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Abstract

Gliomas are highly malignant brain tumours that remain refractory to treatment. Treatment
is typically surgical intervention followed by concomitant temozolomide and radiotherapy;
however patient prognosis remains poor. Voltage gated ion channels have emerged as
novel targets in cancer therapy and inhibition of a potassium selective subtype (hERG,
Kv11.1) has demonstrated antitumour activity. Unfortunately blockade of hLERG has been
limited by cardiotoxicity, however hERG channel agonists have produced similar chemo-
therapeutic benefit without significant side effects. In this study, electrophysiological record-
ings suggest the presence of hERG channels in the anaplastic astrocytoma cell line SMA-
560, and treatment with the hERG channel agonist NS1643, resulted in a significant reduc-
tion in the proliferation of SMA-560 cells. In addition, NS1643 treatment also resulted in a
reduction of the secretion of matrix metalloproteinase-9 and SMA-560 cell migration. When
combined with temozolomide, an additive impact was observed, suggesting that NS1643
may be a suitable adjuvant to temozolomide and limit the invasiveness of glioma.

Introduction

Gliomas are the most common primary central nervous system tumour and one of the most
deadly [1]. Advancement in the standard of care has failed to translate into improved progno-
sis for glioma patients, with five-year survival improving only 1% over the last three decades
for glioblastoma (GBM) [2, 3]. The current standard of care for the treatment of brain cancer
involves maximal resection of the tumour, followed by radiotherapy and concomitant temozo-
lomide (TMZ), known as the Stupp protocol [4, 5]. This treatment protocol extends median
survival to only 15 months for GBM patients underpinning the need for new therapeutics to
improve both prognosis and quality of life amongst this population [6].
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There is increasing evidence that ion channels play a significant role in tumorigenesis and
cancer progression [7, 8]. The human Ether-a-go-go Related Gene (hERG), also known as
KCNH2, encodes for a component of Kv11.1, a voltage-gated potassium channel involved in
homeostatic regulation, as well as rhythmogenesis in cardiac and neural tissue [9-13]. Overex-
pression of hERG channels is implicated in driving both malignant transformation and
tumour progression [14-20]. It has also been demonstrated to be associated with neo-angio-
genesis, upregulation of cell proliferation, and increases in cell motility and invasion [12, 21].
Importantly, the overexpression of hERG channels is a marker for poor patient prognosis
[15, 18, 22]. In GBM patients, high hERG expression resulted in poorer overall survival; 43.5
weeks compared to 60.9 weeks in patients with low hERG expression [23]. Notably, this differ-
ence in survival was reduced when GBM patients with hERG overexpression were incidentally
treated with non-torsadogenic hERG channel blockers, demonstrating potential antitumor
efficacy through the modulation of hERG channels. Expression of KCNH2 is further variable
by tumour histological subtype and may be examined through microarray data from gene
expression database Oncomine [24].

Through inhibition of hERG channel function, tumour cells with high hERG expression
can undergo apoptosis and show a decline in their rate of proliferation [14, 25-28]. However,
therapies targeting hERG channel function are limited due to the cardiac risk profile of hERG
channel antagonists, posed through drug-induced arrhythmias and sudden cardiac death [29].
Interestingly, the narrow range of function of hERG channels enables hyperstimulation via
hERG channel agonists as a viable method to irreversibly inhibit the proliferation of tumour
cells that are ectopically expressing the channel, while simultaneously minimising cardiotoxic
risk [30, 31].

The hERG channel agonist NS1643 has been reported to reduce cell proliferation in rodent
and human glioma cell lines [32]. Herein, the SMA-560 mouse glioma cell line was treated
with the hERG channel agonist NS§1643 and in combination with TMZ, resulting in a strong
inhibition of cell proliferation. Our data supports further research into the potential use of
N1643 in the clinical management of glioma patients.

Materials and methods
SMA-560 cell culture

The SMA-560 tumour cell line, which was generously provided by Dr. Hui Lau (Royal Mel-
bourne Hospital), was cultured in DMEM (10313-021, Gibco) supplemented with (in v/v)
10% FBS (12003C, SAFC Biosciences, Australia), 1% penicillin-streptomycin (15140122,
Gibco) and 1% GlutaMax (35050061, Gibco) and incubated at 37°C with 5% CO, in a humidi-
fied environment [33].

Cell proliferation assays

Cells were seeded in 96-well plates and allowed to adhere overnight. Triplicate wells were
treated with varying concentrations of NS1643 as indicated for 72 h. Cells were subsequently
lysed and cell viability determined relative to the vehicle control using a commercially available
Cell Titer-Glo kit (Promega) following manufacturer’s instructions.

Scratch assay

Cells were seeded into 6-well plates and allowed to adhere for 48 h. A 1 mL pipet tip was used
to create the scratch. NS1643 (Sigma Aldrich; CAS 448895-37-2) or temozolomide (Xi’an
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D-Sung Health Biotechnology; CAS 85622-93-1) were prepared in the cell medium at a stock
concentration of 20 mM and 100 mM, respectively.

Cell migration was monitored using an IX50 inverted system microscope (Olympus) and
DFC3000 G microscope camera (Leica) controlled by Leica Application Suite Version 4.6.
Images were taken with a 4X objective at 0, 24 and 48 h post-scratch and Image]J (Schneider
et al., 2012; version 1.53t) was used to analyse the closure of the scratch to determine the cell
migration rate.

Gelatinase zymography

Cells were seeded in six-well plates (Corning) and were allowed to adhere overnight before
washing with sterile PBS and subsequent incubation in serum-free OptiMEM (Thermofisher
Scientific) for 24 h. One-hundred-microliter aliquots of the conditioned OptiMEM medium
was then sampled and centrifuged at 1000xg (4°C) for 10 min. Gelatin-based zymography was
performed with the conditioned OptiMEM media samples using 10% gelatin-substrate zymo-
graphy NuPAGE precast gels (Invitrogen, Australia) at 125 V for 1.5 h and the gels were
stained with Simply-Blue Stain (Life Technologies), followed by washing in distilled water
until clear gelatinolytic bands were visible. The gels were scanned using a flatbed scanner for
further densitometric analysis using Image ] (version 1.51f).

Identification of hERG channels via patch clamp

Healthy SMA-560 cells were selected for recordings. Fire polished borosilicate micropipettes
(1.5-2.5 MQ) were fabricated with a Sutter Instrument model P-1000 micropipette puller and
filled with a KF-based intracellular solution (in mM: 130 KF, 1 CaCl,, 1 MgCl,, 5 NaCl, 10
HEPES, 10 phosphocreatine, 4 MgATP, 0.3 GTP, 5 EGTA) (pH 7.25) and whole cell voltage
clamp recordings were carried out in a temperature controlled room at 22°C in a high K*
external solution (in mM: 150 KCl, 4 NaCl, 10 HEPES, 2 MgCl,, 2 CaCl,). Currents were
recorded with an AM systems model 2400 patch clamp amplifier with a sampling interval of
10us and Clampfit 10 software with a Digidata 1322A interface. The inhibitor-sensitive cur-
rents were obtained by subtracting the recorded currents in the presence of a hERG-channel
inhibitor E4031 from those recorded in the absence of the drug.

At the start of experimentation on each neuron, the high K* external solution was per-
fused into the recording chamber. From a holding potential of -100 mV the cell was depo-
larised to +40 mV for 500 ms followed by step changes in voltage with 500 ms negative
repolarising pulses from -80 mV to 170 mV with a 10 mV decrement at each sweep. Cells
were perfused with hERG channel inhibitor E4031 in high K" external solution and the
hERG protocol repeated to obtain current tracing following treatment with E4031. E4031
was washed out at a holding voltage of -100 mV, and the hERG protocol repeated to obtain
current tracing following washout. Analysis of current tracing was performed using Clampfit
10 software.

Oncomine data mining

Oncomine was used to compare expression levels of KCNH2 in different histological grades of
glioma relative to normal brain tissue from different studies [24]. Search criteria examined pri-
mary articles only from the previous 10 years, relevant to KCNH2 expression in human
gliomas.
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Fig 1. Cell proliferation assays: NS1643 inhibits cell proliferation. Cells were treated with indicated concentrations
0of NS1643 (n = 5) or TMZ (n = 5) for 72 h. Cell proliferation determined via Cell Titer-Glo kit. All statistical analyses
were performed using GraphPad Prism 10. Data was analysed using repeated measures one-way ANOVA followed by
a Dunnett’s test relative to DMSO control cells. Values were determined to be significant if p<0.05 (*), p<0.01 (**),
p<0.001, and p<0.0001 (***),

https://doi.org/10.1371/journal.pone.0309438.g001

Results
NS1643 inhibits cell proliferation

When SMA-560 cells were treated with NS1643 at concentrations greater than or equal to
3.125 uM over a 72 h period a statistically significant reduction in cell proliferation was
observed, relative to the control (Fig 1). Notably, when treated with NS1643 concentrations
greater than 25 pM, cell proliferation was almost arrested; 3.385%. + 1.034 for 50 uM NS1643.
Comparatively, high dose temozolomide treatment at 1000 (M resulted in 13.4353% + 1.658
cell proliferation, relative to the control.

NS1643 reduces matrix metalloproteinase-9 secretion and migration in
SMA-560 cells

Treatment of SMA-560 cells with a 40 uM concentration of NS1643 significantly reduces
matrix metalloproteinase-9 (MMP) secretion (37.67% * 6.49) (Fig 2).

NS1643 was effective in reducing wound healing of SMA-560 cells relative to the untreated
control (Fig 3). When treated with 40 uM of NS1643, SMA-560 exhibit statistically significant
reduction in wound healing capacity resulting in an average remaining wound area at 48 h of
46.30% + 3.08 (mean + SEM). Compared to untreated control cells, which displays 16.78% +
1.34 (mean + SEM) of the original wound area, this amounts to a 29.53% difference in wound
area. Treatment with 200 pM TMZ resulted in 31.05% * 1.267 (mean + SEM) wound area
remaining, representative of a 15.25% difference in wound area when compared to 40 uM
NS1643.
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Fig 2. NS1643 (40 uM) reduces MMP-9 secretion in SMA-560 cells: A) Gelatinase zymogram analysis of serum-reduced
Optimem conditioned medium showing MMP-9 secretion SMA-560 cells (0 uM NS1643, DMSO control, 40 uM NS1643).
B) Densitometric analysis of 3 zymogram experiments. All statistical analyses were performed using GraphPad Prism 10.
Data was analysed using repeated measures one-way ANOVA followed by a Tuckey’s post hoc test. Values were determined
to be significant if p<0.05 (*), p<0.01 (**), p<0.001, and p<0.0001 (***).

https://doi.org/10.1371/journal.pone.0309438.9002

NS1643 and temozolomide combination treatment displays additivity in
SMA-560 cells

The ICsq values for NS1643 and TMZ for cell proliferation in the SMA-560 cells were deter-
mined to be 7.6 uM and 167.5 uM, respectively (Fig 4). Following this, a range of paired con-
centrations below for IC5, for both NS1643 and TMZ were assessed to determine a possible
synergistic relationship as previously described [34]. Superadditivity indicative of synergism
was not observed, however low dose combination treatment produced a substantial reduction
in cell proliferation, relative to DMSO control, suggestive of additivity (Fig 4)

hERG channel inhibitor E4031 reduces hERG channel characteristic tail
current amplitude in SMA-560 cells

Patch clamp investigation of healthy SMA-560 cells, when subject to the hERG protocol and
dosed with E-4031, at concentrations of 25 uM or 1 uM, revealed clear inhibition compatible
with hERG currents as previously described [35]. Current subtraction between the currents
recorded in the presence and the absence of the E4031 was carried out to obtain the E-
4031-sensitive currents (Fig 5). A steady outward component, as well as a hook shaped tail cur-
rent was observed; highly characteristic of hERG channels.

Gene KCNH2 is expressed differentially independent of brain tumour
histological subtype

Microarray data from publicly available gene expression database Oncomine was extracted to
examine the expression level of KCNH2 in different histological subtypes of human brain can-
cers, relative to normal brain tissue (Table 1) [24]. Independent studies showed a significant
difference in the value of gene expression (p < 0.05) in human brain cancers compared with
normal human brain tissues [36-39].

In the Beroukhim study, KCNH2 was significantly overexpressed in primary and secondary
glioblastoma compared to normal brain and was among the top 3% and 6% overexpressed

PLOS ONE | https://doi.org/10.1371/journal.pone.0309438  September 6, 2024 5/14


https://doi.org/10.1371/journal.pone.0309438.g002
https://doi.org/10.1371/journal.pone.0309438

PLOS ONE NS1643 strongly inhibits astrocytoma cell line

vy
3

]
(@)

*kk%k

*kk*

* %

20—

Wound Open (%)
H
o
]

Wound Open (%)
N I
T T

0 1 | | | 0 | I | T
0 30 35 40 0 50 100 200
NS1643 (uM) TMZ (uM)

Fig 3. Scratch assays of SMA-560 cells following 48 h treatment with NS1643 or TMZ: A) Images of SMA-560 scratch assay at varying
timepoints following NS1643 treatment (n = 4; Dotted lines mark the borders of the wound area). A,B) Quantification of scratch assays with pixel
analysis demonstrating % of wound area remaining open at 48 h following treatment with either NS1643 or TMZ at indicated concentration.
Data was analysed using repeated measures one-way ANOVA followed by a Dunnett’s post hoc test relative to DMSO control cells. Values were
determined to be significant if p<0.05 (*), p<0.01 (**), p<0.001 (***), and p<0.0001 (****).

https://doi.org/10.1371/journal.pone.0309438.9003
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Fig 4. NS1643 and TMZ display simple additivity: A) ICs, of NS1643 for SMA-560 as determined by cell proliferation assay. B) IC5, of
temozolomide for SMA-560 cells as determined by cell proliferation assay. C) Cell proliferation following combination treatment of SMA-560
cells with NS1643 and TMZ at indicated concentrations. Cell proliferation determined via Cell Titre Glo kit following 72h treatment.

https://doi.org/10.1371/journal.pone.0309438.9004

genes, respectively (Table 1). The study also showed that KCNH2 was significantly overex-
pressed in anaplastic astrocytoma and anaplastic oligodendroglioma (Fig 6) [36] Similarly, in
the study conducted by French, KCNH2 was also found to be significantly overexpressed and
was ranked among the top 9-15% overexpressed genes in anaplastic oligoastrocytoma and
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Fig 5. Characterisation of E-4031-senstive currents in the SMA-560 cells (n = 5): A) hERG protocol; cells were held at -100 mV prior
to depolarisation the cell at +40 mV for 500 ms and stepping down to a series of 500 ms repolarising pulses from -80 mV to -170 mV,
with a 10 mV decrement each sweep. B) Whole current tracing of hERG channel inhibitor E-4031-subtracted (25uM) currents elicited
by a hERG channel-specific voltage protocol. C) Enlarged representative E-4031-substracted tail currents. D, E) Normalised tail
current amplitude elicited by repolarising currents. Peak tail currents were measured and normalised to the maximal tail current

produced at -170 mV. Amplitude is compared.
https://doi.org/10.1371/journal.pone.0309438.9g005
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Table 1. Analysis of KCNH2 mRNA levels in human brain cancer tissues.

Study Beroukhim [36] [187] French [37] [101] Bredel [38] [54] Murat [39] [84]
Percentile 97 94 92 90 91 85 87 85 78
Tumour Type GBM GBM* AA AO AOA AO AOA AO GBM
Percentage Change (%) 117.5 113.9 109.5 112.6 185.2 171.9 281.5 296.9 125.2

P-value 3.49E-13 5.88E-4 0.023 0.038 0.005 8.98E-4 0.027 0.031 0.005

Percentile-percentile of overexpression for KCNH2 mRNA. GBM-glioblastoma; A A-anaplastic astrocytoma; AO-anaplastic oligodendroglioma; AOA-anaplastic

oligoastrocytoma.
*—Secondary GBM

https://doi.org/10.1371/journal.pone.0309438.t001

anaplastic oligodendroglioma [37]. A study by Murat revealed that KCNH2 was overexpressed
in GBM and was ranked among the top 22% of overexpressed genes [39].

Discussion

Malignant gliomas are among the deadliest cancers and represent a disproportionately high
percentage of all cancer-related deaths annually, despite their low prevalence [40]. The five-
year relative survival of GBM patients has only improved by 1% over the last three decades,
signifying that despite some appreciable advances in the treatment of gliomas, a dearth of
efficacious therapeutics that can effectively improve the prognosis for glioma patients still

remains [2].
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Increasing evidence suggests that potassium channels play many fundamental roles in the
pathogenesis of glioma [41]. Overexpression or disruption of ion channel function can pro-
mote cell proliferation and cell migration [42-44]. The voltage-gated potassium channel,
hERG, has been shown to be involved in the upregulation of cell proliferation, cell motility,
cell invasion as well as in the process of angiogenesis [12, 21]. Treatment with hERG channel
antagonists has been shown to increase apoptosis and reduce proliferation in melanoma, non-
small cell lung cancer, and GBM [14, 25, 26]. However, the therapeutic action of hERG chan-
nel blockade is limited by severe cardiotoxicity [45]. Off-target blockade of hERG channels is
known to produce drug-induced long QT syndrome, which increases the risk of cardiac
arrhythmias, namely torsade de pointes, and sudden cardiac death [46]. Due to the cardiac risk
profile, several hERG channel antagonists have been discontinued [13].

Further research has demonstrated that hERG channels have a narrow range of function
during cell cycle progression [47]. Consequently, both constitutive inhibition and hyperstimu-
lation of hERG channels have been proposed to be capable of inducing senescence [30]. This
has presented an alternative route to extract chemotherapeutic utility from hERG channel
modulation and significant cardiotoxicity has yet to observed in animal models [31]. Treat-
ment of breast cancer cells expressing hERG channels with NS1643, irreversibly inhibited pro-
liferation [30]. Although they were not able to detect an apoptotic event, it was however
observed that NS1643 treated cells were preferentially arrested in the GO/G1 phase with
increased expression of the tumour suppressor proteins p21 and p16. Similar results are seen
in this study where treatment of SMA-560 cells with NS1643 results in potently decreased cell
proliferation. Notably, at concentrations of NS1643 greater than 25 uM, cell proliferation of
SMA-560 cells was reduced to approximately 9% of the control.

The mechanism of inhibition is purported to be through the downregulation of cyclin E2
[48, 49]. Cyclin E2 plays a critical role in cell cycle phase G1 progression and is described as
rate limiting for S phase entry [49]. Treatment with NS1643 has been demonstrated to reduce
levels of cyclin E2, possibly through increased rates of degradation through the ubiquitin-pro-
teasome pathway [49]. It also has been reported that down-regulation of cell proliferation may
occur via a calcineurin-dependent transcription of p21**"“"? induced by treatment with
NS1643 [50]. Notably, an in vivo model of breast cancer demonstrated that mice treated with
NS1643 did not exhibit significant cardiac dysfunction, affirming a reduced cardiac risk profile
of hERG channel hyper-stimulation, comparatively to blockade [31]. Treatment with NS1643
did produce a small elevation in the heart rate of some mice, however, this can be appropri-
ately managed with routine pharmacotherapy. Treatment of SMA-560 cells with NS1643 at
50 uM, also resulted in a more significant decrease in cell proliferation compared to high dose
treatment with TMZ at 1000 pM (Fig 1). Notably, the observed sensitivity of SMA-560 cells to
temozolomide appears to be significantly greater than previously reported, perhaps due to dif-
fering methods of viability assessment [51]. The absence of reported cardiotoxicity in animal
models, and potent anti-tumour activity, suggests treatment with NS1643 may offer therapeu-
tic utility for the management of glioma.

Treatment of glioma is intrinsically challenging due to the inherent limitations of surgical
intervention only providing a maximal safe resection of the tumour and often leaving residual
tumour tissue [52]. Furthermore, glioma cells surviving subsequent chemotherapy and radio-
therapy see a shift towards a more invasive phenotype through increased MMP activity [53-
56]. Invasion is facilitated by cell membrane bound, dynamic, actin-rich structures known as
invadopodia that secrete MMP-2 and MMP-9 [56]. MMP secretion results in degradation of
the surrounding extracellular matrix, thereby facilitating migration, invasion, and metastasis
[57]. Adjuvant therapies for glioma should aim to kill cells surviving the Stupp protocol, as
well as inhibit the invasive capability of glioma. Treatment of SMA-560 cells with 40 pM
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NS1643 reduced MMP-9 secretion over a 24 h period suggesting NS1643 may reduce the inva-
sivity of glioma. Furthermore, reduced wound healing, and migratory capacity, of SMA-560
cells was observed following treatment with NS1643.

The diverse microenvironment of gliomas is driving current research toward combinatorial
therapy [58]. TMZ alkylates purine bases within DNA generating a persistent methyl adduct
in the template strand [59]. This adduct is clastogenic, leading to collapse of the replication
fork and cell cycle arrest. Senescence follows and concomitant action of downstream apoptotic
proteins results in cell death. This mechanism of action is distinct from NS1643, suggesting
combinatorial therapy may be a viable treatment strategy [30, 31]. Combination treatment of
SMA-560 cells with NS1643 and TMZ displayed simple additivity as determined by cell prolif-
eration assay, suggesting NS1643 may be a suitable adjuvant.

Bioinformatics data, obtained from Oncomine, indicates that KCNH2 gene is expressed dif-
ferentially independent of brain cancer histological subtypes [36-39]. The degree of overexpres-
sion is most prominent in diffuse astrocytic and oligodendroglial tumours. Herein, patch-
clamp investigation of SMA-560 cells is highly suggestive of hERG channel expression. The
hERG channel shares structural similarities with the depolarisation-activated potassium chan-
nel family, however displays inward rectification expected of potassium channels with two
transmembrane segments [60]. Upon repolarisation to a negative membrane potential, channel
conductance increases dramatically to a large value before returning slowly to the resting closed
state; this produces a prominent tail characteristic of hERG channels. The underlying mecha-
nism for the gating kinetics of hERG channels is proposed to be the result of an inactivation
mechanism that deactivates channels at positive potentials, but quickly recovers at negative
potentials [61-63]. SMA-560 cells were treated with hERG channel antagonist E-4031 to visual-
ise underlying hERG channel kinetics. Treatment with the inhibitor produced currents with
hook-like characteristics consistent with classical hERG channel blockade [62, 64]. Amplitude
of tail currents was proportional to increasingly negative potential, suggesting a dependence on
repolarising potential. This is due to rapid recovery of hRERG channels from inactivation to an
open state, before slowly returning to the deactivated state [64]. SMA-560 cells are a well-estab-
lished glioma model, representative of differentiated anaplastic astrocytoma and the patch-
clamp data provides constitutive evidence for the presence of hERG channels [65]. This suggests
a direct mechanism of action for NS1643 on SMA-560 cells, instead of non-specific toxicity.

Conclusion

In summary, the presence of hERG channels is recognised in SMA-560 cells through patch
clamp investigation and hERG channel agonist NS1643 is demonstrated to almost entirely halt
proliferation of anaplastic astrocytoma cell line SMA-560 at concentrations greater than

25 uM. The invasive capability of SMA-560 would also be impacted through the reduced secre-
tion of MMP-9. In addition, the migratory ability of the SMA-560 cell line appears to be
affected due to the observed decrease in wound closure. Furthermore, NS1643 displays addi-
tivity for combination treatment with TMZ, suggesting NS1643 may be a useful adjuvant to
the current standard of care. Future work should aim to expand these findings to human cell
lines and in vivo study.

Supporting information

S1 Fig. Gelatinase zymogram measuring MMP-9 secretion following NS1643 treatment:
Image taken 24 h after treatment with 40 pM NS1643.
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