February data.

Fig 3. A flow chart of the methodology applied to estimate boro rice yield in Bangladesh. The process includes stages for gathering input data (brown),

preparing the data (mustard), modeling the yield (sea green), estimating yield and assessing accuracy (gray), and conducting trend analysis (dark green).

https://doi.org/10.1371/journal.pone.0309982.g003
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3.2 Accuracy assessment

3.2.1 District-level boro rice yield. We used a range of accuracy metrics when employing

various input variables in the RF regression model with k-fold validation based on the Gini

index ranking. These metrics encompassed an R2 value ranging from 0.43 to 0.57, MSE rang-

ing from 0.12 to 0.09 ton/hectare, RMSE ranging from 0.31 to 0.35 ton/hectare, and percentage

Fig 4. Random forest top 30 variable importance utilizing all input variables, including the MODIS bands, spectral indices, and land

surface temperature. In the naming convention for MODIS bands and indices, the term ’Early’ pertained to the 15-day composite image

representing the first half of the month (days 1–16), while ’Late’ pertained to the second half of the month (days 17–31).

https://doi.org/10.1371/journal.pone.0309982.g004
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RMSE spanning from 8.08% to 9.09% (Table 2). In the scenario where all input variables were

taken into account (RF all inputs), the RF model demonstrated the lowest Mean Squared Error

(MSE) (0.09 ± 0.02 ton/hectare), Root Mean Squared Error (RMSE) (0.31 ± 0.03 ton/hectare),

and Percentage RMSE (% RMSE) (8.08). Conversely, when focusing solely on the top 10

inputs, the RF model exhibited high MSE 0.12 ± 0.02 ton/hectare), RMSE (0.34 ± 0.03 ton/

hectare), and % RMSE (9.03%). Regarding the coefficient of determination (R2) values, the RF

model achieved its highest R2 (0.57 ± 0.07) when utilizing all input variables, while the lowest

R2 values (0.45 ± 0.06) were observed when considering only the top 10 inputs. Additionally, a

consistent trend was observed; as the number of input variables increased, particularly those

with higher Gini index rankings, there was a reduction in % RMSE (decreasing from 9.03% to

8.08%), RMSE (decreasing from 0.35 to 0.31 ton/hectare), and MSE (going down from 0.12 to

0.09 ton/hectare), accompanied by an increase in R2 values (rising from 0.45 to 0.57).

For the RF model utilizing the top 30 inputs, the values of MSE (0.10 ton/hectare), RMSE (0.31

ton/hectare), % RMSE (8.17%), and R2 (0.55) exhibited minimal change compared to the RF model

incorporating all inputs, which had values of MSE (0.09 ton/hectare), RMSE (0.31 ton/hectare), %

RMSE (8.08%), and R2 (0.57). This suggested that not all input variables were necessary for accu-

rately estimating rice yields. Furthermore, the analysis revealed that images taken in February, Janu-

ary, and March held significant importance within the RF regression model (Fig 4). Utilizing images

from these months facilitated midseason estimation of boro rice yield. Additionally, we found that

the accuracy of the Random Forest regression method is not affected by employing different cross-

validation techniques (hold-one-year-out, leave-one-out, and 70:30 train-test splits, S2 Table).

3.2.2 Crop cut boro rice yield. When employing the crop cut data, accuracy metrics were

computed using RF (top 30 inputs) separately for five districts in Bangladesh. The MSE ranged

from 0.52 to 0.85 ton/hectare, while RMSE spanned from 0.72 to 0.92 ton/hectare, and the per-

centage RMSE ranged between 11.12% and 14.22% for 2019–2020. Conversely, during 2020–

2021, the MSE ranged from 0.54 to 0.98 ton/hectare, while RMSE spanned from 0.73 to 0.99

ton/hectare, and the percentage RMSE ranged between 11.45% and 15%. Furthermore, the

lowest percentage of RMSE was observed in Faridpur (11.45%) for 2020–2021 and Khulna

(11.12%) for 2019–2020. In contrast, the highest percentage of RMSE was noted in Rangpur

(15%) in 2020–2021 and Dinajpur (14.22%) in 2019–2020. While the majority of districts

exhibited comparable percentage RMSE values, the variance in percentage RMSE between the

years 2019–2020 and 2020–2021 was least for Rangpur (2.28%) and Rajshahi (2.61%) (Fig 5).

3.3 Rice yield maps

Rice yield maps were produced from 2002 to 2021 (Fig 6). This was accomplished using a

trained RF model that utilized the first 30 input variables with the highest variable importance

(Gini index, Fig 4). Most of the areas in Bangladesh showed boro rice yield between 2–4 tons/

hectare across years. Relatively low boro rice yield (0–2 ton/hectare) areas were observed in the

northeast and southern regions of the country. Some areas randomly distributed across

Table 2. Accuracy of the random forest regression model with various input variables (all inputs vs. top 30 inputs).

Model Configuration Mean Square Error (MSE) (ton/hectare) RMSE (ton/hectare) % RMSE R- Square (R2)

RF (top 10 inputs) 0.12 ± 0.02 0.35 ± 0.03 9.23 0.43 ± 0.06

RF (top 15 inputs) 0.10 ± 0.02 0.32 ± 0.03 8.4 0.53 ± 0.07

RF (top 20 inputs) 0.10 ± 0.02 0.31 ± 0.03 8.26 0.54 ± 0.10

RF (top 25 inputs) 0.10 ± 0.02 0.31 ± 0.03 8.22 0.54 ± 0.07

RF (top 30 inputs) 0.10 ± 0.02 0.31 ± 0.03 8.14 0.55 ± 0.07

RF (all inputs) 0.09 ± 0.02 0.31 ± 0.03 8.08 0.57 ± 0.07

https://doi.org/10.1371/journal.pone.0309982.t002
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Bangladesh showed high yield values (4–6 tons/hectares). In addition, boro rice yields observed

in later years (2018–2021) were greater than yields from the early years (2002–2005). A persis-

tent pattern of low yield values was noted in Bangladesh’s northeastern and southern regions

throughout the timeline. Mean (2002–2021) uncertainty of the estimated boro rice yield was

also calculated. The average uncertainty was within the range of 0.40 to 0.45 tons per hectare,

and this uncertainty was distributed randomly across Bangladesh (Fig 8).

3.4 Trend analysis maps

3.4.1 Boro rice yield trend. A trend map was derived for rice yields from 2002 to 2021

using the modified MK trend test (Fig 7). The boro rice yield map was derived using a 95%

confidence interval (CI) with a significance level of p< 0.05. In Bangladesh, there has been an

increase in boro rice yields across most regions, contributing to 23.36% of the rice-planted

area. However, several specific districts (Natore, Kishoreganj, Netrokona, Khulna, Feni,

Dhaka, Narayanganj, Sirajganj, Sylhet, Sunamganj, Barguna, Patuakhali) have exhibited hot-

spots with declining trends in boro rice yields, contributing to 0.11% of the rice-planted area.

Conversely, 76.51% of the randomly distributed rice-planted area in Bangladesh shows no

trend in boro rice yields. The declining yield trend was not captured when the modified MK

trend test was applied to district-level yields (S1 Fig).

4. Discussion

4.1 Performance of RF models for boro rice yield estimation

The RF regression exhibited high accuracy (%RMSE = 8.08%, R2 = 0.57) when predicting rice

yields by utilizing all input variables using reported boro rice yields. Interestingly, even when

Fig 5. District-wise accuracy matrices of the random forest model computed using crop cut points collected for 2020 and 2021, including a) the Root Mean

Squared Error (RMSE), b) the Mean Square Error (MSE), and c) the percentage Root Mean Squared Error (%RMSE).

https://doi.org/10.1371/journal.pone.0309982.g005
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reducing the input variables to 30, the RF regression achieved a %RMSE of 8.17% and R2 =

0.55 when validation was done using district-level yearly data from 2006–2021 (Table 2).

These 30 input variables included data from images collected in January, February, and

March, indicating the feasibility of mid-season boro rice yield estimation (Fig 3). This

approach provides a sufficient lead time of 1–2 months before boro rice yield can be reported,

which could significantly contribute to the decision-making process related to food security.

Uncertainty in the boro rice yield estimation varied between 0.40–0.45 tons/ hectares (Fig 8)

and could be attributed to multiple factors. Firstly, it may result from errors in the district-

level yield data reported by the Bangladesh Bureau of Statistics (BBS) from 2007 to 2021. These

yields were utilized in the RF model and obtained through farmer interviews or crop cutting.

Secondly, using a one-year agriculture mask, derived from the 2020 ESA land cover map,

assumed that all crops planted in agricultural regions were rice. However, other crops were

also present, albeit covering less than 10% of the area, and they can influence surface reflec-

tance values, potentially introducing noise into the RF model. Thirdly, interannual variations

from 2006 to 2021 in the agriculture mask could also introduce uncertainty into the RF model

results. A rice crop calendar was used to divide Bangladesh into fourteen crop zones, each with

unique rice sowing, peak, and harvest times. However, it is important to note that there were

likely variations in the crop calendar at the district level, leading to differences in the timing of

sowing, peak growth, and harvest for rice crops. Therefore, these district-level variations in the

rice crop calendar must also be considered when accounting for uncertainty in rice yield

estimations.

Fig 6. Boro rice yield (2002–2021) estimation utilizing MODIS data and a trained random forest model with 30 input variables having high importance.

The shapefile reprinted from GADM database under a CC BY license, with permission from Global Administrative Areas (www.gadm.org), original copyright

2018.

https://doi.org/10.1371/journal.pone.0309982.g006
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4.2 Validation of boro rice yields using crop cut data

When the estimated rice yields were validated using district-level crop cut data collected for

the years 2019–2020 and 2020–2021, the % RMSE increased from 8.17% to 12.96%. This

increase in % RMSE by 4.79% could be attributed to several factors. Firstly, these points might

not have been accurately sampled from the correct locations, possibly due to uncertainties dur-

ing the crop-cut experiments. Additionally, it’s important to note that MODIS data and other

biophysical parameters have a coarser spatial resolution, leading to mixed pixels within the

rice fields [72]. Despite the coarser spatial resolution, the effects of mixed pixels would contrib-

ute less compared to uncertainties in collecting crop-cut data, as rice fields are homogeneously

distributed, with 90% of the plantation being rice in Bangladesh.

Rajshahi and Rangpur exhibited high variability in % RMSE (variation of %

RMSE = 2.44%) for the years 2019–2020 and 2020–2021. This variability is primarily due to

the different number of samples used during these two years. Variations in sample size, as well

as differences in sampling design, can significantly impact the accuracy of satellite-based crop

yield estimation [73]. For Rajshahi, 884 crop cut samples were used for 2019–2020 and 58 for

2020–2021, and for Rangpur, 839 samples for 2019–2020 and 172 samples for 2020–2021 were

used. On the other hand, the districts that have nearly the same number of crop cut samples

(average percentage difference in sample points = 25.79%) show less variation (average

Fig 7. Results of a rice yield trend analysis across Bangladesh, including a) the magnitude of the modified MK score for rice yield trend from 2002–2021 with

95% CI (p value<0.05) and b) the classified map showing areas with increasing (green), and decreasing (orange) boro rice yield trends (2020–2021). The

shapefile reprinted from GADM database under a CC BY license, with permission from Global Administrative Areas (www.gadm.org), original copyright 2018.

https://doi.org/10.1371/journal.pone.0309982.g007
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variation % RMSE = 0.27%) in % RMSE. Khulna is an exception where there was an exception-

ally high difference in the number of points between the two years (average percentage differ-

ence in sample points = 306%), and the percentage RMSE difference was 0.84% (Fig 5).

Fig 8. Mean uncertainty of boro rice yields estimated by random forest model from 2002–2021. The shapefile reprinted

from GADM database under a CC BY license, with permission from Global Administrative Areas (www.gadm.org), original

copyright 2018.

https://doi.org/10.1371/journal.pone.0309982.g008
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Improvements to the field sampling strategy could lead to better satellite-based crop yield esti-

mation [68, 73, 74]. In this study, boro rice crop yield data was collected from five districts in

Bangladesh—Dinajpur, Rajshahi, Khulna, Jashore, and Rangpur (Fig 1B)—due to the availabil-

ity of data in these regions. Data from other districts were beyond the scope of the grant fund-

ing and therefore could not be included. However, in the future, data from additional districts

could be collected and used for validation in a similar manner.

4.3 Comparison of rice yields with previous studies

The accuracy of rice yield estimation was compared with data from previous studies. For

example, Alam et al. 2019 utilized various regression methods (lasso, decision tree, ordinary

linear regression) to estimate yield in specific regions of Bangladesh, achieving a high mean R2

of 0.64 between reported and estimated boro rice yield in contrast to our study where the R2

was 0.56. However, it’s worth noting that they did not report RMSE, an essential statistical

parameter for evaluating the uncertainty in rice yield estimation. Furthermore, their estima-

tion of boro rice yield was conducted at a coarser spatial scale, specifically at the division level,

in contrast to the 1,000 m rice yield maps developed herein. Similarly, Mosleh et al., used

MODIS data and a regression method to estimate yield for 2010–2012, employing linear

regression, and found the RMSE and R2 to be 0.25 Mton/ha and 0.81, respectively [38]. How-

ever, they estimated boro rice yield at the district level and for only two years (2010–2012), so

the approach’s applicability may be questionable for yield estimates over longer periods. In the

study by Islam et al., Sentinel 2 data were employed at the sub-district level to predict yields in

the northeastern region of Bangladesh using an Artificial Neural Network (ANN) approach

[42]. The study reported R2 values of 0.83 between measured and modeled yields. It is worth

noting that their model contained region-specific characteristics, suggesting potential limita-

tions when applied to other regions within Bangladesh. Furthermore, the analysis was based

on data spanning only three years (2017–2019), which could introduce uncertainties when

estimating yields over longer periods. While other studies have achieved better model perfor-

mance statistics, the present study is the first to map rice yield across Bangladesh at a 1,000 m

spatial resolution over a period spanning two decades. This mapping was further validated

using reported district-level yields and crop-cut sample points collected over two years in five

districts. The uncertainty of the boro rice estimates was also quantified in this study, a gap that

was not addressed in the previous studies.

The estimated boro rice yield trends were also compared with previous studies [43, 75–77].

Boro rice yield showed an increasing trend from 2002–2021 for most of the areas, which others

demonstrated [78–80]. The increasing trend in boro rice production could be attributed to

hybrid varieties with shorter crop cycles compared to local rice. This could result in a higher

boro rice yield (6.0–7.5 t/ha), provided sufficient water available for irrigation and optimal air

temperatures during the boro growing season [43]. In this study, negative trends in boro rice

yields were observed in some areas, potentially attributed to the adverse effects of temperature,

as indicated by previous research [12, 81]. Whereas the declining rice yield trend in the coastal

region could be attributed to saltwater intrusion, which harms rice yields, as brought up by

Islam et al. [82]. The expected impact of climate change is even more concerning [83], with

projected average boro yield reductions of over 20% and 50% by the years 2050 and 2070,

respectively [76].

4.4 Research applicability

Various efforts have been made in the past to estimate boro rice yield in Bangladesh using

remote sensing satellites and biophysical parameters [37–39, 84]. However, these studies were
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typically limited to specific regions of Bangladesh, often with coarser spatial resolution and

covering only a year at the district or sub-district level. Furthermore, these studies relied on

regression models for yield estimation, which can’t capture the non-linear relationship

between independent and dependent variables.

In contrast, the present study utilized remote sensing data and machine learning, specifi-

cally an RF model, to estimate yields at a sub-district scale (1,000 m spatial resolution), span-

ning 2002 to 2021. The investigation has shown promising results with a low root mean square

error (%RMSE = 8.07%). This study can be valuable for the Government of Bangladesh to esti-

mate rice yields for future years. Additionally, the government can use this information to cre-

ate detailed maps showing areas with increasing or decreasing boro rice trends and

temperature and rainfall trends. This data can inform decisions to enhance boro rice produc-

tion in the near future and adjust boro rice crop calendars to adapt to climate change. Further-

more, the boro rice yield map can help identify areas where drought-tolerant rice varieties

could be introduced to boost boro rice production. Moreover, the Bangladesh Bureau of Statis-

tics (BBS) could integrate this innovative rice mapping framework into their conventional

boro rice yield estimation system to develop an automated national rice yield estimation and

monitoring system, thereby contributing to the advancement of smart agriculture in

Bangladesh.

5. Conclusion

In conclusion, spectral bands and vegetation indices derived from time-series satellite imagery

(MODIS) were used along with an RF machine learning method to estimate boro rice yield at a

sub-district scale (1,000 m spatial resolution). The methodology provided boro rice yield esti-

mates during the peak season (before harvest) in Bangladesh’s heterogeneous and diversified

cropping systems. The spectral bands and indices, such as LSWI, SRWI, NDVI, and SAVI, as

well as surface reflectance bands 2, 5, 6, and 7 from January, February, and March, exhibited

higher rankings in the Gini index, indicating their importance in the RF model for boro rice

yield estimation.

The approach, which relied on harnessing district-level reported yields and satellite data

(MODIS), showed promising results (% RMSE = 8%) and proved to be effective in estimating

boro rice yields at a sub-district scale (1,000 meters spatial resolution). Additionally, the boro
rice yield trend observed from 2002 to 2021 in this study provided valuable insights into areas

with decreasing and increasing yield trends. Furthermore, maps depicting rainfall and temper-

ature trends for other studies could help identify regions where borfo rice yields are currently

affected and pinpoint areas where rising temperatures and rainfall trends may negatively affect

future boro rice yields. The methodology can provide independent, evidence-based informa-

tion on boro rice yield estimates (winter rice), which is useful for stakeholders in Bangladesh

for planning and implementing present and future policies related to food security

management.

6. Future work

A 2021 agriculture mask, derived from an ESA land cover map, was utilized. This mask was

particularly effective because 80–90% of the agricultural areas consisted of boro rice, which

varies annually (Bangladesh Bureau of Statistics, 2020) [85]. However, this study used training

data from different years (2006–2021) to estimate rice yields from different years (2002–2021).

Therefore, using a single-year crop mask could introduce errors in estimating rice yield. In the

future, unique rice masks should be used for each growing season [48, 86], which could reduce

uncertainty in rice yield estimation. Future studies, however, could use Bangladesh’s micro-
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scale agroecological zone classifications (http://apps.barc.gov.bd) to improve the accuracy of

rice mapping, provided rice yield data is available from sub-district scales or crop-cut methods.

In this study, crop cut data from five districts were utilized for validation of estimated rice

yields. However, following the approach discussed in this study, crop cut data from other dis-

tricts could also be collected in the future to enhance the validation process.

High-resolution satellite data, such as Sentinel-2, could also generate high-resolution rice

yield maps (10m). Implementing deep learning models with Long Short-Term Memory

(LSTM) nodes, which excel at handling long-term dependencies and possess memory reten-

tion capabilities, could also improve rice yield estimates. However, substantial data are

required to adequately train deep neural network models [87]. Our future work also aims to

quantify the impact of climate change on boro rice production in Bangladesh. The boro rice

yield maps generated for two decades could be instrumental in identifying regions where boro
rice yields are affected by temperature and rainfall during different growing stages. Addition-

ally, they can help pinpoint areas where boro rice yields might be negatively affected by rising

temperature and rainfall trends in the near future.
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