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Abstract

Structural variants play an important role in evolutionary processes. Besides, they constitute

a large source of inter individual genetic variation that might represent a major factor in the

aetiology of complex, multifactorial traits. Their importance in adaptation is becoming

increasingly evident in literature. Yet, the characterization of the genomic landscape of

structural variants in local breeds remains scarce to date. Herein, we investigate patterns

and gene annotation of structural variants in the Creole cattle from Guadeloupe breed using

whole genome sequences from 23 bulls representative of the population. In total, we

detected 32821 ascertained SV defining 15258 regions, representing ~ 17% of the Creole

cattle genome. Among these, 6639 regions have not been previously reported in the Data-

base of Genomic Variants archive. Average number of structural variants detected per indi-

vidual in the studied population is in the same order of magnitude of that observed in

indicine populations and higher than that reported in taurine breeds. We observe an impor-

tant within-individual variability where approximately half of the detected structural variants

have low frequency (MAF < 0.25). Most of the detected structural variants (55%) occurred in

intergenic regions. Genic structural variants overlapped with 7793 genes and the predicted

effect of most of them is ranked as “modifier”. Among the structural variants that were pre-

dicted to have a high functional impact on the protein, a 5.5 Kb in length, highly frequent

deletion on chromosome 2, affects ALPI, a gene associated with the interaction between

gut microbiota and host immune system. The 6639 newly identified structural variants

regions include three deletions and three duplications shared by more than 80% of individu-

als that are significantly enriched for genes related to tRNA threonylcarbamoyladenosine

metabolic process, important for temperature adaptation in thermophilic organisms, there-

fore suggesting a potential role in the thermotolerance of Creole cattle from Guadeloupe cat-

tle to tropical climate. Overall, highly frequent structural variants that are specific to the

Creole cattle population encompass olfactory receptor and immunity genes as well as
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genes involved in muscle tone, muscle development and contraction. Beyond mapping and

characterizing structural variants in the Creole cattle from Guadeloupe breed, this study pro-

vides valuable information for a better understanding of the potential role of chromosomal

rearrangements in adaptive traits in cattle.

Introduction

Structural variants (SV) are large DNA rearrangements (> 50 bp in length) affecting an indi-

vidual’s genome. They can be balanced and show no specific loss or gain of genetic material,

such as inversions of a genetic fragment or translocations of a stretch of DNA within or

between chromosomes, or they can be unbalanced, where a part of the genome is lost (inser-

tions/deletions) or duplicated (duplications). In the latter case, structural variants are also

termed copy number variation (CNV) [1]. Structural variants are ubiquitous and affect a

greater fraction of the genome than single nucleotide polymorphisms (SNPs) [2]. They have

been extensively studied in humans where they have been shown to constitute potent pheno-

typic modifiers that act through multiple mechanisms, such as altering gene dosage, disrupting

regulatory elements, generating fusion proteins or unmasking of recessive alleles, thus causing

several human disorders [3]. Structural variants are also considered as an important driver of

evolution that may enable rapid adaptation to environmental stressors in animals and plants

[4–6]. SV are poorly characterized in livestock [7]. Yet, several studies highlighted their influ-

ence on several phenotypic traits [8–10] in several domestic animals. In cattle, SV are responsi-

ble for variation in coat colour [11], and several complex traits, including milk production,

fertility, and other traits [8,12–14]. The majority of SV studies carried out in cattle were SNP-

array based [15]. It has only been recently that studies based on second- and third-generation

sequencing technologies begin to emerge for local breeds [16–18]. Regardless of the sequenc-

ing technology used, a significant proportion of the identified SV in cattle was shown to be

breed-specific, suggesting a potential association with differences in adaptation, health, and

production traits [19–21]. Breed-specific SV can potentially store important information on

the genomic architecture of adaptive traits. This is particularly true for small local breeds that

have been exposed to various selective pressures in a given environment.

Identifying SV associated with environmental adaptation would be of utmost importance

in the climate change context, particularly for cattle where high-producing breeds, more sensi-

tive to heat stress and less adapted to emerging pathogens are replacing locally adapted

populations.

Livestock species have been introduced in Latin America and the Caribbean after the dis-

covery of the new world by Colombus, in the 15th century. The first specimen introduced

came from the Iberian Peninsula, but afterwards, between the 16th and 18th century, animals

from other origins were brought, following the complex history of colonization and human

settlement in the region [22]. These complex migratory and admixture events, combined with

natural selection and traditional usage, led to the constitution of the different Creole breeds,

presenting specific features according to their location. In the Caribbean, under the French

influence, important migrations followed the slave-trade route from Western Africa, with

probably both small shorthorn taurine cattle and indicine admixed populations, as attested by

historical data [23].

Creole cattle in the Guadeloupe island (GUA) is an admixed breed resulting from a three-

way admixture between African taurine, European taurine and zebu (Fig 1). GUA individuals
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show good production and reproduction abilities under warm climate and harsh conditions

and are known to be resistant to several endemic tick-borne diseases in the island [24].

Recently, through whole-genome sequence analysis of 23 GUA individuals, we provided a

detailed examination of genetic variation and we identified several candidate regions poten-

tially associated with specific adaptive features in the GUA genome [25]. In order to capture

the different axes of diversity in GUA population, we herein report for the first time, a

genome-wide characterization of structural variants derived from whole-genome resequencing

data in these 23 GUA genomes. We also highlighted the potential role of the identified chro-

mosomal structural variation in local adaptation of GUA population.

Materials and methods

Animal ethics statement

Blood collection was done according to good practices recommended for identification of

sires for paternity checking in France. This study was approved by the scientific committee of

the Metaprogramme SELGEN of INRAE.

Sample information and genome sequencing

Twenty three Creole bulls representative of the INRA nucleus herd in Guadeloupe were

selected for the purpose of this study. Ten out of them are sons of founder sires of the experi-

mental flock while the remaining thirteen animals are unrelated sires (based on genealogical

records and sampling sites) chosen from the local stock of Guadeloupe. Genomic DNA was

extracted from whole-blood and semen samples collected between 1995 and 2015. Paired-end

libraries with insert size of 500 bp were constructed for each individual and sequenced using

Fig 1. Cow and sire representative of the Creole cattle from Guadeloupe. The hump and the dewlap in the males are

well-developed.

https://doi.org/10.1371/journal.pone.0309411.g001
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the HiSeq 3000 platform (Illumina) in the Genome et Transcriptome (GeT) GénoToul plat-

form (Toulouse, France), following the manufacturer’s protocol.

Sequence alignment and SV discovery

Quality control of raw sequence reads was performed using the fastQC software v.0.11.7 [26].

Trimmomatic-0.36 [27] was used to remove Illumina adapter sequences, low-quality bases and

artefact sequences. Filtered sequences were then mapped against the bovine reference genome

(ARS-UCD1.2) using the Burrows-Wheeler Alignment tool (bwa mem v.0.7.17) [28] with

default parameters. The resulting SAM files were then converted to BAM format, sorted, and

indexed using SAMtools [29]. PCR duplicates were removed using the MarkDuplicates tool

from Picard version 1.88 (http://broadinstitute.github.io/picard). Only properly paired reads

with a mapping quality of at least 30 were kept. Local realignment was performed using two

GATK (Genome Analysis Toolkit) version -3.8-1-0-gf15c1c3ef modules, RealignerTargetCrea-

tor and IndelRealigner. We used three SV callers, Pindel (v.0.2.5), LUMPY (v.0.2.13) and

DELLY (v.0.7.8). We developed a custom pipeline combining the detection results of the three

aforementioned SV-finding algorithms. We retained only SV identified by at least two callers

and having a length between 50 bp and 5 Mb because structural variants identification tools

relying solely on a single principle were shown to generate many false positive calls [30,31].

According to their frequency within the GUA sample, we have defined four SV categories: sin-

gletons (detected in one individual), low frequency (detected in less than 25% of individuals),

common (detected in more than 25% and less than 80% of individuals) and highly frequent

(detected in more than 80% of individuals). The R package karyoploteR [32] was used to display

SV distribution across 30 chromosomes (29 autosomes and the X chromosome). To identify

novel structural variations that had not been discovered so far, the genomic regions defining the

SV detected in the present study were intersected with known structural variations reported in

cattle from Database of Genomic Variants archive (DGVa) using the function ‘intersect’ from

BEDtools [33]. For this purpose, we defined non-overlapping SV regions for the three types of

SV and we compared these regions to the 9277 SV regions reported in the DGVa database.

Functional impact of structural variants

Ensembl Variant Effect Predictor (http://www.ensembl.org/info/docs/tools/vep/index.html)

(VEP) was used to provide a prediction for each transcript with which the common and highly

frequent SV overlap (those whose MAF> 0.25). VEP was used to determine the location of the

SV (e.g. intronic, intergenic, upstream of a transcript, in coding sequences, in regulatory regions)

as well as the predicted effect of SV on the protein (e.g. stop lost, frameshift). VEP also provides

an impact rating (high, moderate, low, and modifier) indicating the severity of the consequences.

Functional enrichment analysis was performed using the online tool DAVID version 6.8

(Database for Annotation, Visualization and Integrated Discovery, https://david.ncifcrf.gov/).

DAVID uses thousands of annotation terms in several annotation categories, such as Gene

Ontology (GO), Biological Process, GO Molecular Function and InterPro Domains. An

adjusted Benjamini-corrected p-value of 0.05 was used as the criterion for statistical signifi-

cance of over-enrichment of genes in one of the categories.

Results and discussion

Sequencing, SV discovery, and validation

A total of 7,543,644,154 clean reads were generated after sequencing the complete genome of

the 23 samples, representing an average depth of ~16.35 fold (min depth = 9.3; max
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depth = 23.77). The average alignment rate against the Bos Taurus reference genome

(ARS-UCD1.2), for the different individuals varied from 94.93% to 96.51% with an average of

95,7% (S1 Table). Three classes of SV: deletions (DEL), duplications (DUP) and inversions

(INV) with a size ranging between 50 bp and 5 Mb were detected. Among the three callers,

Pindel exhibited the highest detection sensitivity for deletions and duplications while DELLY

identified much more inversions. LUMPY, for its part, called a lower number of SVs for all the

three types of structural variants (Table 1). In total, 69% and 87% of the deletions (those at a

minimum overlap identity of 90%) identified by Pindel and LUMPY, respectively were also

detected by DELLY but this latter detected only 36% and 49% of the deletions, identified by

Pindel and LUMPY, respectively. A high percentage, 94%, of the duplications identified by

LUMPY were also identified by DELLY, but only 42% of those identified by DELLY were also

identified by LUMPY. Also, we found that 59% of the duplications detected by DELLY were

identified by Pindel and that 69% of those identified by Pindel were revealed by DELLY. In

total, 92% of the inversions detected by Pindel were also identified by DELLY but only 53% of

the inversions identified by DELLY were detected by Pindel.

In total, we identified 32,821 ascertained SV defining 15,258 regions with at least 2 software

from the 23 GUA animals. Although combining multiple callers is recommended for a higher

detection accuracy of structural variants [34], it should be outlined that SV detection in the

present study is likely to be altered by several factors that are related to the sequencing technol-

ogy used in the present study (short read sequencing) and to the threefold ancestry of the Cre-

ole cattle from Guadeloupe. For instance, insertions longer than short reads are expected to be

easily missed because they cannot align correctly with the reference genome [35]. Likewise, the

use of linear reference genomes causes reference allele bias that affects genetic variation detec-

tion tools [36]. Hence, we expect that the detection of SVs that are from African taurine and

indicine origin in the genome of GUA, woud be affected when aligning the mapped reads to

the Hereford reference genome assembly ARS-UCD1.2. Clearly, using a personalized reference

genome of GUA should improve reliability of structural variation calls.

SV distribution and statistics

In accordance with previous studies [37–39], we observe an abundance of deletions (76% of

the total SV detected in the present study) compared to duplications and inversions. On the

other hand, deletions have a similar range of total length to duplications (Table 2) which is due

to the fact that most of the identified deletions (81.56%) were <5 kb in length, whereas more

than half (~ 55%) of duplications and inversions are of large size (10 Kb<size<5 Mb)

Table 1. Performance of the three SV callers in detecting different SV types within the 23 Creole cattle

individuals.

SV caller SV type Count

Pindel DEL 1,089,575

DELLY DEL 201,233

LUMPY DEL 147,582

Pindel DUP 69,763

DELLY DUP 35,385

LUMPY DUP 10,269

Pindel INV 30,299

DELLY INV 49,726

LUMPY INV 1,342

https://doi.org/10.1371/journal.pone.0309411.t001
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(Fig 2A). This agrees with previous findings reporting a possible correlation between SV type

and size.

Approximately half (~ 54%) of all detected SV have low frequency (detected in less than 6

individuals; Fig 2B) and covered 1.214 Gb of the chromosomes of the ARS-UCD1.2 assembly.

About a quarter of these were detected in a single individual. This is consistent with previous

studies indicating that high SV diversity exists among different cattle individuals [40,41].

Accordingly, we also observe an important within-individual variation of high-confidence SV.

Their number ranged between 2092 and 4002 (average = 3051 ± 455) for deletions < 1 Kb,

1793 and 3009 (2362 ± 308) for deletions > 1 Kb, between 84 and 187 (average = 131 ± 28) for

duplications < 1 Kb, 282 and 736 (average = 488 ± 114) for duplications > 1 Kb, and between

61 and 115 (average = 86 ± 16) for inversions < 1 Kb, 155 and 318 (average = 242 ± 40) for

inversions > 1 Kb (Fig 2C). We observe, on average, 6360 SV per GUA individual which is in

the same order of magnitude of African and Indian zebu but goes well beyond the values previ-

ously reported in European and African taurine breeds [38]. Part of the differences between

GUA on one hand and taurine European and African populations on the other hand may be

due to population structure. Indeed, the three-way admixture of the GUA genome [24] of

which more than one third has an indicine origin is likely to be behind the high number of

observed SV. Several studies have reported a higher SV in indicine than in taurine breeds

which is consistent with the known breed divergence and history [42,43]. The origin of the

indicine ancestry in GUA population appears controversial. Some historical evidences [23]

relate introductions of West African cattle in Guadeloupe between the 16th and 18th century,

and it is possible that African zebu as well as African taurine have been introduced. The alter-

nate possibility of a recent introduction of Indian zebu in Guadeloupe at the end of the 19th

century (as in the other regions of America) has not been documented [24]

A small portion (7.6%) of the detected SV is present in more than 80% of the GUA individ-

uals (Fig 2B). Chromosomal distribution of common and highly frequent SV regions and hav-

ing a size > 1 Kb was not uniform and varied according to the SV type. Chromosome 25 has

the lowest number of deletions and inversions (47 and 6 deletions and inversions, respectively)

and chromosome 26 has the lowest number of duplications (7). By contrast, BTA5, BTA18

and BTA3 showed the highest number of deletions, duplications and inversions, respectively

(S2 Table).

Overall, common and highly frequent SV (MAF > 0.25) detected in the present study cov-

ered a total length of ~ 446 Mb which corresponds to almost 17% of the ARS-UCD1.2 assem-

bly. Analysis of the distribution of SV regions across chromosomes showed substantial

variation depending among others on SV type (Fig 3). Chromosome-wide SV coverage along

each chromosome varies from 6.36% on chromosome 25 to 39.4% on chromosome 28 (S1 Fig)

and S3 Table) and was not correlated to the number of SV regions (S3 Table). BTX is the most

densely covered with SV in terms of Megabases (32 Mb) with inversions representing 70% of

its whole SV length (S3 Table). Similar finding was reported by [44]. They explained this by

difficulties when mapping SV on the X chromosome especially in males where effective cover-

age is halved. Another possible explanation for the observed higher number of SV observed on

Table 2. Statistics of the SV number detected by at least two callers for the 23 GUA animals.

Number of SV Total length (Mb)

DEL 24981 792.46

DUP 5071 767.56

INV 2769 567.23

Total 32821 2127.25

https://doi.org/10.1371/journal.pone.0309411.t002
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the X chromosome in the 23 Creole cattle bulls is likely related to the high male specific contri-

bution of the X-chromosome to individual global recombination rate, previously reported in

several cattle breeds [45]. It is therefore reasonable to assume that chromosomes with higher

recombination rates are more likely to show more SVs since these are generated by different

recombination mechanisms.
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We identified 6065, 464 and 343 new deletion, duplication and inversion regions, respec-

tively that have not been previously reported in the DGVa database. Together, the three types

SV defined 6638 nonredundant regions that have not been previously reported in DGVa (S4

Table). Focusing on SV> 1 Kb, 1967, 238 and 221 new deletion, duplication and inversion

regions, were detected respectively (S2 Fig). Among these, three deletions, located on chromo-

somes 12, 16 and 26 and three duplications, located on chromosomes 7, 28 and X, are highly

frequent in the GUA sample (S5 Table).
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Fig 3. Chromosomal distribution of nonredundant SV regions with MAF> 0.25 and size> 1 Kb.

https://doi.org/10.1371/journal.pone.0309411.g003
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Annotation of SV

Structural variants that occur in genes can alter gene expression either by changing gene dos-

age or interrupting coding sequences, or disturbing long-range gene regulation which could

broadly influence phenotypes. To better predict the downstream effect of the detected SV on

protein function, we used the Ensembl VEP tool [46]. To get potential important insights into

population-level effect of SV on genes with adaptive functions in cattle breeds raised under

tropical environment, we merged the common and highly frequent SV into a set of nonredun-

dant 9734 SV regions among which 55% were intergenic (Fig 4). SV regions occurring in genic

regions overlapped with 7793 genes and 12,922 transcripts. According to VEP, almost all of

the detected SV were assigned to the “modifier” impact category which is not surprising since

most of these SV were located within introns (Fig 4). Only three deletions, located on BTA8

(at positions: 9,754,093–9,839,766), BTA10 (at position:101,090,067–101,094,332 bp) and

BTA15 (at position: 45,917,286–45,918,286 bp), were classified as having a high (disruptive)

impact on the protein function. Three genes are affected by these SV: HMBOX1, FOXN3 and a

novel cattle gene: ENSBTAG00000027525. The first two genes are transcription factors.

HMBOX1 is a transcriptional repressor that negatively regulates IFN-γ in natural killer cells

[47]. While IFN-γ production is momentarily abrogated following intense exercise which pro-

vides a window for invasion of pathogens [48], the deletion in HMBOX1 might be regarded as
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Fig 4. Variant effect predictor output from the genomic regions defined by nonredundant SV with size> 1 Kb.

https://doi.org/10.1371/journal.pone.0309411.g004
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a compensation mechanism that substitutes the downregulation of IFN-γ during prolonged

exhausting exercise. Creole cattle from Guadeloupe are mainly used for a draught of sugar

cane carts or ploughing [49] which would weaken their immune system for large parts of the

day. HMBOX1 might have also a protective role against splenomegaly and anaemia, which are

prominent features of trypanosomiasis in cattle [50]. Unlike HMBOX1, the adaptive interpre-

tation of FOXN3 deletion (observed in nearly 83% of our GUA sample), is less obvious because

this gene is involved in a variety of physiological processes ranging from cell proliferation, apo-

ptosis and pathogenesis in human cancer [51] to craniofacial development and fasting blood

glucose and glucagon, in other non-human species [52–54]. In Angus cattle, it has been associ-

ated with chest width and skeletal development [55]. Further investigations of the functional

effects of partial deletions FOXN3 on adaptive features of cattle are needed.

We also checked if there is any effect of SV frequency on their functional consequences by

comparing common and highly frequent SV on one hand and low frequency SV on the other

hand (these are defined as SV detected in less than four individuals). We found that SV of the

second category tend to be in coding sequences more often than the first category (738 Vs 487,

χ-squared = 51.712, p-value = 6.425 x 10−13).

We then generated a gene list including 579 genes that overlap with the genomic regions

specific to GUA population (those that were not reported in DGVa) and encompassing com-

mon and highly frequent deletions and duplications. These genes were annotated according to

DAVID Bioinformatics resources (https://david.ncifcrf.gov/). We found significant enrich-

ment of the functional category ‘UP_SEQ_FEATURE: DOMAIN:C2’ (Benjamini-corrected P-

value = 0.034, n = 13). Calcium transport was the most enriched biological process (BP) term

(Benjamini-corrected P-value = 0.0011, n = 10) (S6 Table). C2 domains are widespread and

conserved motifs that often serve as Ca2+-binding modules. Single and multiple copies of C2

domains have been identified in a growing number of eukaryotic signalling proteins that inter-

act with cellular membranes and mediate a broad array of critical intracellular processes,

including membrane trafficking, the generation of lipid-second messengers, activation of

GTPases, and the control of protein phosphorylation [56]. In total, thirteen C2 domain genes

located on 11 different chromosomes were impacted by SV. Among these, eight genes:

CPNE4, PKN2, PIK3C2G, UNC13C, DYSF, PLCB1, SYT9, SMURF2 are affected by frequent

deletions (affecting more than 65% of our GUA sample). In ruminants, several of these genes

have previously been associated with growth traits, such as CPNE4 or DYSF [57,58] or with fat

metabolism, such as PLCB1 [59]. Interestingly, the differentiation of some of these genes

between taurine and indicine cattle have also been discussed (CPNE4, DYSF, PIK3C2G)

[57,58,60]. Three of these genes (DYSF, PLCB1, SMURF2) are also known to regulate many

aspects of the immune system response to pathogens. Similar to HMBOX1, SMURF2 and

DYSF negatively regulate some aspects of immune response. SMURF2 gene is an essential neg-

ative regulator of TGF-β signalling and plays a role in the vascular inflammatory response in

the presence of hypoxia in endothelial cells [61] while DYSF negatively regulates phagocytosis

(GO:0050765). Finally, PKN2 appears essential for embryogenesis in mouse [62], and its loss

causes severe cardiovascular and morphogenetic abnormalities. More research would be nec-

essary to identify the impact of these deletions in cattle, in particular in GUA breeds.

We took a closer look at the three deletions and the three duplications that were not previ-

ously reported in the DGVa database and which are highly frequent in our GUA sample (S5

Table). These six CNV regions encompass 135 genes, most of them (67 genes) are located on

chromosome X. We have focused primarily on genes for which there is evidence for local

adaptation in GUA cattle. In this regard, we find that duplications on BTA28 encompass two

genes, ras homolog family member U (RHOU) and actin alpha 1, skeletal muscle (ACTA1) that

play a key role in muscle development and contraction [63–65]. RHOU also regulates cell-
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adhesion molecules during cardiac morphogenesis [66]. Creole cattle from Guadeloupe have

often been used as a major labour force in sugarcane fields and are known for their draft

endurance. Duplications in these genes might be a hint that allows physiological adaptation of

GUA population to such strenuous activities. In humans, it has been shown that SV occurring

in genes expressed in muscle or heart contribute to the variation of endurance capacity [67].

CNV observed in RHOU were also reported as involved in mammary development in Dairy

Gir cattle [68]. Deletions on BTA26, overlaps with INPP5A, that have been associated with

body temperature regulation in Nellore cattle, through the changes in the nervous system and

regulation of inflammatory processes [69].

In other respects, we observed that almost all duplicated genes on BTA7 included olfactory

receptors which are well known for their extremely frequent gene duplications and losses in

vertebrates [70]. Population specific SV affecting olfactory receptor genes were also reported

in cattle [71]. Likewise, we find that GUA-specific structural variants were also found to over-

lap with genes influencing milk as well as meat traits in cattle. For instance, duplications on

BTA28 overlap with 15 genes, some of which (RAB4A, CCSAP, ENSBTAG00000048654, or
URB2) have previously been associated with fat or protein metabolism involved in beef or milk

production traits [72,73]. The same finding holds for GPC6, TGDS, GPR180 and SOX21 genes

which overlap with deletions on BTA12 [72,74].

The 135 genes were analysed for GO term enrichment. Gene Ontology (GO) analysis

showed that tRNA threonylcarbamoyladenosine metabolic process is the most enriched bio-

logical process (BP) term (GO:0070525, n = 4, Benjamini-corrected p-value = 7.03× 10−4).

tRNAs are central players in translation, functioning as adapter molecules between the infor-

mational level of nucleic acids and the functional level of proteins. Modifications on tRNA

structure modulate rigidity and flexibility of the transcripts and confer thermal adaptation in

thermophilic as well as psychrophilic bacteria [75]. Although tRNA modifications play multi-

faceted roles in several cellular processes, they remain largely unexplored in mammals. In

humans, analysis of tRNA indicates that many tRNA modifications are incomplete under

physiological conditions and that variation in the levels of tRNA modification should enable

cellular adaptation to environmental changes [76].

Overlap between structural variants and previously identified signatures of

selection in the GUA genome

We investigated the potential overlap between the highly frequent structural variants, identi-

fied in the present study and six genomic regions that have been recently shown to be under

selection in the GUA population [25]. These six regions are located on BTA2 (at position:

120–120.5 Mb), BTA4 (at position: 113–113.5 Mb), BTA5 (at position: 47–47.5 Mb), BTA6 (at

position: 69–69.5 Mb), BTA12 (at position: 29–30 Mb) and BTA13 (at position: 63.5–64 Mb).

Within each region, we identified one or two candidate genes, based on their involvement in

adaptive traits: EIF4E2 (CR on BTA2), GIMAP genes (CR on BTA4), (GRIP1 and HELB on

BTA5), LNX1 and OCIAD1 (CR on BTA6), RXFP2 (CR on BTA12) and ASIP (CR on BTA13).

Overall, the six candidate regions included 17 structural variants ranging between 50 bp

and 253.7 Kb in length (14 deletions and 3 inversions). GIMAP genes (GIMAP4 –GIMAP7)

are located within an inversion of 253 Kb which overlapped with a previously reported CNV

(nsv616158, [43]) in cattle (S7 Table). They are related to the primary immunodeficiency path-

way and were also shown to play a major role in feed utilization and the metabolism of lipids,

sugars, and proteins in Jersey cattle, and present a signature of selection in Asturiana de los

Valles Spanish breed [77,78]. Among the SV specific to GUA individuals, we identified two

highly frequent deletions of 50 bp and 1056 bp in length affecting the intronic regions of HELB
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and GRIP1, respectively. HELB is involved in the response to DNA damage including exposure

to ultra-violet light and specific mutations carried out by indicine cattle and admixed popula-

tions have already been described. It appears to be associated with reproductive traits and year-

ling weight in tropical cattle, and could contribute to the adaptation of tropical cattle to their

harsh environment [79]. Likewise, we found that a 5.5 Kb-length deletion (at posi-

tion:120,098,203–120,103,733 bp) on chromosome 2 that affects a coding sequence of ALPI
gene and have a high predicted functional impact on the protein (S7 Table). This gene is

involved in diverse biological processes, including modulating host-bacterial interactions [80],

mucosal defence and maintaining gut homeostasis [81]. Functional studies would need to be

conducted to investigate whether the identified deletion impacts the adaptive immune system

of GUA cattle which in turn shapes the diversity and the balance of gut microbiota required

for immune homeostasis.

On chromosome 6, a deletion affecting 18 out of 23 GUA individuals is present in LNX1
gene, a major regulator of the presynaptic glycine transporter GlyT2 [82]. The 334-bp deletion

in our sample overlaps an intronic region and have a “modifier” impact, which supposes that it

has a mild effect on phenotypes in GUA cattle. Importantly, mutations in the exon 4 of GlyT2

were shown to cause recessive congenital muscular dystonia type 2 (CMD2) in Belgian Blue

cattle [83]. An association between LNX1 and birth weight has been reported in the Colombian

creole breed Blanco Orejinegro [84]. In humans, mutations in GlyT2 gene are responsible

hyperekplexia, a condition in which affected individuals have increased muscle tone (hyperto-

nia) and an exaggerated startle reaction to unexpected stimuli (tactile or acoustic) [85]. The

impact of this deletion in GUA cattle would be interesting to evaluate, whether it affect embryo

development, muscle tone or behaviour.

The closest SV to RXFP2 and ASIP (candidate genes on chromosomes 12 and 13, respec-

tively) are two deletions located 11.5 and 14.5 Kb upstream RXFP2 and ASIP, respectively.

Importantly, we found another deletion on chromosome 13 held by ~ 50% of GUA individu-

als, affecting EIF2S2 gene which is differentially expressed in the skin epidermis of Humans,

thus playing potential role in pigmentation phenotypes [86]. Some other genes affected by SV

in GUA are also associated with coat colour determinism in cattle such as DCT, OCAID1
(close to KIT gene) and ASIP [87–89] which may explain coat color variation observed in this

breed.

Conclusions

Characterizing the genomic patterns of structural variants in local livestock breeds could aid in

identifying phenotypically relevant loci involved in environmental adaptation. This study pres-

ents the first whole genome sequencing-based description of structural variants within the

Creole cattle from Guadeloupe. We show that SV are a major source of the genome diversity

of GUA population. We found evidence that an SV with a high impact consequence is associ-

ated with the interaction between gut microbiota and host immune system in this breed and

that several novel and previously identified SV may play a role in several GUA-specific adap-

tive traits such as immune response to pathogens, thermotolerance and physical endurance.

Our study motivate further research to investigate the functional effects of the identified struc-

tural variants on adaptive and production traits in tropical cattle breeds, in particular the phys-

iological impact of variants inherited from zebu.
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tural Variants in Bovine Holstein, Montbéliarde and Normande Dairy Breeds. PLOS ONE. 2015; 10:

e0135931.

38. Upadhyay M, Derks MFL, Andersson G, Medugorac I, Groenen MAM, Crooijmans RPMA. Introgression

contributes to distribution of structural variations in cattle. Genomics. 2021; 113: 3092–3102.

39. Zhou Y, Yang L, Han X, Han J, Hu Y, Li F, et al. Assembly of a pangenome for global cattle reveals

missing sequences and novel structural variations, providing new insights into their diversity and evolu-

tionary history. Genome Res. 2022; 32: 1585–1601. https://doi.org/10.1101/gr.276550.122 PMID:

35977842

PLOS ONE Structural variants in Creole cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0309411 August 26, 2024 15 / 18

https://doi.org/10.1101/gr.133967.111
http://www.ncbi.nlm.nih.gov/pubmed/22300768
https://doi.org/10.1371/journal.pone.0204669
http://www.ncbi.nlm.nih.gov/pubmed/30261013
https://doi.org/10.1038/s41467-022-28605-0
https://doi.org/10.1038/s41467-022-28605-0
http://www.ncbi.nlm.nih.gov/pubmed/35177600
https://doi.org/10.1371/journal.pone.0049066
https://doi.org/10.1371/journal.pone.0049066
http://www.ncbi.nlm.nih.gov/pubmed/23155451
http://www.ncbi.nlm.nih.gov/pubmed/8134643
https://doi.org/10.1111/j.1365-294X.2011.05163.x
http://www.ncbi.nlm.nih.gov/pubmed/21689193
https://doi.org/10.1038/s41598-023-38774-7
https://doi.org/10.1038/s41598-023-38774-7
http://www.ncbi.nlm.nih.gov/pubmed/37500674
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1038/s41467-019-11146-4
https://doi.org/10.1038/s41467-019-11146-4
http://www.ncbi.nlm.nih.gov/pubmed/31324872
https://doi.org/10.1186/s13059-019-1720-5
https://doi.org/10.1186/s13059-019-1720-5
http://www.ncbi.nlm.nih.gov/pubmed/31159850
https://doi.org/10.1093/bioinformatics/btx346
http://www.ncbi.nlm.nih.gov/pubmed/28575171
https://doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
https://doi.org/10.1038/s41431-021-00983-x
http://www.ncbi.nlm.nih.gov/pubmed/34744167
https://doi.org/10.1016/j.cell.2018.12.019
https://doi.org/10.1016/j.cell.2018.12.019
http://www.ncbi.nlm.nih.gov/pubmed/30661756
https://doi.org/10.1186/s13059-020-02105-0
https://doi.org/10.1186/s13059-020-02105-0
http://www.ncbi.nlm.nih.gov/pubmed/32718320
https://doi.org/10.1101/gr.276550.122
http://www.ncbi.nlm.nih.gov/pubmed/35977842
https://doi.org/10.1371/journal.pone.0309411


40. Chen N, Cai Y, Chen Q, Li R, Wang K, Huang Y, et al. Whole-genome resequencing reveals world-wide

ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat Commun. 2018; 9:

2337. https://doi.org/10.1038/s41467-018-04737-0 PMID: 29904051

41. Verdugo MP, Mullin VE, Scheu A, Mattiangeli V, Daly KG, Maisano Delser P, et al. Ancient cattle geno-

mics, origins, and rapid turnover in the Fertile Crescent. Science. 2019; 365: 173–176. https://doi.org/

10.1126/science.aav1002 PMID: 31296769

42. Zhou Y, Utsunomiya Y, Xu L, Hay EH, Dickart D, Sonstegard T, et al. Comparative analyses across cat-

tle genders and breeds reveal the pitfalls caused by false positive and lineage-differential copy number

variations. Sci Rep. 2016; 6: 29219 https://doi.org/10.1038/srep29219 PMID: 27381368

43. Liu GE, Hou Y, Zhu B, Cardone MF, Jiang L, Cellamare A, et al. Analysis of copy number variations

among diverse cattle breeds. Genome Res. 2010; 20: 693–703. https://doi.org/10.1101/gr.105403.110

PMID: 20212021

44. Talenti A, Powell J, Wragg D, Chepkwony M, Fisch A, Ferreira BR, et al. Optical mapping compendium

of structural variants across global cattle breeds. Sci Data. 2022; 9: 618. https://doi.org/10.1038/

s41597-022-01684-w PMID: 36229544

45. Kadri NK, Zhang J, Oget-Ebrad C, Wang Y, Couldrey C, Spelman R, et al. High male specific contribu-

tion of the X-chromosome to individual global recombination rate in dairy cattle. BMC Genomics. 2022;

23: 114. https://doi.org/10.1186/s12864-022-08328-8 PMID: 35144552

46. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl Variant Effect Predic-

tor. Genome Biol. 2016; 17: 122. https://doi.org/10.1186/s13059-016-0974-4 PMID: 27268795

47. Wu L, Zhang C, Zheng X, Tian Z, Zhang J. HMBOX1, homeobox transcription factor, negatively regu-

lates interferon-γ production in natural killer cells. Int Immunopharmacol. 2011; 11: 1895–1900.

48. Northoff H, Berg A, Weinstock C. Similarities and differences of the immune response to exercise and

trauma: the IFN-γ concept. Can J Physiol Pharmacol. 1998; 76: 497–504.

49. Gourdine J-L, Fourcot A, Lefloch C, Naves M, Alexandre G. Assessment of ecosystem services pro-

vided by livestock agroecosystems in the tropics: a case study of tropical island environment of Guade-

loupe. Trop Anim Health Prod. 2021; 53: 435. https://doi.org/10.1007/s11250-021-02880-3 PMID:

34392430
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