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Abstract

The catfish industry is the largest sector of U.S. aquaculture production. Given its role in

food production, the catfish immune response to industry-relevant pathogens has been

extensively studied and has provided crucial information on innate and adaptive immune

function during disease progression. To further examine the channel catfish immune sys-

tem, we performed single-cell RNA sequencing on nuclei isolated from whole spleens, a

major lymphoid organ in teleost fish. Libraries were prepared using the 10X Genomics Chro-

mium X with the Next GEM Single Cell 3’ reagents and sequenced on an Illumina

sequencer. Each demultiplexed sample was aligned to the Coco_2.0 channel catfish refer-

ence assembly, filtered, and counted to generate feature-barcode matrices. From whole

spleen samples, outputs were analyzed both individually and as an integrated dataset. The

three splenic transcriptome libraries generated an average of 278,717,872 reads from a

mean 8,157 cells. The integrated data included 19,613 cells, counts for 20,121 genes, with

a median 665 genes/cell. Cluster analysis of all cells identified 17 clusters which were classi-

fied as erythroid, hematopoietic stem cells, B cells, T cells, myeloid cells, and endothelial

cells. Subcluster analysis was carried out on the immune cell populations. Here, distinct

subclusters such as immature B cells, mature B cells, plasma cells, γδ T cells, dendritic

cells, and macrophages were further identified. Differential gene expression analyses

allowed for the identification of the most highly expressed genes for each cluster and sub-

cluster. This dataset is a rich cellular gene expression resource for investigation of the chan-

nel catfish and teleost splenic immunome.

Introduction

The immune system provides protection from invading pathogens and is divided into the

innate immune response and the adaptive immune response. The innate immune system is a
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rapid, generalized response to pathogens, whereas the adaptive immune response is a slower

but targeted defense. Additionally, there are immune system agents with both innate and

adaptive functions. Teleost fish are an important comparative model for the immune system

given that they are lower order vertebrates with both elements of innate and adaptive

immune systems [1]. The innate immune system of teleost consists of monocytes/macro-

phages, granulocytes, dendritic cells (DCs), natural killer (NK) cells and innate lymphoid

cells (ILC) [2].

The major lymphoid organs in teleost are the thymus, head kidney and spleen [3]. Like in

mammals, the thymus generates and differentiates T cells [3]. The head kidney is the fish

equivalent to bone marrow in mammals [3]. The spleen provides an environment for lympho-

cytes, B and T cells, to exist and proliferate [4]. By maintaining these cells, the spleen also facili-

tates contact between the lymphocytes and antigens/antigen presenting cells to mount an

immune response [4]. Furthermore, the spleen acts as a filter to clear circulating antigens and

pathogens from the blood [4] and maintains erythrocyte homeostasis.

Zebrafish (Danio rerio) is the most studied teleost immune model. Besides zebrafish, the

channel catfish (Ictalurus punctatus) has also served as an immunological model for the teleost

innate and adaptive immune system [5]. Though compared to mammals, in particular human

and mice, complex interactions of the innate and adaptive immunity are not well understood.

It is evident that the main mechanisms of the immune system overlap between teleost and

mammals [5,6]. However, even within teleost, there are unique attributes. For example, catfish

only express IgD and IgM, while IgZ/T isotypes have been detected in zebrafish, salmonids,

and other teleost fish [7–10].

The production of channel and hybrid catfish are of great commercial interest as they rep-

resent the largest sector of the United States (U.S.) aquaculture industry, with sales generating

$437 million in 2023 [11]. Significant losses in production can be attributed to pathogenic dis-

eases, and epidemiological reports show that catfish production is most affected by bacterial

diseases such as motile Aeromonas septicemia caused by Aeromonas hydrophila, columnaris

disease caused by Flavobacterium covae and enteric septicemia caused by Edwardsiella ictaluri
[12]. A basic understanding of the catfish adaptive immune system will facilitate investigation

into the progression of aquaculture-relevant diseases. Furthermore, the single-nuclei data pro-

duced from this study will be used to provide a baseline for studying the effects of active infec-

tion and disease interventions such as vaccines.

Studying the immune cell types in catfish and their gene expression profiles has been lim-

ited to bulk RNA sequencing (RNAseq) [13–15]. Bulk RNAseq extracts transcriptomic infor-

mation from a tissue or cell population, and thus the data represents the average gene

expression of the cells [16]. Therefore, for samples with heterogenous cell populations, tran-

scriptomic information is mixed, and signals from rare cell types are obscured or not detected

[16]. However, the additional characterization of immune cells in the heterogenous lymphoid

tissues is now possible with single-cell/single-nuclei RNAseq (scRNAseq/snRNAseq). In sc-

and snRNAseq, the transcriptomic analysis occurs at the individual cell level, allowing cell

types and states to be studied, and between cell type differences to be characterized [16]. Such

technology has already been applied to study zebrafish and Atlantic salmon (Salmo salar)
spleen to identify different immune cells [17]. To better understand the cellular landscape of

the catfish spleen we generated a snRNAseq atlas for the channel catfish. The spleen atlas pro-

vides a profile for the various immune cell types in the spleen and can be used to study the

expression of immune-relevant gene families.
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Materials and methods

Tissue preparation

This study was carried out at the United States Department of Agriculture–Agricultural

Research Service (USDA-ARS) Aquatic Animal Health Research Unit (AAHRU) and the use

of fish in this study was approved by the Institutional Animal Care and Use Committee

(IACUC) to ensure ethical use of research animals. The protocol conformed to USDA-ARS

Policies and Procedures 130.4 and 635.1. Three channel catfish (~ 1 kg) were obtained from an

earthen production pond and euthanized in a solution of MS-222 (300 mg/L, Syndel USA,

Ferndale, WA) buffered with sodium bicarbonate for 10 min. The individual spleens were

removed and placed into Petri dishes containing channel catfish media (cL-15), which is made

of Leibovitz’s L-15 medium (ThermoFisher Scientific, Waltham, MA) adjusted to catfish tonic-

ity with PenStrep glutamine solution (ThermoFisher Scientific) and 5% FBS (R&D, Minneapo-

lis, MN) [18]. The spleens were first processed through a 70 μM cell sieve into Petri dishes

(ThermoFisher Scientific) to achieve a single cell suspension and then further processed

through a 40 μM cell sieve (ThermoFisher Scientific) into 50 mL Falcon tubes and cL-15 was

added up to 10 mL. The splenic cell suspensions were centrifuged at 350 x g for 5 min, the

supernatant was aspirated, and the cell pellet was resuspended in 10 mL of cL-15. This process

was repeated two additional times, and the final cell pellet was resuspended in 15 mL of cL-15.

Splenic cells were counted, and cell viability was assessed with Trypan blue using a TC-20 cell

counter (BioRad, Hercules, CA). Whole, unfractionated spleen preparations from each of the

three individuals (1.0 x 107 cells) were pelleted and resuspended in 1 mL of freezing medium

(90% FBS, 10% DMSO) in 2 mL CRYO.S cryogenic vials (Greiner Bio-One, Monroe, NC) and

placed into a Mr. Frosty freezing container (ThermoFisher Scientific) at -80˚C for 24 h. The

cryogenic vials were then moved into liquid nitrogen storage until shipping to a service

provider.

Cell preparation to isolate individual nuclei

The following procedures (isolation of nuclei through the generation of raw sequencing data)

were performed via a service provider (SeqMatic, Fremont, CA). Frozen cells were thawed in a

water bath set to 28˚C and added to 6 mL of cL-15. The cells were centrifuged at 1200 RPM for

5 min to form a pellet. The supernatant was removed, and the cells were resuspended with 1

mL of cL-15. Cell concentrations and viability were measured using a Countess II FL auto-

mated cell counter (ThermoFisher Scientific). A total of 2.5 x 106 cells were transferred to new

tubes and centrifuged at 300 x g for 5 min at 4˚C, and the supernatant was removed. The cells

were lysed by gently pipette mixing in 200 μL of lysis buffer and incubated for 1 min on ice.

The lysis buffer consisted of 10 mM Tris-HCL (pH 7.4), 10 mM NaCl, and 3 mM MgCl2

(Millipore-Sigma, Burlington, MA).

The lysed cells were initially washed by pipette mixing with 800 μL of Nuclei Wash and

Resuspension Buffer and centrifuged. The buffer contained 1% BSA (ThermoFisher Scientific),

0.2 U/μL RNase Inhibitor (Millipore-Sigma), and 1x PBS (Corning-Cellgro). The nuclei were

washed two times using 1 mL of Nuclei Wash and Resuspension Buffer, pelleted by centrifuga-

tion and the supernatant removed. Centrifugation for washing steps were carried out at 500 x

g for 10 min at 4˚C.

The quality of the nuclei was checked by resuspending with 100 μL of Nuclei Wash and

Resuspension Buffer with Ethidium Homodimer-1 dye (Millipore-Sigma). The nuclei concen-

tration was diluted to the target concentration required for library preparation.
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Library construction

The single-nuclei RNA-seq libraries were prepared and constructed using the Chromium X

Instrument (10x Genomics, Pleasanton, CA) and the Chromium Next GEM Single Cell 3’

GEM Kit v3.1 (10x Genomics) following the manufacturer’s protocol. Briefly, the individual

nuclei were partitioned to produce gel beads-in-emulsion (GEMs). The GEMs were generated

by loading the nuclei in master mix, barcoded Single Cell 3’ v3.1 Gel Beads, and partitioning

oil onto Chromium Next GEM Chip G. The Gel Beads was dissolved to release the primers

and incubated to produce barcoded full-length cDNA. The cDNA was cleaned to removed left

over reagents using Dynabeads MyOne SILANE (ThermoFisher), then amplified via PCR.

Optimal sized cDNA amplicons were selected using SPRIselect (Beckman Coulter, Brea, CA)

and Illumina indexes and adapters were added via end repair, A-tailing, adaptor ligation, and

PCR. Sample quality was checked using a TapeStation (Agilent Technologies, Santa Clara, CA)

with the TapeStation High Sensitivity D1000 ScreenTape (Agilent Technologies). The three

cDNA samples were multiplexed and sequenced using the Illumina NovaSeq X Plus sequencer

(San Diego, CA). The raw sequencing data was demultiplexed using Cell Ranger (v.5.0.0) ‘cell-

ranger mkfastq‘and data provided to the USDA-ARS-AAHRU.

Data demultiplexing, trimming, filtering and normalization

Prior to snRNAseq data analyses, annotation of the channel catfish reference genome assembly

(Coco_2.0, NCBI Accession number GCF_001660625.3) was manually curated. The annota-

tion for IgM (ighm) was missing from the reference genome, and IgD (ighd) was annotated to

include ighm. The reference genome annotation file (GCF_001660625.3_Coco_2.0_genomic.

gtf) was adjusted to include an annotation for ighm (chr2:17077000–17085528) based on the

channel catfish genomic DNA sequence of the IgM heavy chain (NCBI Accession number

X52617.1), including four exons encoding CH1-4 and two exons encoding the transmembrane

(TM) domains [19,20]. The annotation for ighd (NCBI Accession number XM_053677651.1)

had exons (exon 1 and exon 2) that did not correspond with constant domains 1–7 or TM

domains (NCBI Accession number AF363448) [10], and exon 2 overlapped with the ighm
CH1 domain. Therefore, ighd was altered to the range chr2:17085529–17097451 and exon 1

and exon 2 removed.

A Cell Ranger compatible channel catfish reference genome was built using the reference

assembly with the modified GTF file using ‘cellranger mkref‘. Sequences were trimmed,

aligned to the reference assembly, filtered, and counted to generate feature-barcode matrices.

The individual spleen samples were filtered further and normalized using Seurat (v.5.0.1)

[21]. Cells with number of expressed genes < 200 and> 4,000, and cells that had expression

from mitochondrial genes > 5% were removed from the data. The data was normalized using

the global-scaling normalization method, whereby feature expression for each cell is normal-

ized by the total expression, multiplied by 10,000 and log transformed.

Cluster analysis

The dimensionality of the data was analyzed by principal component analysis (PCA). Prior to

PCA, the expression data was scaled so that the mean expression across cells was 0, and the

variance was 1. An elbow plot of the PCA standard deviations and observation of genes in

PCAs was used to determine the number of dimensions used to generate clusters.

Cluster analysis was carried out on individual samples and on integrated (aggregated) sam-

ples. Samples were integrated using the ‘merge‘, ‘integrate‘and ‘join‘functions in Seurat. Clus-

ters were generated through a graph-based approach using the ‘FindNeighbors‘and

‘FindClusters‘functions in Seurat. Briefly, a K-nearest neighbor (KNN) graphing approach

PLOS ONE Channel catfish spleen single nuclei RNA sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0309397 September 26, 2024 4 / 24

https://doi.org/10.1371/journal.pone.0309397


identified cells with similar gene expression patterns, and the Louvain algorithm was applied

to identify clusters. The clusters were labelled as erythroid, hematopoietic stem cells (HSC), B

cells, T/NK cells, myeloid-derived cells or endothelial cells depending on gene marker expres-

sion. Markers used to define cell type were obtained from the current literature. Differential

gene expression analysis was carried out between clusters using ‘FindAllMarkers‘.

Cell trajectory analysis

The trajectory analysis was conducted using Monocle 3 (v1.3.7) [22]. The Seurat object con-

taining cluster information was converted to a cell data set object using SeuratWrappers

(v0.3.5). The function ‘learn_graph‘was used to predict the trajectory, and ‘order_cells‘was

used to determine the pseudotime of each cell. The trajectory and pseudotime were plotted

onto the UMAP of clusters.

Results and discussion

Data quality

The snRNAseq libraries of each spleen from three individual channel catfish were termed SP1,

SP2, and SP3. The summary statistics of the splenic snRNAseq transcriptome libraries, before

filtering, generated an average of 278,717,872 reads from a mean 8,157 cells (Table 1). Filtering

was carried out to remove cells likely to be non-viable, identified by higher mitochondrial

DNA counts (> 5%), and from cells likely to be doublet/multiplet indicated by high molecule/

feature counts. After filtering, 81.4%, 69.6% and 84.0% of cells remained for SP1, SP2, and SP3,

respectively.

The individual cluster analyses identified 11 to 12 clusters for SP1, SP2, and SP3, which are

numbered sequentially in order of cell number in each cluster per individual (Fig 1). The num-

bering does not necessarily indicate that clusters with the identical numbering between sam-

ples are the same cell type. The ten most differentially expressed gene markers were identified

for individual clusters (S1 Table). Cell clusters for each library were defined when a similar

number of clusters, and cluster-size distribution were identified, and an initial cell identifica-

tion was proposed based on the expression of canonical genes from known cell types (Fig 1

and S1 Table). To identify cell types within the spleen libraries, genes identified from single-

Table 1. Summary statistics of single-nuclei transcriptome libraries (SP1, SP2, SP3) generated from catfish spleens (n = 3). The data were initially filtered to remove

barcodes not associated with cells using Cell Ranger and further filtering was carried out using Seurat to remove multiplets and cells with> 5% reads aligned to mitochon-

drial genes. The individual libraries were integrated for combined cluster analysis in Seurat.

Sample Output SP1 SP2 SP3 Seurat Integrated Samples

Number of Reads Cell Ranger a 198,304,083 215,231,958 422,617,575

Median Number of Reads/Cell Cell Ranger a 25,591 42,037 36,423

Q30 Bases in RNA Reads Cell Ranger a 95.0% 93.6% 95.2%

Confident Alignment to Reference Transcriptome Cell Ranger a 48.4% 47.7% 42.1%

Estimated Number of Cells Cell Ranger a 7,749 5,120 11,603

Seurat b 6,305 3,564 9,744 19,613

Number of Features Detected Cell Ranger a 25,591 22,692 23,1456

Seurat b 19,094 19,224 20,121 20,121

Median Number of Features/Cell Cell Ranger a 647 554 733

Seurat b 649 532 737 665

a The data were initially filtered to remove barcodes not associated with cells using Cell Ranger.
b The data after filtering using Seurat.

https://doi.org/10.1371/journal.pone.0309397.t001
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cell analyses of different vertebrate species (mammalian and teleost) were used as a reference

(Table 2). Ultimately, the individual sample libraries were integrated into one dataset for clus-

ter analysis and cell type identification. Except for one cluster, cells from all three samples con-

tributed to the clusters in the integrated single-cell data set (S1 Fig).

Cell populations in the channel catfish spleen

Cluster analysis of the aggregated spleen library yielded 17 clusters which were defined in the

tSNE (Fig 2A) and heat map (S2 Fig). Expression of 25 canonical gene markers defined these

different clusters (Fig 2B and Table 2). The majority of identified cells (14,353; 73.0%), consist-

ing of six clusters, expressed erythroid markers. The immune cell markers further defined

hematopoietic stem cells (HSC, 2,065; 10.5%), B cells (2,469; 12.5%), T/Natural Killer (NK)

cells (461; 2.35%) and myeloid lineage cells (234; 1.19%). Thirty-one cells expressing endothe-

lial markers were also identified (S2 Table and S2 Fig).

The six erythroid clusters 0–3 and 6–7 had increased expression of slc4a1a, alas2, sptb and

hemgn, and uniformly grouped together (Fig 2 and S2 Table). Cluster 0 had significantly

increased expression of blood related genes LOC108257039 (hemoglobin subunit beta), blvrb
(biliverdin reductase B), hbaa2 (hemoglobin subunit alpha 2), mt2 (metallothionein 2), and

urod (uroporphyrinogen decarboxylase). In humans,MT2A is a negative regulator of erythroid

differentiation [33]. The human orthologue of blvrbmaintains redox homeostasis and is

involved in directing cell fate of HSC to red blood cells [34]. The gene urod encodes an enzyme

involved in heme production [35]. Cluster 1 has significantly increased expression of pcmt
(protein-L-isoaspartate O-methyltransferase) which is involved in repair of red blood cells

undergoing oxidative stress in mice [36]. Therefore, this cluster may represent red blood cells

with oxidative stress. Cluster 2 cells significantly increased expression of hemoglobin subunits,

LOC108257036 (hemoglobin subunit beta) and LOC108257041 (hemoglobin subunit alpha).

The remaining genes highly expressed by this cluster have not been characterized. Cluster 3

cells have increased expression of ank1a (ankyrin 1), sox6 (SRY-box transcription factor 6),

LOC108280488 (transferrin receptor), ripor3, slc7a5 (Solute carrier family 7 member 5).

Ankyrin is a protein that attaches to the cell membrane to maintain the membrane structure of

erythrocytes [37]. Sox6 is involved in erythroid maturation [38]. Human and murine ortholo-

gues of slc7a5 control red blood cell size and maturation and absent in mature erythroid cells

[39]. Therefore, Cluster 3 cells may represent immature erythroid cells. Cells in cluster Ery-

throid 6 was defined only by increased ribosomal protein expression. Cluster 7 had increased

Fig 1. Single-nuclei transcriptomes of whole spleen samples from channel catfish (Ictalurus punctatus). Cluster

analysis was performed on individual samples (a) SP1 (b) SP2 (c) SP3. Clusters are depicted as tSNE plots and cell-

markers are used to classify clusters as erythroid cells, HSC, B cells, T/NK cells, and myeloid lineage cells.

https://doi.org/10.1371/journal.pone.0309397.g001

Table 2. Features used to identify each cell type among different clusters.

Population Feature Reference

Erythroid cells slc4a1a, alas2, sptb, hemgn [6,23,24]

B cells pax5, cd79b, cd37, ighd, ighm [6,25]

T/NK cells lck, runx3, ifgn1, il7r [6,26,27]

HSC meis1b, mpl, runx1, gata2b [6,28–30]

Myeloid cells adgrg3, nccrp1, mpeg1.1, grna [6,31]

Endothelial cells cdh5, kdrl, pecam1a, akap12b [6,32]

https://doi.org/10.1371/journal.pone.0309397.t002
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expression of slc4a1a, LOC108280488 (transferrin receptor), ripor3, ank1a, sptb, blvrb and

epb41b (erythrocyte membrane protein band 4.1b).

Cluster 4 had increased expression of itga2b (integrin alpha 2b; also known as cd41), meis1b
(meis homeobox 1) and itgb3b (integrin beta 3b; also known as cd61) which are genes known

to be expressed by HSC (Table 2). Itga2b/itgb3b are used as a marker for HSC in teleost fish

[40,41] and other species [42–44]. The expression of the transcription factor meis1b has been

detected in HSC isolated from zebrafish kidney [45], and was shown to be important for the

maintenance of adult mouse HSC [46]. Cluster 10 (HSC) expressed both erythroid (slca1a,

alas2, sptb, hemgn) and HSC markers (meis1b, mpl, runx1).

There are four clusters (Clusters 5, 9,12–13) that have expressed B cell markers pax5, ighd,

ighm, cd79b and cd37 (Fig 2B and S2 Table). Clusters 5 and 9 have pax5, ighd, LOC108259908
and nr4a1 (nuclear receptor subfamily 4 group A member 1) among their most highly

expressed genes. LOC108259908 is assigned to an Ig heavy chain Mem5-like gene in the cur-

rent channel catfish genome assembly (Coco_2.0), but likely represents an IgL gene segment

based on BLAST analysis [47,48]. Pax5 and ighd are canonical B cell genes [49,50] and nr4a1 is

expressed in a wide variety of immune cells, including macrophages, but, in mice, functions to

restrain immunodominance of B and T cells when diverse clonal population compete in the

germinal center (GC) [51,52]. In the apparent absence of GC in teleost fish perhaps it is more

important in regulating the formation or maintenance of melano-macrophage centers [53,54].

Cluster 5 also had increased expression of ebf1b (early B cell transcription factor 1b),

LOC108261469 (immunoglobulin kappa constant-like) and pou2af1 (POU class 2

homeobox associating factor 1). In teleost, ebf1b is expressed by the common lymphoid pro-

genitor, pro-B cells and pre-B cells and drives early B cell commitment [49]. This suggests that

the cells in Cluster 5 could represent a nascent B cell lineage. Cluster 9 also had increased

expression of LOC108267808 (LYN proto-oncogene) and cd79b. Expression of LYN and cd79
have been shown to be important for B cell receptor formation, maturation, and survival

[55,56].

The remaining B cell clusters, 12 and 13, have higher expression of fabp3 (fatty acid binding

protein 3) and mki67 (marker of proliferation Ki-67). In mice, fabp3 is expressed in activated

B cells and promotes the development of plasma cells [57]. MKI67 expression was increased in

human bone marrow plasmablasts [58]. The expression of fabp3 and mki67 indicates that

these cells may have differentiated from B cells to plasmablasts. The cells in Cluster 12 also

have increased expression of diaph3 (diaphanous-related formin 3) and atp5mc1 (ATP

Fig 2. Cluster analysis of integrated nuclei transcriptome of spleen (n = 3) from channel catfish. Cluster analysis identified

sixteen cell clusters. (a) tSNE plot (b) Average expression (z-score) of cell type markers (x-axis) for each cluster (y-axis). The

size of the dot represents the percentage of cells per cluster contributing to expression. Cell type was assigned to clusters based

on the expression of canonical cell markers (Table 2).

https://doi.org/10.1371/journal.pone.0309397.g002
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synthase membrane subunit c locus 1). The human orthologues of diaph3 and atp5mc1 are

expressed by human plasma cells [59]. The cells in Cluster 13 have increased expression of

pdia4 (protein disulfide isomerase family A, member 4), selenom (selenoprotein M), spats2
(spermatogenesis associated serine rich 2), hsp90b1 (heat shock protein 90 beta family member

1), stt3a (STT3 oligosaccharyltransferase complex catalytic subunit A), ube2j1 (ubiquitin con-

jugating enzyme E2 J1), and lman1 (Lectin, mannose binding 1). In mice, it has been shown

that hsp90b1 acts as a chaperone to toll-like receptors and integrin molecules [60]. The human

single cell type atlas indicates that PDIA4, SELENOM, SPATS2, HSP90B1, STT3, UBE2J1 and

LMAN1 are expressed by human plasma cells [59].

Cluster 8 expressed T cell markers lck, runx3, ifng1 and il7r (Fig 2B and S2 Table). The most

differentially expressed genes indicative of T cell function include ptprc (protein tyrosine phos-

phatase receptor type C), runx3, fmnl1a (formin like 1) and arid5a (AT-rich interaction

domain 5A). Ptprc is expressed by most immune cells but is important for T cell development

and signaling, and NK cell function [61–63]. Runx3 is a transcription factor for T cell develop-

ment [64]. In mice, fmnl was shown to be important for T cell migration through restrictive

environments [65]. Arid5a directs differentiation of naive CD4+ T cells to inflammatory CD4+

T cells [66].

Clusters 11, 14 and 16 have increased expression of adgrg3, nccrp1, mpeg1.1 and grna indi-

cating that they likely belong to the common myeloid cell lineage (Fig 2B). Cluster 11 was

defined by upregulated expression of myeloid-related genes such as dbn1 (drebrin 1), foxp4
(forkhead box P4), samsn1a (SAM domain, SH3 domain and nuclear localization signals 1),

csf1rb (colony stimulating factor 1 receptor), mafba (MAF bZIP transcription factor B) and

csf3r (colony stimulating factor 3 receptor). Dbn1 is expressed by DCs and mast cells in mice

and encodes drebrin which is an actin binding and stabilizing protein [67,68]. An in vitro
study of FOXP4 has shown that it may have a role in the inflammatory response of human neu-

trophils [69]. The samsn1 mouse orthologue regulates inflammatory response of immune cells,

including macrophages, mast cells and lymphoid cells [70]. In humans, MAFB, a transcription

factor, is involved in cell fate of myeloid cells which can differentiate to either macrophages

and DCs [71]. Lastly, csf1r encodes a receptor that regulates monocytes and macrophages in

teleost species [72], and was demonstrated to promote the differentiation of myeloid progeni-

tors into leukocytes such as monocytes, macrophages and DCs in human and mouse studies

[73]. LOC108266645 (killer cell lectin-like receptor subfamily E member 1) is also highly

expressed and may indicate pre-cursors to DCs are present in this group. Killer cell lectin-like

receptors typically modulate DC and NK cell immune responses [74,75].

Cluster 14 had increased expression of myeloid-lineage genes flt3 (fms related receptor

tyrosine kinase 3), fgd4a (FYVE, RhoGEF and PH domain containing 4a), plxna4 (plexin A4),

dbn1, ppfibp2 (ppfibp2a), pak1 (P21 (RAC1) activated kinase 1). Flt3 is involved in differentia-

tion of myeloid progenitors into macrophages (mouse) and DCs [76,77]. The pak1mouse

orthologue was shown to be involved with macrophage polarization [78]. Human orthologues

of fgd4a and ppfibp2 have expression in monocytes, and plxna4 has expression in DCs. Mye-

loid related genes that were upregulated in Cluster 16 were apol1 (apolipoprotein L1), sting1
(stimulator of interferon response cGAMP interactor 1), LOC108279184 (transcription factor

4; tcf4), LOC108266986 (TLR adaptor interacting with endolysosomal SLC15A4), nitr6 (novel

immune-type receptor 6) and ctss1 (cathepsin S). There is some evidence that human apol1
orthologues may be involved with DC cell death [79]. Sting1 is a well-characterized transmem-

brane protein of the endoplasmic reticulum involved in inflammation and immune response

to pathogens by producing type 1 interferons and pro-inflammatory cytokines [80]. Human

STING1 expression is detected in diverse immune cells, including macrophages, T cells and

NK cells [59]. The human orthologue of LOC108266986, TASL, is involved in immune
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responses through the production of cytokines and chemokines, primarily in plasma cells,

DCs and macrophages [81]. The human orthologue of LOC108279184, TCF4, has been shown

to be expressed by human DCs [59] and important for plasmacytoid DC development [82].

Nitr family genes were first identified in pufferfish and do not have a human orthologue [83].

This family of genes are predicted to have similar functions to leukocyte receptor complex

genes [84]. Ctss1 encodes cathepsin S and reported to be expressed by macrophages, B cells

and dendritic cells [85]. In I. punctatus, cathepsin S genes were upregulated in mucosal sur-

faces in response to bacterial infection [85].

Cluster 15 expressed endothelial marker genes cdh5, kdrl, pecam1a, akap12b, znf521, calcrl.
These cells are most often associated with vascular and lymphatic development [86,87].

Characterization of the immunome

To gain additional insight into the splenic immunome, the erythroid cells (Fig 2) were filtered

from the integrated data and cluster analysis was again performed on the remaining 5,269

cells. This analysis identified 15 immune cell clusters (S3 and S4 Figs and S3 Table).

Additional subclusters have been defined for HSC, B cells, T cells and myeloid cells. The

archetype markers (Table 2) were used to validate the subcluster cell types and differential

expression analysis identified the unique expression patterns of each subcluster.

HSC cells were further defined into 4 subclusters, HSC0 (932 cells), HSC1 (483 cells), HSC2

(371 cells), HSC3 (279 cells) using the top differentially expressed genes (Figs 3A and S5, S4

Table). HSC0-2 seemed consistent in their expression of known HSC genes (Fig 3B–3L)

[40,41]. HSC3 however had much less expression of these genes and an increased expression

of genes often associated with erythroid-cell function such as alas2 (5’-aminolevulinate

synthase 2), hbb (hemoglobin subunit beta), slc4a1a (solute carrier family 4 member 1), and

LOC108257040 (hemoglobin subunit alpha) (S4 Table). This cluster also had increased expres-

sion of the erythroid markers sptb and hemgn. One hypothesis is that the HSC that express ery-

throid markers are erythroid progenitors. Hematopoietic stem and progenitor cells with

erythroid marker expression have also been identified in the zebrafish spleen [6]. The authors

suggested that these cells were potentially erythroid progenitors. Another hypothesis is that the

erythroid markers represent partially differentiated cells that can develop into multiple cell lin-

eages. The erythroid markers were common between three subclusters of cells for HSC, B cells,

and T cells. Thus, since HSC differentiates to lymphocytes, the cells could be progenitors. A

third hypothesis is that the erythroid-like cells are erythrocytes with immune functions. There

is evidence of erythrocytes expressing some immune genes. In the case of Nile tilapia (Oreo-
chromis niloticus), erythrocytes expressed interferon regulatory factors that were also expressed

by leukocytes [88]. However, our data shows that the channel catfish erythroid-like cells have

similarities with lymphocytes. Additional investigation is required to further elucidate the clas-

sification of these cell subtypes.

Further examination of 2,469 splenic B cells identified 9 subclusters, B0-B8 (Fig 4A),

wherein these subclusters have expressed the canonical B cell markers and further been

defined using the top differentially expressed genes (Figs 4B and S6, S5 Table). Based on their

gene expression we sought to identify different B cell lineage developmental stages [89,90]. In

subcluster B1 (489 cells), zeb2b was most significantly expressed and in subcluster B4 (201

cells), ebf1b was the most significant (S5 Table). Subclusters B1 and B4 also both had higher

expression of ikzf1 and foxp1b relative to the remaining cluster cells (Figs 4B and S7). These

genes are well defined transcription factors required for early B cell differentiation [91,92].

Subcluster B1 also had significantly highly expressed ets1, another known B cell development

regulator [93]. Taken together these results suggest that B1 and B4 likely represent an
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immature stage of B cell development in the spleen. In contrast, subclusters B2 (343 cells), B3

(288 cells) and B7 (124 cells) relative to the remaining clusters had higher expression of il6r
and cd40, cell surface receptors, and mycb, a transcription factor [94,95]. B3 also had higher

expression of cxcr4b and the analysis of the most differentially expressed genes identified

LOC108280570 (homer3) and ccr9a expression (S5 Table). Therefore, B2, B3 and B7 likely rep-

resent varying mature B cell populations. Lastly, subclusters B6 (125 cells) and B8 (103 cells)

have higher expression of genes associated with plasmablasts and plasma cells (Fig 4B). B6 has

greater expression of selenom and irf4l (S5 Table), and relative to the other clusters had higher

expression of ighm, prdm1a and xbp1 (Figs 4B and S7) [96–98]. B8 had significantly greater

expression of mki67 and top2a (S5 Table) and relative to some clusters had less expression of

pax5 (Figs 4B and S7).

Cluster analysis using 461 splenic T/NK cells identified 6 subclusters which have expressed

canonical T and NK cell markers and were further defined using the top differentially

expressed genes (Fig 5A, S6 Table and S8 Fig). Interestingly, except for a few cells, the T cells

did not express cd4 (cd4-1, cd4-2.2) or cd8 (cd8a, cd8b) genes (S9 Fig) suggesting that these

cells are not differentiated as helper T cells or cytotoxic T cells. Subcluster T0 (127 cells) most

significantly expressed tcf7, LOC108256553 (DNA-binding protein SATB1), and rgs3a

Fig 3. Subcluster analysis of hematopoietic (HSC) cells from the integrated nuclei transcriptome of spleen from channel catfish. (a) tSNE plot

(b) Average expression (z-score) of cell type markers (x-axis) for each cluster (y-axis). The size of the dot represents the percentage of cells per cluster

contributing to expression. (c-l) Feature maps of HSC gene expression on tSNE plots.

https://doi.org/10.1371/journal.pone.0309397.g003
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(regulator of G protein signaling 3a) (Fig 5B and S6 Table), which facilitate differentiation and

regulation of T cell function [99,100]. T0 also had significantly increased expression of tox
(thymocyte selection-associated high mobility group box) and tox2 (TOX high mobility group

box family member 2) that also contribute to the functional maintenance of T cells and NK

cells (S9 Fig and S6 Table) [101–107]. T0 also has significantly expressed transcription factors

LOC128635459 (znf239) and znf704, which also likely have a role in lymphocyte development

and are representative of naïve T cells [108]. Subcluster T1 (91 cells) has significantly increased

expression of several genes that make up the T cell receptor complex (TCR). These genes

include gamma (LOC108267226, LOC108267144), delta (LOC108267350), and cd247 TCR

genes (Fig 5B and S6 Table) [109,110]. T1 also had increased expression of LOC108264986
(tyrosine-protein kinase ZAP-70), a gene that encodes a tyrosine kinase involved in the proxi-

mal TCR signaling and T cell activation [111], mafa (MAF bZIP transcription factor), which is

a transcription factor that regulates T cell specification and maintenance [112] and bcl11ba, a

Fig 5. Subcluster analysis of T/NK cells from integrated nuclei transcriptome of spleen from channel catfish. (a) tSNE plot (b) Average expression (z-

score) of cell type markers (x-axis) for each cluster (y-axis). The size of the dot represents the percentage of cells per cluster contributing to expression.

https://doi.org/10.1371/journal.pone.0309397.g005

Fig 4. Subcluster analysis of B cells from the integrated nuclei transcriptome of spleen from channel catfish. (a) tSNE plot (b) Average expression (z-

score) of cell type markers (x-axis) for each cluster (y-axis). The size of the dot represents the percentage of cells per cluster contributing to expression.

https://doi.org/10.1371/journal.pone.0309397.g004
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zinc finger transcription factor that is critical for T cell maintenance and identity [113].

Subcluster T1 expression seems to be consistent with that of γδ T cells; however, they are

not often associated with primary lymphoid tissues in vertebrates [114,115]. Subcluster T2

(72 cells) had significant expression of sh2d1a (SH2 domain containing 1A), hcst (hemato-

poietic cell signal transducer; also known as DAP10), gzmb3.3 (granzyme B) and gzmk
(granzyme K), that have functional pathways in both T and NK cells (Figs 5B and S9, S6

Table) [116–119]. T2, relative to the other subclusters, also had higher expression of id3 and

LOC1082788371 (CD3ε) (Fig 5B) which, taken together, would likely classify these as effec-

tor T cells [120]. Subcluster T3 (65 cells) had increased expression of genes that encode

receptors and membrane bound proteins found expressed among different immune cell

types, thus, the cells may represent innate-like lymphoid cells (ILC). T3 subcluster genes,

flt3 (fms related receptor tyrosine kinase 1), LOC108266645 (killer cell lectin-like receptor

subfamily E member 1), prf1 (perforin 1) and pag1 (phosphoprotein membrane anchor

with glycosphingolipid microdomains 1) represent functional pathways in DC, NK and T

cell phenotypes. In addition, zeb2b (zinc finger E-box binding homeobox 2) also has non-

specific immune cell expression [59]. Subcluster T4 is characterized by greater expression of

erythroid genes, including LOC108257039 (hemoglobin cathodic subunit beta), alas2,

LOC108268628 (calpain8), gpx1a, blvrb, hba, and cahz. Interestingly, subcluster T5 (53

cells) had increased expression of myeloid markers. Four of the top ten differentially

expressed genes, mmp13 (matrix metallopeptidase 13), mmp9 (matrix metallopeptidase 9),

ms4a4a (membrane spanning 4-domains A4A) and gpr84 (G protein-coupled receptor 84),

represent functional processes in macrophages [121–124]. Furthermore, human macro-

phages express TKT (transketolase; LOC108265455 in channel catfish), CUX1 (cut like

homeobox 1; si:dkey-27h10.2 in channel catfish), MMP9, MS4A4A, FBP1 (Fructose-bispho-

sphatase 1) and GPR84 [59]. Only two of the top 10 genes, LOC108265455 (transketolase)

and gpr84 have known functions in T cells [125,126]. Thus, the T5 subcluster has an inde-

terminate cell type with macrophage-like expression patterns (Figs 5B and S8).

Subcluster analysis was performed on the 234 myeloid cells, and five unique groups of cells

with distinct expression patterns in the heat map (Figs 6A and S10) and differentially expressed

genes (S7 Table) were identified. After scrutiny of differentially expressed genes, two DC clus-

ters and three macrophage subclusters were identified. M0 subcluster (81 cells) significantly

expressed the catfish gene si:dkey-5n18.1, an ortholog of human C1QL3 (complement C1q like

3), which comes from the same gene family as C1Q (complement C1q). C1Q expression in

macrophages has been implicated in the functional process of eliminating apoptotic cells

[127]. The cells in the M1 subcluster (52 cells) were putatively identified as DCs as they had

increased expression of flt3 (fms related receptor tyrosine kinase 3) and irf4a (interferon regu-

latory factor 4), which have DC functions [128,129]. Subcluster M2 (40 cells) had increased

expression of lrp1ab (low density lipoprotein receptor-related protein 1Ab) which has a func-

tion in macrophages [130]. M2 also has increased expression of rgl1 (ral guanine nucleotide

dissociation stimulator-like 1) and LOC108277878 (sialoadhesin). The human orthologs of

these genes are expressed in macrophages [59]. The subcluster M3 (39 cells) had greater

expression of cd74b and cytip (cytohesin 1 interacting protein) which have functions in DCs

[131] and is also highly expressed in human monocytes [59]. The M3 cells also expressed

genes typically transcribed by DCs, cxcr3.1 (C-X-C motif chemokine receptor 3), batf3 (basic

leucine zipper ATF-like transcription factor 3), and znf366 (zinc finger protein 366) (Fig 6B).

The subcluster M4 (22 cells) had increased expression of macrophage genes marco,mafba
(MAF bZIP transcription factor B), csf1r (colony stimulating factor 1 receptor), csf1 (colony

stimulating factor 1), c1qb (complement C1q B chain) and c1qc (complement C1q subcompo-

nent subunit C) [71,72,132–136].
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Fig 6. Subcluster analysis of myeloid cells from integrated nuclei transcriptome of spleen from channel catfish. (a) tSNE plot (b) Average expression (z-score) of

cell type markers (x-axis) for each cluster (y-axis). The size of the dot represents the percentage of cells per cluster contributing to expression.

https://doi.org/10.1371/journal.pone.0309397.g006
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Cell trajectory and pseudotime analysis

The subcluster analysis of B cells suggested that there were different stages of B cell lineage in

the spleen, including immature B cells to plasma cells. The analysis with Monocle 3 was used

to determine a trajectory path between clusters by using the Louvain community detection

algorithm to group mutually similar cells, and then merging adjacent groups into ‘super-

groups’. Using this information, Monocle 3 then predicts a path that cells can take and identify

branches within supergroups. The trajectory path between the B cells was projected onto the

UMAP produced using Seurat (Fig 7A). Pseudotime was then calculated using nodes within

subcluster B4 as root cells (Fig 7B). Cells in B4 had the higher expressions of ebf1b, ikzf1 and

pax5 which suggested that they are immature B cells, and the earliest developmental time-

point. The trajectory and pseudotime predict that the immature B cells can branch towards

two populations (Fig 7A). One path shows a trajectory toward the mature B cells and then plas-

mablasts (B8) and plasma cells (B6). While, another branch connects the root cluster, B4, to

subclusters B7 and B2. The B cells from B7 and B2 appear to have greater differences to the

other subclusters, although, their identity is not known. These subclusters may represent circu-

lating B cells that are not resident in the spleen.

Conclusion

Single-cell and single-nuclei RNA sequencing has enabled the characterization of a broad

range of cells from a heterogenous tissue. We applied this technology to garner an understand-

ing of the channel catfish spleen and develop an atlas that can be used for additional investiga-

tion. The spleen is considered a major lymphoid organ that filters pathogens and antigens

from the blood and maintains an environment for the immune system to operate. Therefore,

this atlas further provides an insight into the gene expression of erythrocytes and immune cells

in this evolutionary and commercially relevant teleost species.

Supporting information

S1 Fig. Sample contribution to integrated cluster analysis. (a) tSNE map (b) Bar plot dem-

onstrating individual sample contribution (SP1, SP2, and SP3) to the integrated dataset.

(TIF)

Fig 7. Trajectory analysis of B cells from integrated nuclei transcriptome of spleen from channel catfish (n = 3). (a) Predicted B cell

trajectory branching and (b) predicted pseudotime determined by Monocle 3.

https://doi.org/10.1371/journal.pone.0309397.g007
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S2 Fig. Heat map of top differentially expressed genes for clusters generated from the inte-

grated dataset. 0 = Erythroid, 1 = Erythroid, 2 = Erythroid, 3 = Erythroid, 4 = HSC, 5 = B

Cells, 6 = Erythroid, 7 = Erythroid, 8 = T/NK Cells, 9 = B Cells, 10 = HSC, 11 = Myeloid,

12 = B Cells, 13 = B Cells, 14 = Myeloid, 15 = Endothelial Cells, 16 = Myeloid.

(TIF)

S3 Fig. Subcluster analysis of immune cells only (no erythroid cells) using the integrated

dataset. (a) tSNE plot (b) Average expression (z-score) of cell type markers (x-axis) for each

cluster (y-axis). The size of the dot represents the percentage of cells per cluster contributing to

expression. The dotplot of cell markers identified these clusters as B cells, hematopoeitic stem

cells (HSC), T and natural killer cells (T/NK cells), myeloid cells and endothelial cells.

(TIF)

S4 Fig. Heat map of top differentially expressed genes from clusters of immune cells using

the integrated dataset. 0 = B Cells, 1 = HSC, 2 = HSC, 3 = B Cells, 4 = HSC, 5 = T/NK Cells,

6 = B Cells, 7 = B Cells, 8 = Myeloid, 9 = B Cells, 10 = B Cells, 11 = T/NK Cells, 12 = Myeloid,

13 = Myeloid, 14 = Endothelial Cells, 15 = HSC.

(TIF)

S5 Fig. Heat map of top differentially expressed genes from hematopoetic stem cell clusters

using the integrated dataset.

(TIF)

S6 Fig. Heat map of top differentially expressed genes from B cell clusters using the inte-

grated dataset.

(TIF)

S7 Fig. Feature maps of B cell gene expression on tSNE plots (a-x).

(TIF)

S8 Fig. Heat map of top differentially expressed genes from T/NK cell clusters using the

integrated dataset.

(TIF)

S9 Fig. Feature maps of T/NK cell gene expression on tSNE plots (a-x).

(TIF)

S10 Fig. Heat map of top differentially expressed genes from myeloid cell clusters using

the integrated dataset.

(TIF)

S1 Table. Top 10 differentially expressed genes for cluster generated from individual

scRNAseq of spleen channel catfish samples SP1, SP2 and SP3.

(XLSX)

S2 Table. Top 10 differentially expressed genes for 17 clusters generated from scRNAseq

of spleen from channel catfish samples (n = 3).

(XLSX)

S3 Table. Top 10 differentially expressed genes for sub-clusters of immune cells generated

from the integrated scRNAseq of spleen from channel catfish samples (n = 3).

(XLSX)
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S4 Table. Top 10 differentially expressed genes for sub-clusters of HSC cells generated

from the integrated scRNAseq of spleen from channel catfish samples (n = 3).

(XLSX)

S5 Table. Top 10 differentially expressed genes for sub-clusters of B cells generated from

the integrated scRNAseq of spleen from channel catfish samples (n = 3).

(XLSX)

S6 Table. Top 10 differentially expressed genes for sub-clusters of T and NK cells gener-

ated from the integrated scRNAseq of spleen from channel catfish samples (n = 3).

(XLSX)

S7 Table. Top 10 differentially expressed genes for sub-clusters of cells in the myeloid line-

age generated from the integrated scRNAseq of spleen from channel catfish samples

(n = 3).

(XLSX)
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