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Abstract

Internet of things (loT) facilitates a variety of heterogeneous devices to be enabled with net-
work connectivity via various network architectures to gather and exchange real-time infor-
mation. On the other hand, the rise of |oT creates Distributed Denial of Services (DDoS) like
security threats. The recent advancement of Software Defined-Internet of Things (SDIoT)
architecture can provide better security solutions compared to the conventional networking
approaches. Moreover, limited computing resources and heterogeneous network protocols
are major challenges in the SDIoT ecosystem. Given these circumstances, it is essential to
design a low-cost DDoS attack classifier. The current study aims to employ an improved fea-
ture selection (FS) technique which determines the most relevant features that can improve
the detection rate and reduce the training time. At first, to overcome the data imbalance
problem, Edited Nearest Neighbor-based Synthetic Minority Oversampling (SMOTE-ENN)
was exploited. The study proposes SFMI, an FS method that combines Sequential Feature
Selection (SFE) and Mutual Information (M) techniques. The top kcommon features were
extracted from the nominated features based on SFE and MI. Further, Principal component
analysis (PCA) is employed to address multicollinearity issues in the dataset. Comprehen-
sive experiments have been conducted on two benchmark datasets such as the
KDDCup99, CIC I0T-2023 datasets. For classification purposes, Decision Tree, K-Nearest
Neighbor, Gaussian Naive Bayes, Random Forest (RF), and Multilayer Perceptron classifi-
ers were employed. The experimental results quantitatively demonstrate that the proposed
SMOTE-ENN+SFMI+PCA with RF classifier achieves 99.97% accuracy and 99.39% preci-
sion with 10 features.

1 Introduction

The Internet of Things (IoT) infrastructure is constantly expanding, and already has billions of
physically connected gadgets [1, 2]. Due to the heterogeneity characteristics of the devices,
they have severe security flaws. As a consequence, the prevalence of the IoT has greatly
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increased the number of cyber attacks globally [3]. IoT networks have several characteristics,
including scalability, availability, efficiency, and reliability. As the size of the network grows,
the above-mentioned constraint should be maintained. Software-defined networks (SDN)
increase the flexibility and adaptability of networks. IoT networking is an architecture that effi-
ciently abstracts numerous network layers [4, 5]. By enabling businesses and service providers
to react quickly to shifting business requirements, SDN aims to enhance network control. IoT
network with the supervision of SDN called SDIoT, assists in resource management and keep
of network functionalities without compromising network performance [6].

Cyber attacks have recently targeted several IoT networks; for instance, on October 21,
2016, a DDoS attack utilizing Mirai’s Botnet impacted Dyn Server, a corporation that manages
alarge portion of the Internet DNS infrastructure in America [7]. Major websites like Amazon,
Netflix, Spotify, PayPal, and Twitter in the US and Europe are affected by these attacks. This
attack was discovered by cybersecurity researchers at Trend Micro and was affecting 122,069
IP cameras across the globe [8]. Recent cyber attacks on IoT networks have caused significant
device damage, which served as the motivation for our study. To protect from sophisticated
cyberattacks, it is on the top of the priority to quickly deploy intelligent solutions in IoT-based
applications. Therefore, SDIoT-like new approaches need to be acknowledged for the DDoS
attacks problems.

In the SDIoT, all IoT-enabled devices including smart watches, smartphones, smart hospi-
tals, and smart vehicles constantly generate a large volume of data from the end users. All these
heterogeneous services must be supported within a common architecture. According to the
International Telecommunication Union Telecommunication Standardization Sector (ITU-
2015) [9], the architecture of an IoT system should be organized into three layers: a) a sensing
layer, containing all essential protocols for implementing data sensing units in IoT applica-
tions; b) a network layer, responsible for supporting all communication technologies; and c)
an application layer, incorporating application support services, data service APIs, etc.

Fig 1 demonstrates an SDIoT scenario which has been inspired by work presented in [10],
where authors introduced an energy-aware architecture utilizing a decentralized approach
with blockchain and SDIoT scenarios to address various issues faced by smart society.
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Fig 1. A typical SDIoT scenario.
https://doi.org/10.1371/journal.pone.0309682.g001

PLOS ONE | https://doi.org/10.1371/journal.pone.0309682 October 17, 2024 2/29


https://doi.org/10.1371/journal.pone.0309682.g001
https://doi.org/10.1371/journal.pone.0309682

PLOS ONE

Enhancing DDoS detection in SDIoT through effective feature selection with SMOTE-ENN

As demonstrated in the figure, a communication network is formed by all switches, and
they act as the forwarding plane of the SDN network. This plane is responsible for forwarding
the data from the IoT devices. The SDIoT controller manages each base station and is respon-
sible for maintaining the security of the entire communication network. Most of the anomaly
detection solutions for SDN have used machine learning (ML) and knowledge-based tech-
niques to identify the attack [9-11]. The success of the ML classifiers sincerely depends on
how accurately the anomaly traffic is detected [12]. In a real-time network, selecting key fea-
tures from the data is important to make the classifier more sophisticated and effective for the
identification of malicious attacks. To effectively reduce the amount of data, feature selection
techniques can be employed in data pre-processing [13, 14].

The feature selections are of three categories such as filter method, wrapper method, and
embedded method [15]. Here, the authors have implemented the wrapper methods. This
method can remove noise data, and redundant and less important features from the dataset.
Improved feature selection mechanism enhances both execution speed and accuracy [16]. As a
result, the developer can construct effective models to detect DDoS attacks in real-time net-
works with fewer computational resources and prediction latency. Like feature selection, vari-
ous feature reduction techniques such as principal component analysis (PCA), Linear
Discriminant Analysis (LDA), and multidimensional scaling can be used for data preprocess-
ing. These methods transform the original features into a new set of features [17].

This study suggests the following contributions, taking into account the necessity for
advanced DDoS classification with low latency capability in an SDIoT network environment.
The major contribution of this work can be summarized as follows:

o This work aims to develop a lightweight multi-class DDoS attack solution using improved
FS selection techniques and ML algorithms. The feature selection method is employed to
improve the intrusion detection rate and reduce the training time.

o To overcome the imbalance nature and over-sampling bias in the dataset, SMOTE- Edited
Nearest Neighbor (ENN) is being utilized.

The balanced data is used as an input for the wrapper-based FS technique and filter-based FS
technique separately. The study proposes SEMI that combines the advantages of both SFE
and Mutual Information techniques. Top k common features were extracted from the nomi-
nated features based on SFE and MI. Further, PCA is employed to address multi-collinearity
and redundancy issues.

For classification purposes, five different classifiers such as Decision Tree, K-Nearest Neigh-
bour, Gaussian Naive Bayes, Random Forest, and Multilayer Perceptron are employed.

The performance evaluation was conducted on benchmark datasets such as: KDDCup99
and the recently released CIC I0T-2023 dataset. A multiclass comparison and computational
complexity analysis were made on the test dataset.

1.1 Background

Most of the anomaly detection solutions for SDN have used machine learning and knowledge-
based techniques to identify the attack [18]. The success of the classifiers depends on how
accurately they can predict the attack traffic. In a real-time network, timely measurements are
the key factor. As a result, selecting prime features from the data is important to make the clas-
sifier more sophisticated and effective for the identification of attack traffic [12]. The SDN
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controller handles all application communication and networking equipment. Due to north-
bound interfaces, the controller will communicate with applications such as network monitor-
ing, flow management, network management, firewall, load balancer services, and DDoS
attack detection systems [19]. A southbound interface, such as the SDN OpenFlow protocol,
enables the controller to communicate with particular network devices in the data plane

[20, 21]. Using these southbound protocols, the controller can arrange the network devices
and select the optimal network connectivity route for application traffic. In research, there are
many datasets used for DDoS§ attack prediction, here the author used the KDDCup99 dataset
for predicting DDoS attacks with SDIoT [22]. Various Machine Learning and Deep Learning
based algorithms for predicting DDoS attacks were developed in the given context. The prob-
lem of an imbalanced dataset is not taken into consideration by many researchers, who instead
concentrate on feature selection strategies and classification algorithms [23]. The accuracy of
the classification algorithm is greatly affected by the issue of class imbalance. Additionally, a
lot of attributes are needed for prediction when the data is unbalanced. This certainly makes
the solution computationally complex, making it unusable in a real-world situation. This con-
siderably increases the computing complexity of the solution, rendering it unsuitable for use in
a real-world setting [24].

Furthermore, in order to decrease computing while maintaining reasonable accuracyj, it is
necessary to update the current feature selection techniques. Similarly, to this, improved classi-
fier results are required to generate reliable outcomes. In summary, the prediction of attack
traffic in a real network like SDIoT unified machine learning technique is needed. To add this
data balancing, feature selection, and classification improvement need to be carried out
systematically.

The rest of the paper is divided into five sections. Section 2 briefly discusses the pre-existing
research work and briefly provides theoretical and mathematical explanations about DDoS
and ML techniques. In section 3, the authors have discussed the proposed methodology, data-
sets and PCA, and various feature selection methods. Section 4 contains the result analysis and
presents the evaluation. Section 5 concludes the paper with future scope.

2 Related work

In this section, we briefly discuss existing research about feature selection for DDoS attack
detection in both SDN and IoT Networks.

Using various data sets and approaches, researchers have suggested multiple algorithms in
order to predict DDoS attack Detection with networks. Razan et al. [23] proposed a multi-class
combined performance metrics concerning class distribution to compare various multi-class
and binary classifications. They used an auto encoder to assign the values to categorical data
and PCA to reduce the dimensions. Aljawarnch et al. [25] proposed an anomaly based intru-
sion detection system through feature selection analysis hybrid feature selection method using
correlation-based feature selection and information gain. They applied adaptive boosting
using Naive Bayes as the weak classifier. Here correlation is done using greedy search and clas-
sifier on the reduced NSL-KDD dataset. In another work, Zong et al. [19] proposed the combi-
nation of matrix diversity and PCA for DDoS and feature reduction. They demonstrated a
higher prediction accuracy than the traditional method. In this work, the authors used the
KDDCup99 dataset. In [26] authors proposed a multi-objective optimization-based feature
selection method for the detection of anomaly traffic in IoT. They have implemented the
multi-objective evolutionary algorithm with an adapted jumping gene operator. They
exploited an Extreme Learning machine (ELM) as the classifier for feature selection based on
six critical objectives for an IoT network. The PCA was used to reduce the dimension of the
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dataset from a large number of features to a small number by Shengchu Zhao et al. [27]. For
classification purposes authors used Softmax Regression and K-nearest neighbor algorithms.
Softmax Regression achieves better accuracy using the KDDCup99 dataset. Panda et al. [28]
suggested semi-naive Bayesian, Decision Tree-based, Chi-square automatic interaction identi-
fication. Next, a hybrid genetic algorithm and K-mean clustering were utilized, along with two
dependency estimators. Deep Multi-Layer Perceptron and Convolutional-Neural Network
based classifiers are two instances of deep learning techniques used [29]. Further in [30], two
features selecting methods i.e. information gain and RF analysis are used by the authors. For
improving accuracy, deep learning techniques and LSTM and Autoencoder were used to solve
the issue of DDoS attacks in SDNs. In [31], the authors approached the feature selection
method Extreme Gradient Boosting for determining the most relevant features with a hybrid
Convolutional Neural Network and Long-Short Term Memory (CNN-LSTM) for DDoS attack
classification. The proposed model applied on the CICIDS2019 dataset with improved accu-
racy. In a similar work, Abubakr et al. [32] used a wrapper method for feature selection using a
binary-particle swarm optimization algorithm and the Decision Tree approach.

Brao et al. explored variance indexing methods using a feature selection algorithm for intru-
sion detection [33]. They specified the KNN method to improve partial distance search and dif-
terent types of classification for the significance implemented on the NSL-KDD dataset. An
ensemble framework (EnFs) has been proposed by Das et al. [34]. The framework combines the
outputs of seven important features using the majority voting technique and produces an opti-
mal set of features on the NSL-KDD dataset. In [35] researchers combined the information gain,
PCA with an ensemble classifier and SVM instance-based learning algorithms over ISCX2012,
NSL-KDD, and Kyoto-2006 datasets. In a different context, Bawany et al. [16] employed SEAL,
an SDN-based adaptive framework, for protecting smart city applications against DDoS attacks.
Chen et al. [36] proposed a statistical-based trace-back scheme using the SDN architecture.
They have analyzed the changes of network flow through the base station and multiple control-
lers. In [37], authors proposed a novel feature selection approach for the network intrusion
detection system in a cloud environment. Authors in [38], suggested an ensemble based multi-
teature selection method that combines the output of four filter methods to achieve an optimum
selection using intrusion detection. In [39], authors suggested a FS method which is based on
mutual information. In [40], authors proposed PCA as the FS and SVM as the classifier for their
anomaly detection work. Lin et al. [41] prosed BFE for their work.

From the above literature survey, it can be observed that the DDoS detection using machine
learning techniques has not been well explored in the SDIoT like modern network infrastruc-
ture. Usually, the anomaly datasets are imbalanced in nature and in this direction limited
research has been carried out. To overcome the data imbalance, the framework suggests utiliz-
ing the SMOTE technique. So far, many research were conducted the experiments with binary
classes out of 23 types of attacks. Due to the higher execution time, previous researchers were
unable to cover all the classes. For this reason, the accuracy and detection rate vary. However,
the current study attempts to include 11 types of attacks as four classes.

3 Materials and methods

The following section discuss about the dataset, feature selection, feature reduction, and vari-
ous ML models used in this work.

3.1 Materials

The Subsequent section discusses the dataset, various data pre-processing techniques opted in
the work.
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3.1.1 Dataset. There are multiple datasets used in research for the prediction of DDoS
attacks. The authors used the KDDCup99 dataset for the prediction of DDoS attacks. The
KDDCup99 dataset is widely used in IoT and SDN frameworks for DDoS attack detection
using ML for training purposes because it is a well-known and well-established dataset in the
field of network security [24]. The dataset provides a large set of labeled network traffic data
that can be used to train machine learning algorithms to detect various types of network
attacks, including DDoS attacks. Additionally, the use of this dataset helps to ensure that the
resulting ML models are not overfitting to a specific dataset, and it mimics real-world network
traffic data.

Additionally, we employed the CIC IoT-2023 dataset, a new and extensive resource that
provides unique benefits and expands upon earlier datasets [42]. The latest dataset, released by
the Canadian Institute for Cybersecurity, is created specifically for security analytics applica-
tions for real-time IoT operations. This dataset introduces a unique and comprehensive com-
pilation of IoT attack data having 47 features including target value with 238687 instances,
featuring 34 attack classes conducted in an IoT topology consisting of 105 devices.

3.1.2 Data pre-processing. There are many methods are available for data pre-processing.
For data pre-processing authors address the threes issues such as (i) Handling null values (ii)
Standardization (iii) Handling categorical values. The detailed process is discussed below.

1. Handling Null Values In the KDDCup99 and CIC-10T2023 dataset few features contain
null values. This issue is handled by dropping rows.

2. Standardization In this study, feature scaling is accomplished using the standardization
technique, in which the values are updated to the mean with a standard deviation of one
unit. Thus, the required columns are updated using Eq 1.

where y is the mean of the feature values and o is the standard deviation of the feature val-
ues. Standardization is helpful in cases where the data follows a Gaussian distribution for
standardization of the data set, which is discussed in Eq 2.

X; 1 —(x — )’
i) = ( i
3 Q) \/2ma%y, P ) )

3. Handling Categorical values In the data set, four categorical variables are present such as
protocols, service, flag, and label. For handling categorical values we used the label encoder
technique. This data can be replaced with 1, 22, 9, and 3 respectively.

3.1.3 Class selection in both dataset. We have categorized the different attacks to verify
the effectiveness of the feature selection methods. Eleven out of 23 different types of attacks
have been selected. These 11 types of attacks were divided into 4 different classes DOS, Probe,
R2L, and Normal.

The CIC-IoT dataset has 34 classes and every attack carried out for this study has a unique
set of features. We converted 34 classes into 7 classes i.e.; DDoS, DoS, Recon, Web-based,
Brute Force, Spoofing, Mirai and Normal attack. Each category and categories are listed in
Table 1.
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Table 1. Names of each attack and category.

Names Attacks
DDoS ACK Fragmentation
UDP Flood
SlowLoris
ICMP Flood
RSTFIN Flood
PSHACK Flood
HTTP Flood
UDP Fragmentation
ICMP Fragmentation
TCP Flood
SYN Flood
SynonymousIP Flood
DoS TCP Flood, HTTP Flood,
SYN Flood, UDP Flood
Recon Ping Sweep, OS Scan, Host Discovery Vulnerability Scan, Port Scan,
Web-Based Sql Injection, Command Injection, Backdoor Malware, Uploading Attack, XSS, Browser Hijacking
Brute Force | Dictionary Brute Force
Spoofing Arp Spoofing, DNS Spoofing
Mirai GREIP Flood, Greeth Flood, UDPPlain

https://doi.org/10.1371/journal.pone.0309682.t001

Table 1 provides a thorough summary of several cyberattacks, divided into sections for
Denial-of-Service (DoS), Distributed Denial-of-Service (DDoS), Vulnerability Scan, Brute
Force, Spoofing, and Internet of Things Malware attacks. Attack methods including ACK
Fragmentation, UDP Flood, Ping Sweep, OS Scan, Sql Injection, Dictionary Brute Force, Arp
Spoofing, Mirai, and GREIP Flood are all included in each category.

3.2 Methods

Subsequent section discusses the ML methods, dimension reduction and feature selection
methods employed in the work.

3.2.1 SMOTE. SMOTE generates new artificial instances using information about the
neighbors that surround each sample in the minority class [22, 43, 44]. SMOTE creates syn-
thetic training cases for the minority class using linear interpolation [45] These synthetic train-
ing cases are constructed by randomly selecting a subset of the k-nearest neighbors for each
instance in the minority class [46].

However, we have explored Edited Nearest Neighbor with SMOTE (SMOTE-ENN). SMO-
TE-ENN combines the SMOTE oversampling technique with an undersampling technique
called ENN. It separates the presence of any noisy or borderline samples from the dataset by
considering their class label against their K-Nearest Neighbors (K-NN). In case the class labels
do not equal, then the sample is considered as noisy and then both observation and its KNN
are removed. SMOTE selects each minority sample as the root sample for synthesis of the new
sample. Further ENN eliminates noisy samples whose most KNN samples are different from
other classes which is illustrated in Fig 2. The step-by-step process of SMOTE-ENN is dis-
cussed in Algorithm 2.

3.2.2 Feature selection. Feature selection is the process of selecting a subset of the original
characteristics to reduce model complexity, improve computing performance, and reduce
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Fig 2. Process of SMOTE during synthesis and eliminating noisy samples using ENN.
https://doi.org/10.1371/journal.pone.0309682.9002

generalization error caused by noise provided by irrelevant features [20]. In this study, two fea-
ture selection methods have been examined. These methods can be used in the proposed
framework’s feature engineering modules. First one is the sequential feature selection and the
second one is backward feature elimination which comes under the wrapper method [15]. The
wrapper approach is the primary focus of this paper. The wrapper techniques employ a search
strategy to combine the space of potential feature subsets and rank them accordingly [47]. The
wrapper technique is based on greedy search algorithms, which consider all feasible feature
combinations and produce the best outcomes [34]. Feature selection techniques which include
sequential feature selection (SFS), backward feature elimination (BFE), recursive feature selec-
tion, exhaustive feature selection, etc. are the most popular approach categories. In this paper,
we have explored SFS and BFE methods.

1. Sequential Feature Selection
The SFE technique is a family of greedy search techniques, that reduces an initial d-dimen-
sional feature space to a k-dimensional feature subspace, where k<d. Finding the ideal sub-
set of features in A is the process referred to as feature selection. Thus, the problem can be
expressed as, {Y(A): A € 2,
Where . C X] is any subset of features, 2 = { : A C X} is the set of feasible solution and
Y(L) is objective function used to measure of quality of L. In this context, we search for a
subset using SFS as an objective value.

2. Backward Feature Elimination
Using a feature selection strategy, the traits that have no observable effect on the dependent
variable or output prediction are eliminated [43]. As other features are added, the model
grows increasingly complicated. Consequently, in order to get the best outcomes, it is essen-
tial to keep the model straightforward and to focus just on its most crucial components. This
strategy is used to enhance the performance of the ML model by only including the features
that have the greatest impact and eliminating the features that have the least impact.
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3. Mutual Information

Mutual information measures the amount of information obtained about one variable
through the observation of another variable. MI value zero indicates two variables are inde-
pendent. In FS, mutual information is used to evaluate the relevance of each feature to the
target variable. A high MI score indicates that a feature provides valuable information
about the target variable. A low score suggests that the feature is less informative about the
target variable and may be considered for removal, which is discussed in Eq 3. The MI
between two features (x) and (y) can be calculated as follows:

I(x,y) = Z Z P(x',y )log Q%) ®)

yey xex

where, I(x, y) represents the MI between x and y. P(x’, y/) denotes the joint probability.

P(x’) and P(y’) are the marginal probabilities.

3.2.3 Classification techniques.

Decision Tree:

The selection of attributes for root nodes within every level is the most difficult task in a
Decision Tree. There are two popular methods for selecting attributes [48]. In machine
learning, the DT algorithm works with no attribute-based parameter technique. If there is a
single attribute that really can simply segregate data and improve decision-making, it works
well. The range of the root node poses a hurdle in this approach. When the root node is cho-
sen carefully, the algorithm’s computational complexity is reduced, and it becomes
extremely effective.

Random Forest It is a popular classifier for supervised learning. The key benefits are reduc-
tion of over-fitting, a shorter training period, and excellent accuracy.

Gaussian Naive Bayes:

In Gaussian Naive Bayes (GNB) a special type of Naive Bayes classifier. It is specially used in
dataset features that have continuous value, then features are assumed to be Gaussian distri-
bution and we call another name the normal distribution [49].

Multilayer Perceptron:

The multi-layer perceptron is an infinite sized directed acyclic graph. A decent generaliza-
tion is the most widely used neural network architecture. The trained model can provide
reliable output for the label and untested inputs. The early stopping criteria of the MLP clas-
sifier gives an approximation of the number of iterations that can be performed before the
model becomes overfit [50].

K-Nearest Neighbour: One of the most fundamental adaptive algorithms being used in
supervised learning is the K-NN approach. In supervised learning, the training data is
labeled and found unknown samples, the model forecasts it using a trained model [51].
KNN performs effectively on datasets with just many samples. It works well with numeric
properties only. A distance metric is used to identify which of the K examples inside the
training data are closest to the new input. Euclidean distance is the widely used distance
measure for input variables with real values. The distance is measured using Eq 4.

ED(a,b) = /3 (a — b)’ (4)
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o Principal Component Analysis (PCA):
It is an unsupervised learning algorithm used in machine learning for dimensionality reduc-
tion [40]. The goal of PCA is to find a new set of orthogonal axes known as “principal com-
ponents” that capture the most variance in the data. PCA is a widely used method for
exploratory data analysis, as it can help identify patterns and relationships in high-dimen-
sional datasets. Additionally, by reducing the number of dimensions, PCA can also improve
the performance of machine learning algorithms that require a lower number of features.

4 Proposed model

Fig 3 shows the high level design of ML based anomaly detection framework utilizing SD-IoT.
The detection scheme primarily consists of three main components: IoT devices, SDN
switches, and SDIoT controllers. The major modules are residing in the SDN controller. It
includes a feature extraction module, learning with detection module, and a flow management
module. By using the OpenFlow protocol, the controller separates policies into service-specific
rules and pushes them into the flow tables of the SDN switches [52]. Then the packet is for-
warded based on these rules in the flow table. There are different fields that are stored in the
flow table against each flow entry. Whenever a new packet arrives, it is matched with the flow
table rules, in case of a match the controller takes the necessary action stored in the action field
and in turn updates the counters. In case of a mismatch, a new rule is supplied to the flow
table.

The actions starting from pre-processing to classifier selection in the controller are segre-
gated into five stages. The various steps used in this model are depicted in Fig 4. In the first
stage prepossessing of the dataset is carried out. In this study, the KDDCup99 and CIC-IoT
2023 dataset were employed. This dataset needs to be balanced in the second phase since it
consists of unbalanced classes. The feature selection technique was applied in the third phase
to determine the reduced features and important features. The balanced data is used as an
input for the wrapper-based SFS technique and filter based Mutual Information technique sep-
arately. The FS process called SFMI combines the advantages of both SFE and MI techniques.
In SEMI each input feature is added to the final selected features set based on maximizing

IoT based smartcity
data

Yes
OpenFLow switch —> Match in Flow table? > Flow packets
No
No
SDIoT controller
Yes
Trained Machine Attack/ Normal traffic Attack mitigation
Learningmodel | | classificati
earning mode! classification flow rule
DDoS attack detection module

Fig 3. High-level design of anomaly detection framework in SDIoT.
https://doi.org/10.1371/journal.pone.0309682.9003
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Fig 4. Flow diagram of the ML-based anomaly detection model.

https://doi.org/10.1371/journal.pone.0309682.g004

mutual information between selected inputs and target value. Here, MI helps to measure the
goodness of the feature. On the other hand, SFE iteratively build the best performing feature
subset for the predictive model. Further the top k common features were extracted from the
nominated features based on SFE and MI

Algorithm 1 summarizes the proposed approach.

Algorlthm 1 Proposed Anomaly Detection Model

J>w[\))—‘

: Read the data set ND with features x;, x5, ..., X4
: Detect the attack traffic

Initialize Data <« ND

: Pre-processing of the data set involves categorical value, Stan-

dardization, and Null values.

: Balancing the data set using SMOTE-ENN « XJ
: FS1 « Nominated feature set based on SFS

FS2 « Nominated feature set based on MI

: Top k (feature new) « FS1 N FS2
: Apply PCA on a dataset with featurenew

for i =1 to 2 do
NDI™?" «— split (feature;, 70%, first)
NDI*** «— split (feature;, 30%, last)

: end for

Train the data with DT, RF, MLP, GNB, K-NN
Set the best model
Test the data with the best model.
Predict the test data
if (Class Label == Normal) then
forward the packets

: else

Attack class classified and start to drop

: all the subsequent requests from the source
: end if
: End

Algorlthm 2 Edited Nearest Neighbor-based SMOTE

U'I»bu)l\)l—'

Input: Dataset, Minority class m/, nearest neighbour k

: Output: Balanced Dataset
: Begin

select random data from mf

: Calculate x = dist(m, k)
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6: Multiply y = x x r where r € rand (0, 1)
7: add y to nf
8: Repeat step 5-7 until the required number of minority class is

achieved. > End of SMOTE
9: set k, find K-nearest neighbor of the observation (c¢) and return
the majority class cy. > Start of ENN
10: if ¢ # c, then
11: observation and its K nearest neighbor are removed.
12: end if

13: Repeat step 10 and 11 until the desired proportion of each class
is fulfilled.
14: End

In the third phase PCA is used to address the issues related to multicollinearity, over fitting,
and dimension reduction. The fourth phase uses machine learning models for training and the
fifth stage is for testing and selecting the optimal model. Algorithm 1 summarizes the proposed
detection model, and the SMOTE-ENN process is discussed in Algorithm 2.

5 Experimentation analysis
5.1 Simulation setup

In this paper, all experiments were performed over a machine having given configurations
such as CPU Intel Core i7, 512 GHz,8 GB RAM. Python 3.9 Anaconda and Jupyter Notebook
IDE are used as other additional packages. For the experiment purpose, we consider the
Mininet version 2.1.0 framework and POX controller. POX can control hundreds of Open-
Flow-enabled base station nodes with a flexible programming network control interface for
the end-users. As opposed to NS3 and Opnet, the Mininet can easily create a virtual SDN
environment with several end hosts, switches, and controllers on the Linux kernel. A tree
topology has been considered which consists of 8 switches, 63 hosts, and a controller. For
experimentation purposes, the hosts are treated as IoT devices that communicate with each
other through edge devices through OpenFlow switches. We considered a similar test bed
used in [35]. Among the IoT devices randomly one is considered as an attacker and another
one is the victim.

The Table 2 presents the 15 features selected using Sequential Feature Selection (SFS)
for both the KDDCup99 and CIC-I0T23 datasets. The MI score is used to evaluate the
importance of each feature. Then we took 10 common features for both datasets respec-
tively. For both the datasets, most important features were selected. These results suggest
that the most important features for distinguishing between normal and anomalous traffic
in both datasets are related to the network traffic itself, such as the number of bytes trans-
ferred, the number of connections, and the error rate. Additionally, the features related to
the source and destination hosts are also important, such as the number of connections to
the same host and the error rate for connections to the same host. These findings have
implications for the development of intrusion detection systems (IDSs). By focusing on the
most important features, IDSs can more effectively detect anomalous traffic and reduce
false alarms.

5.2 Performance measures and parameter settings

The performance of the detection model is measured using the metrics which is listed in
Table 3. The confusion matrix is a function of True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative(FN).
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Table 2. Selected features for FSMI model with both datasets.

Selected features for FSMI model with KDDCup 99 dataset

SFS MI Top Ten Selected Features
service protocol_type service

src_bytes service

count flag

rerror_rate count

dst_host_count srv_count protocol_type
dst_host_srv_count same_srv_rate flag
dst_host_same_src_port_rate dst_host_serror_rate src_bytes
dst_host_srv_diff_host_rate diff_srv_rate srv_count
dst_host_serror_rate serror_rate dst_bytes

flag dst_host_serror_rate dst_host_srv_count

dst_byte dst_host_srv_count dst_host_srv_rate

urgent dst_host_same_src_port_rate dst_host_serror_rate
num_failed_logins src_bytes dst_host_same_src_port_rate
protocol_type dst_bytes

srv_count dst_host_count

Selected features for FSMI model with CIC-10T23 dataset
SES MI Top Ten Selected Features
flow_duration flow_duration flow_duration
Header_Length min
Protocol_Type Header_Length
Duration syn_count Header_Length
Rate Tot sum Protocol_Type
Srate Rate Duration
Drate Number Rate
fin_flag_number AVG
max Tot size AVG
rst_flag_number IAT IAT
syn_count magnitude Number
AVG Radius covariance
IAT covariance syn_count
covariance variance

https://doi.org/10.1371/journal.pone.0309682.t002

Table 4 provides information on the parameter settings for the used ML approaches. Each
row indicates a different model, while the columns provide the parameters and values for each
model. For example, the RF model employs a ‘gini’ criterion, has a maximum depth of 10, a
random state of 42, and uses 10-fold cross-validation.

Table 3. Performance metrics for the model.

Performance measure

Formula

Accuracy TP + TN
TP+ TN + FP + FN
Precision TPI:IFFP
Recall . Y—LPFN
F1-score 9 y Precision x Recall

Precision + Recall

https://doi.org/10.1371/journal.pone.0309682.t003
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Table 4. Parameter settings of different models.

Models Parameter Settings

RF Criterion: gini, max_depth = 10, random_state = 42, cross validation = 10

DT max_depth = 15, min_sample_split = 20, min sample leaf = 5, cross validation = 10
GNB prior probability = yes, random_state = 42, verbose = 2, cross validation = 10
KNN n_neighbour = 5, p = 5, n_sample_fit = 42, n_jobs = 1, cross validation = 10

MLP max_iter = 42, random_state = 42, verbose = 2, cross validation = 10

https://doi.org/10.1371/journal.pone.0309682.t004

5.3 Results and analysis

The problem of class imbalance has a significant impact on the classification algorithm’s accu-
racy. This massively increases the computational complexity of the DDoS solutions, making it
inappropriate for usage in a real-world situation [36]. Both binary and multiclass classification
can be used on the KDDCup99 and CIC-10T23 dataset, however, we have considered multi-
class classification.

5.3.1 Class imbalance analysis. When ML models train over imbalanced datasets, the
models can often suffer from biased learning and poor performance due to the mismatch
between the class distribution and the distribution of the training data. This is because the
majority class can dominate the learning process and the model can ignore the minority class,
leading to poor prediction performance for minority class samples. To overcome such issues
classical SMOTE technique is usually used which generates synthetic samples for the minority/
majority class in order to balance the class distribution. SMOTE has the tendency to create
synthetic samples that are very close to the existing minority class samples. This can lead to
over-sampling bias in the resulting balanced dataset. SMOTE-ENN solves this problem by
removing samples that are considered noisy or redundant after oversampling with SMOTE. In
Table 5 discusses both datasets comparisons on 11 and 7 classes (out of 23 and out of 33) clas-
ses after over sampling. After applying SMOTE, we can observe that the classes are equal.
However, after applying SMOTE-ENN, it removes a few synthetic samples which will help to
reduce the complexity of the model. Hence, in this work, we have considered the SMO-
TE-ENN technique for balancing the dataset.

The approximate proportions of attack classes in the KDD dataset has been changed signifi-
cantly after using SMOTE and SMOTE-ENN. The proportion of different classes (DoS, Nor-
mal, Probe and R2L attacks) in the original dataset are in the ratio 79.30: 19.66: 0.83: 0.21.
Similarly, the proportion of different classes in CICIoT dataset (DDoS, DoS, Recon, Web-
Based, Brute Force attacks, Spoofing and Mirai) in the original are in the ratio 74.55: 17.71:
0.80: 0.06, 0.03: 1.09: 5.76. After using SMOTE and SMOTE-ENN, all classes were adjusted to
have approximately equal proportions.

Further, we have shown the malicious attack detection accuracy results obtained when
tested with the benchmark dataset with the proposed model. Later we show the results of vari-
ous network performance evaluation metrics with SMOTE-ENN techniques. Feature selection
and reduction techniques are analyzed using ML models with and without SMOTE technique.
The accuracy of the models with SMOTE provides promising results but the recall of the
minority class is less, i.e. the model is more dependent on the majority class. After applying
SMOTE-ENN the dataset split into training and testing with the ratio of 70: 30. Different clas-
sification methods are also employed, including DT, RF, MLP, GNB, and K-NN. This methods
are used to recognize and learn about DDoS attacks.

5.3.2 Impact of features on model performance. The balance between the simplicity of
the model and accuracy was achieved in our experimental analysis by properly choosing 10
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Table 5. Number of Instances (before and after balancing).

CIC-I0T23
No of |Name of All Attacks Number of Attacks Name of the Group
Class Before After After in Attacks
SMOTE SMOTE SMOTE-ENN

0 ACK Fragmentation, UDP Flood, SlowLoris, ICMP Flood, RSTFIN Flood, PSHACK 173777 173777 173777 DDoS
Flood, HTTP Flood, UDP Fragmentation, ICMP Fragmentation, TCP Flood, SYN
Flood, SynonymousIP Flood

1 TCP Flood, HTTP Flood, SYN Flood, UDP Flood 41276 173777 173699 DoS

2 Ping Sweep, OS Scan, Host Discovery, Vulnerability Scan, Port Scan, 1860 173777 167731 Recon

3 Sql Injection, Command Injection, Backdoor Malware, Uploading Attack, XSS, Browser 137 173777 164761 Web-Based
Hijacking

4 Dictionary Brute Force 63 173777 173654 Brute Force

5 Arp Spoofing, DNS Spoofing 2539 173777 172152 Spoofing

6 GREIP Flood, Greeth Flood, UDPPlain 13435 173777 171190 Mirai

KDDCup99 Dataset

0 Smurf 280790 280790 280790 DoS

1 neptune 107201 280790 280710 DoS

2 normal 97277 280790 280705 Normal

3 back 2203 280790 280702 DoS

4 satan 1589 280790 280712 Probe

5 ipsweep 1247 280790 280701 Probe

6 portsweep 1040 280790 280100 Probe

7 warezclient 1020 280790 280360 R2L

8 teardrop 979 280790 280171 DoS

9 pod 264 280790 280150 DoS

10 nmap 231 280790 280090 Probe

https://doi.org/10.1371/journal.pone.0309682.t005

features. Choosing 15 or more features increased the accuracy, but at the same time added
computing overhead and redundancy. The goal of selecting 10 features was to create a model
that is accurate, comprehensible, and broadly applicable. By utilizing only 10 features, the
model sacrifices only a minimal fraction of accuracy, and such marginal compromise is accept-
able for resource constraint IoT enabled smart application. Fig 5a and 5b shows the Whisker
plot drawn against the number of features and the accuracy using the RF classifier. It presents
the minimum and maximum accuracy obtained for an increasing number of features. Features
have been selected using combined SFMI and model trained with RF classifier. It can be
observed that the accuracy value of the model is an acceptable range when the number of fea-
tures is more than ten.

In the both datasets there are 42 and 47 features, including the target value present in the
KDDCup99 and CIC-IoT datasets respectively.Therefore, we evaluate the model with top 20,
15, and 10 sets of features out of 42 and 47 features. The selected features are listed in Table 6.

5.3.3 Analysis of proposed SFMI feature selection. The common features selected by
SEMI are likely to be the most informative for the model, as they have been validated by two
different selection criteria. This method helps in achieving a well-performing and generalizable
model.

For a comparison purpose, first we employed SFMI with and without SMOTE-ENN for
both datasets in Tables 7 and 8. Accordingly, precision, recall, F1-score, and accuracy were cal-
culated. SFMI with SMOTE-ENN has been evaluated on five different models. Among these
methods, the RF obtained better accuracy i.e. 98.09% (without SMOTE-ENN) and 99.79%
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Fig 5. Results of accuracy with increased features. (a) CIC-I0T-2023 dataset, (b) NSL KDD99 dataset.

https://doi.org/10.1371/journal.pone.0309682.g005

(with SMOTE-ENN) and GNB attained the lowest accuracy of 93.42% (without SMO-
TE-ENN) and 92.12% (with SMOTE-ENN) respectively with 10 features in KDD99 dataset. In
the CIC-IoT 2023 dataset, the RF obtained better accuracy i.e. 99.45% (without SMOTE-ENN)
and 99.95% (with SMOTE-ENN) and GNB attained the lowest accuracy with 10 features.
From the tables, it can be noted that adding extra features has minimal effect on the overall
accuracy. Except for GNB, all ML models perform better in the classification task. The results
indicate the common features between the two methods having a higher level of consistency.

The experimental analysis of BFE with SMOTE are detailed in Table 9. Like the previous
scenario, in this experiment BFE with five different classifiers were examined. We found that
SEMI performs slightly better than BFE in many cases. In few scenarios BFE outperforms the
proposed method. For instance, with different feature sets, the GNB shows better performance
using BFE. While with 10 features, DT and RF show comparatively better results with the pro-
posed feature selection method.

5.3.4 PCA analysis after SFMI. The dataset contains numerous features and multidimen-
sional classes. PCA is utilized to locate the dataset’s most important attributes and makes the
dataset simple. In the further experiment PCA is being utilized with SMOTE-ENN, and it is
observed that it attains better results in terms of recall and F1- score. For instance, the preci-
sion and recall values of GNB were 86% and 89%, respectively without PCA with 15 features
selected using SFMI (Table 10). A similar observation for MLP and K-NN. After applying
PCA a better outcome was observed for GNB, KNN and MLP models. Based on the results
and analysis, it can be noticed that SMOTE-ENN+SFMI with PCA performed well on all mod-
els. After comparison of all performance results, SMOTE-ENN+SFMI with PCA on the Ran-
dom Forest classifier yields promising results in predicting attack traffic for all sets of features.
Hence for oversampling the dataset SMOTE-ENN is being utilized, SFMI as the feature selec-
tion technique and DT is selected as the network classifier.

The overall detection effect of each classical models on the dataset is shown in the Table 11.
It is observed that the accuracy of the proposed model is roughly 1.5% superior than other
models.
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Table 6. Selected features and their description.

Features using SFMI
(KDD-Cup)

count

Services
src_bytes
dst_bytes

rerror_rate
dst_host_count
dst_host_srv_count

dst_host_same_src_port_rate

dst_host_src_diff_host_rate
dst_host_serror_rate

Features using SFS
(CIC-10T23)

flow duration
Header_Length
Protocol_Type
Rate

fin_count
urg_count
HTTPs
Min

IAT
weight

Description of Features

number of connections to the same host as the
current connection in the past two seconds

network service on the destination
number of data bytes from source to destination
number of data bytes from destination to source

% of connections that have ‘REJ’ errors

count of connections having the same
destination host IP address

count of connections having the same
destination host IP address and service

rate of connections to the same destination host
with the same source port as the current
connection

rate of connections to different hosts with the
same source host as the current connection

percentage of connections that have an ‘SYN’
error

Description of Features

Duration of the packet’s flow

Header Length

IP, UDP, TCP, IGMP, ICMP(Integers)
Rate of packet transmission in a flow

Number of packets with fin flag set in the same
flow

Number of packets with urg flag set in the same
flow

Indicates if the application layer protocol is
HTTPS

Minimum packet length in the flow

The time difference with the previous packet

Number of incoming packets * Number of
outgoing packets

https://doi.org/10.1371/journal.pone.0309682.t006

Features using BFE
(KDD-Cup)

duration

Services
src_bytes
dst_bytes

Inum_root
diff srv_rate
dst_host_diff_srv_rate

dst_host_same_src_port_rate

dst_host_srv_diff_host_rate
dst_host_serror_rate

Features using BFE
(CIC-10T23)

flow duration
Duration
Protocol_Type
ece_flag_number

rst_count
Tot Sum
Tot size
Radius

IAT

ack_count

Description of the Features
length (number of seconds) of the connection

network service on the destination
number of data bytes from source to destination
number of data bytes from destination to source

logarithm of the number of root accesses or
administrative commands executed

% of connection to different services

rate of connection with different services than the
previous connection to the same destination

rate of connections to the same destination host
with the same source port as the current
connection

rate of connections to different hosts with the
same source host as the current connection

percentage of connections that have a ‘SYN’ error
Description of the Features

Duration of the packet’s flow
Time-to-Live(ttl)

IP, UDP, TCP, IGMP, ICMP(Integers)
Ece flag value

Number of Packets with rst flag set in the same
flow

Summation of packets length in flow
Packet’s length

Variance of the lengths of incoming packets in
the flow

Time difference with the previous packet

Number of packets with ack flag set in the same
flow

The benefits of the suggested model (SFMI+PCA) are listed below.

1. The SFMI+PCA leads to a higher capability to detect DDoS attacks. For instance with 10
features GNB achieved 92.12% accuracy, whereas after PCA it achieved 96.44% in
KDD-Cup dataset. In CIC-IoT dataset, DT attained 99.29% and 99.82% accuracy before
and after PCA respectively.

2. By finding the best relevant features and eliminating multicollinearity concerns, the SFMI
+PCA model decreases the classifier’s computational complexity.

3. Experiments reveal that the proposed FS with PCA achieves precision 99.39% with only ten
teatures in CIC-IoT dataset whereas only SFMI achieved 99.30%.

5.3.5 Multiclass classification and analysis. In Fig 6a and 6b the experimental results on
the KDDCup99 test data illustrate that the proposed method has a comparatively high
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Table 7. Evaluation of SFMI without SMOTE-ENN (in %).

KDD-Cup99 dataset with SEMI without SMOTE-ENN (in %)

#features Models DT RF MLP GNB K-NN
Feature-41 Accuracy 96.95 98.99 94.80 87.18 92.34
Precision 96.45 97.71 94.24 91.54 90.64
Recall 97.33 98.16 97.12 76.56 87.12
F1-Score 96.41 97.63 92.31 89.34 91.32
Features-20 Accuracy 95.87 96.94 94.63 92.12 89.02
Precision 97.73 97.73 88.56 84.24 90.63
Recall 96.78 96.78 90.42 83.09 90.08
F1-Score 96.78 97.18 88.18 85.12 90.45
Features-15 Accuracy 96.55 96.89 94.56 93.76 91.34
Precision 98.93 98.34 89.45 86.14 89.56
Recall 96.61 97.84 92.08 89.09 92.09
F1-Score 96.78 97.89 89.34 89.21 91.09
Features-10 Accuracy 97.82 98.09 96.14 93.42 89.32
Precision 96.17 97.42 92.23 91.56 92.29
Recall 97.15 98.53 89.09 88.05 91.43
F1-Score 97.33 97.54 90.09 90.05 91.13
Results of CIC-10T2023 data with SEMI without SMOTE-ENN (in %)
Features-46 Accuracy 99.37 99.34 94.57 49.208 98.79
Precision 85.07 99.88 95.44 72.18 99.21
Recall 99.33 82.41 95.03 49.62 99.08
Fl-score 82.17 99.64 95.23 49.08 99.21
Features-20 Accuracy 99.35 99.43 98.05 69.61 94.61
Precision 99.35 100 99.09 86.44 95.24
Recall 99.02 99.65 99.14 72.86 95.12
F1-score 99.14 99.12 99.31 71.06 95.62
Features-15 Accuracy 99.32 99.41 98.56 61.07 96.51
Precision 99.19 100 99.08 78.41 97.61
Recall 99.39 99.29 99.21 51.26 97.05
Fl-score 99.07 99.17 99.22 52.06 97.13
Features-10 Accuracy 99.31 99.45 98.84 71.52 97.22
Precision 99.13 100 99.93 71.47 97.51
Recall 99.88 99.69 99.44 72.23 97.42
Fl-score 99.43 99.17 99.18 70.18 97.86

https://doi.org/10.1371/journal.pone.0309682.t007

accuracy and precision value on all types of attack types. It has a significant advantage over
other classical ML models with no feature selection mechanism. The model obtained the recall
0f 91.19%, 80.33%, 84.16%, and 45.37% on normal, probe, DoS, and R2L respectively. Using
the proposed model, the recall value of R2L attack type was 45.56%, which was slightly higher
than the classical RF model as illustrated in Fig 6¢. In Fig 6d shows the statistical outcome of
the F1-score metrics for the four class types in the test dataset. The model presented in this
work obtained the highest F1-score of 85.16% for DoS attacks, 79.33% for Probe traffic. Com-

pared with other classical methods, F1 results of all classes greatly improved as shown in

Fig 6d.

In Fig 7a and 7b the experimental results on the CIC-IoT test dataset. The model obtained
the recall of 99.01%, 98.13%, 93.52%, 98.23%, 65.52%, 68.00%, and 77.09% on DDoS§, DoS,
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Table 8. Evaluation of SEMI with SMOTE-ENN (in %).

KDD-Cup99 Dataset

Features Models DT RF MLP GNB K-NN
Feature-41 Accuracy 98.95 99.96 98.61 94.18 98.86
Precision 97.95 98.08 92.03 92.25 94.93
Recall 97.22 98.99 88.06 83.16 93.12
F1-Score 98.05 99.58 91.05 92.64 95.76
Features-20 Accuracy 98.96 99.09 96.15 98.25 96.84
Precision 97.48 99.37 97.06 91.03 96.12
Recall 98.33 99.72 96.07 92.04 96.08
F1-Score 98.03 99.39 94.07 94.04 91.08
Features-15 Accuracy 98.94 99.58 98.42 94.36 95.82
Precision 98.09 99.17 90.45 91.14 94.34
Recall 98.06 99.22 93.08 91.04 94.09
F1-Score 98.08 99.05 89.08 91.09 93.09
Features-10 Accuracy 98.91 99.79 98.95 92.12 90.91
Precision 98.18 99.65 93.23 90.08 91.89
Recall 98.11 98.22 85.09 94.05 96.23
F1-Score 98.11 98.87 91.07 90.05 94.23
CIC-10T2023 Dataset
Features-46 Accuracy 99.37 99.36 98.72 49.208 94.57
Precision 82.01 99.73 71.46 72.49 95.85
Recall 85.64 82.36 71.901 49.88 95.32
F1-score 83.58 85.09 70.38 45.95 95.70
Features-20 Accuracy 99.31 99.38 98.81 50.66 95.25
Precision 99.38 99.01 99.89 89.17 96.13
Recall 99.08 99.05 99.08 57.08 95.61
F1-score 99.29 99.41 99.15 55.81 95.44
Features-15 Accuracy 99.29 99.39 98.79 57.98 96.77
Precision 99.37 99.09 99.33 66.09 97.53
Recall 99.66 99.28 99.27 68.56 97.11
Fl-score 99.25 99.14 99.72 65.78 97.21
Features-10 Accuracy 99.27 99.95 98.69 51.28 97.52
Precision 99.94 99.32 99.23 87.64 98.01
Recall 99.49 99.07 99.57 45.06 98.52
F1-score 99.05 99.43 99.65 76.43 98.51

https://doi.org/10.1371/journal.pone.0309682.t008

Recon, Brute Force, Mirai, Web-based, and Spoofing respectively. Compared with the classical
RF model, there is a significant improvement in precision score in all types of attacks in both
datasets. Using the proposed model, the recall value of the attack type was slightly higher than
the classical RF model as illustrated in Fig 7c. In Fig 7d shows the statistical outcome of the
F1-score metrics for the seven class types in the test dataset. The F1 score focuses on the recall
and precision value, which exhibit the efficacy of the proposed work. So, it is obvious that

there is a major impact of dataset balancing on the overall performance of the model.

5.3.6 Comparative analysis with other FS techniques. It is important to observe the per-
formance of the proposed FS approach against the standard feature selection methods. The
impact of four FS methods, including our proposed approach, is visually depicted in Fig 8. To
provide a comprehensive comparison, we evaluated well-established techniques such as BFE
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Table 9. Evaluation of BFE with SMOTE-ENN (in %).

KDD-Cup99 Dataset

#features Models DT RF MLP GNB K-NN
Feature-41 Accuracy 99.35 99.33 98.55 94.10 98.76
Precision 97.88 98.71 92.53 92.58 94.81
Recall 98.42 98.16 88.93 84.45 96.00
F1-Score 98.59 99.00 92.25 93.04 95.01
Features-20 Accuracy 99.17 99.17 99.28 98.15 98.44
Precision 98.33 99.35 97.13 91.11 97.10
Recall 99.11 99.55 96.15 92.44 98.01
F1-Score 99.00 99.33 94.05 94.13 96.88
Features-15 Accuracy 99.11 99.00 99.01 94.64 98.27
Precision 98.11 98.45 91.66 92.41 95.33
Recall 98.18 99.12 93.77 94.14 94.00
F1-Score 97.08 98.11 91.08 90.08 94.99
Features-10 Accuracy 98.55 97.17 98.71 95.05 96.91
Precision 97.18 98.65 92.77 91.51 90.27
Recall 97.66 97.28 88.48 93.85 96.63
F1-Score 97.11 97.91 92.09 90.15 94.07
CIC-10T2023 Dataset
Features-46 Accuracy 97.37 98.30 97.12 72.81 95.02
Precision 81.22 95.14 94.55 77.11 96.15
Recall 87.63 81.37 77.17 55.72 97.22
Fl-score 88.55 86.78 75.91 71.58 94.90
Features-20 Accuracy 98.29 98.18 98.11 68.66 96.25
Precision 97.38 98.81 98.89 91.71 95.73
Recall 98.51 98.65 98.48 77.28 94.61
F1-score 98.26 99.11 98.95 75.91 94.74
Features-15 Accuracy 99.16 98.89 98.33 61.86 95.53
Precision 98.32 98.11 98.08 77.77 96.13
Recall 98.66 98.17 98.44 75.39 96.08
Fl-score 95.45 97.17 98.92 77.57 96.56
Features-10 Accuracy 99.01 99.19 98.22 55.20 96.62
Precision 98.98 99.15 98.13 89.33 97.91
Recall 99.19 98.66 98.35 62.63 96.22
Fl-score 98.65 98.44 98.59 82.33 98.81

https://doi.org/10.1371/journal.pone.0309682.t009

[41], SFS [15], MI [39], and PCA [40]. Fig 8a and 8b present line plots illustrating the perfor-
mance of such FS techniques and their corresponding accuracies on two distinct datasets.
Notably, the utilization of combined SFMI with a trained RF classifier demonstrated superior
results in most of the cases. The introduced FS method significantly boosts the classifier’s per-
formance and accuracy.
5.3.7 Computational complexity. An evaluation on testing time has been made over the
proposed method and compare it without FS method. Since the training phase has been made
offline, however, we compare the time computation for all methods during the testing phase.
The comparison of the execution time on test data has shown in Table 12. We observed that
during the testing phase, the time consumption is significantly reduced with the proposed FS

technique. For instance, the suggested model with feature selection achieves an average
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Table 10. Evaluation of SMOTE-ENN+SFMI+PCA (in %).

KDD-Cup99 Dataset using SMOTE-ENN+SFMI+PCA

#features Models DT RF MLP GNB K-NN
Feature-41 Accuracy 99.99 99.93 98.51 95.18 98.91
Precision 98.45 98.66 94.71 95.25 94.99
Recall 98.71 99.19 85.76 88.16 96.28
F1-Score 99.11 99.88 92.34 94.38 95.66
Features-20 Accuracy 99.01 99.11 98.11 98.15 98.01
Precision 97.55 98.87 97.11 91.33 98.68
Recall 98.72 96 96.18 93.76 98.11
F1-Score 97.76 98.7 94.1 94.44 98.88
Features-15 Accuracy 99 99.09 99.06 95.65 98.62
Precision 98.92 99.55 92.47 91.66 94.72
Recall 97.88 98.11 95.18 93.55 97.33
F1-Score 99 99.11 91.08 93.01 95.02
Features-10 Accuracy 98.99 99.91 98.95 96.44 98.9
Precision 98.11 99.11 93.44 89.18 92.8
Recall 97.11 98.62 89.09 95.05 96.16
F1-Score 95 98.99 90.11 91.55 94.66
CIC-10T2023 Dataset using SMOTE-ENN+SFMI+PCA
Features-46 Accuracy 99.94 99.97 98.87 77.19 98.13
Precision 99.56 100 96.17 96.72 98.73
Recall 99.12 99.34 98.41 87.11 96.64
Fl-score 99.01 99.63 97.98 88.56 99.69
Features-20 Accuracy 99.83 99.96 97.15 71.15 98.82
Precision 99.33 100 97.65 80.52 98.22
Recall 100 99.71 98.36 79.55 99.56
F1-score 87.91 99.53 98.13 81.43 99.16
Features-15 Accuracy 99.82 99.93 96.77 70.65 98.79
Precision 99.27 100 97.07 78.38 99.53
Recall 99.75 99.88 97.63 75.43 98.08
Fl-score 99.31 99.54 97.19 75.44 98.93
Features-10 Accuracy 99.83 99.97 97.15 70.55 97.46
Precision 99.38 99.39 97.52 84.14 98.29
Recall 100 99.56 97.69 67.99 97.61
Fl-score 99.01 99.21 98.48 80.65 98.41

https://doi.org/10.1371/journal.pone.0309682.t010

Table 11. Results comparison with classical machine learning method.

Algorithms Precision Recall F1_Score Accuracy Features
DT (Information Gain) [10] 87.1 93.06 89.13 84.40 10
KNN [30] 77.13 99 99 98.01 10
DMLP [28] 100 100 98.91 88.19 10
RF (GINI) [47] 81.42 99.69 89.64 98.76 10
GNB [49] 92.13 91.88 91.89 80.95 10
SMOTE-ENN+SFMI+PCA+RF(KDD-Cup) 99.65 98.96 99.07 99.91 10
SMOTE-ENN+SFMI+PCA+RF(CIC-10T) 99.97 99.39 99.56 99.21 10

https://doi.org/10.1371/journal.pone.0309682.t1011
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faster than the origi-

nal model (8.12 seconds) without feature selection. Comparatively, the suggested feature-

execution time of 5.34 seconds on the CIC-I0T2023 dataset, which is 35%

selected model on the KDD-Cup99 dataset attains an average execution time of 9.21 seconds,

free model (38.46 seconds). These outcomes

show how well the suggested feature selection technique works to increase the effectiveness of

intrusion detection systems.

which is 76% quicker than the initial feature

In another experiment, we tested the computational complexity of the SMOTE and SMO-

TE-ENN techniques. From Fig 9 it is observed that SMOTE-ENN takes less execution time

23/29

than the simple SMOTE technique with 10 and 15 features. SMOTE-ENN not only generates
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Table 12. Testing time (Sec) of different models with feature selection.
Models Without FS (CIC-IoT) With Proposed Model (CIC-IoT) Without FS (KDD-Cup) With Proposed Model (KDD-Cup)
DT 8.124 5.34 12.57 1.45
RF 224.29 40.496 38.46 9.21
MLP 690.54 87.632 58.56 10.23
GNB 3.858 4.732 19.67 1.57
KNN 416.53 4.012 1002.71 792.45
https://doi.org/10.1371/journal.pone.0309682.t012
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samples but also removes noisy samples and borderline examples using ENN. This cleaning
process might result in a more manageable dataset for subsequent processing steps, which
could help to reduce overall computation time. The usage of the SMOTE-ENN technique has
been proven that it can improve the detection rate in imbalanced training data. Moreover,
important features of the KDD dataset have been effectively selected by using the SES+PCA
method. Hence the SMOTE-ENN with proposed feature selection technique and RF model
can be useful in the context of SDIoT.

Fig 10 shows the testing time of PCA and without PCA for the CIC-IoT and KDD-Cup99
data sets. The SEMI+PCA model typically exhibits faster testing times than the SEMI model.
The SEMI+PCA with DT model takes an average of 2.2 seconds to test on the CIC-IoT23 data-
set, whereas the SFS+MI model takes an average of 0.9619 seconds. The SEMI+PCA model
takes an average of 2.137 seconds to test on the KDD-Cup99 dataset, whereas the SFMI model
takes an average of 1.242 seconds. This indicates a 72% increase in the SFMI model’s testing
duration. The SFMI+PCA improves the model in terms of efficiency as well as accuracy. This
is apparently due to PCA reducing the dimensionality of the data, which may reduce the com-
puting time of the classification operation.

A comparative analysis of CPU and memory usage has been made in Fig 11 Judging from
graph, it can be noticed that the models’ CPU and memory usage has been reduced marginally
after FS. For instance, in CIC-IoT dataset, the RF model without FS has the memory usage at
9.66%, whereas after FS it was reduced to 7.01%. The GNB model with FS has the smallest
CPU utilization of 11.31%, which was 12.11% before FS. These findings highlight the impor-
tance of feature selection on CPU and memory usage across models and datasets.

6 Conclusion and future work

The framework is divided into five primary phases, the first of which deals with the mean
value replacement technique for addressing missing values standardization and normalization.
In the second phase, the author proposed the Synthetic Minority Over-sampling Technique is
used to correct the data imbalance problem. Then it combines two phases from SMOTE to
SMOTE-ENN. In order to solve the issue of dataset noise, we employed the ENN approach to
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eliminate instances of either class. Feature selection is done in the third phase utilizing the fea-
ture significance technique to reduce the computational complexity of the model. We pro-
posed SFMI that combines the advantages of both SFE and Mutual Information techniques.
Top common features were extracted from the nominated features based on SFE and ML
Then, an improved prediction framework is modeled using a combination of Decision Tree,
Random Forest, Multi-layer Perceptron, Gaussian Naive Bayes, and KNN. This framework is
validated using the KDDCup99 and CIC-I0T23 dataset that shows better accuracy in RF
model. Thus, the proposed framework combines pre-processing using SMOTE-ENN, feature
selection using SFMI and PCA techniques for the recognition of malicious attacks. The pro-
posed model can provide various benefits to IoT applications, such as effective resource utiliza-
tion, reduced downtime, reduced economic loss, and resilience against evolving threats. In
future, the adaptability of the proposed model can be improved on evolving attacks using
ensemble models. Moreover, the model will be tested on different benchmark datasets for its

validation and performance measurement. The relevant features from multiple datasets will be
studied with impactful FS techniques.
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