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Abstract

Shell and tube heat exchangers are pivotal for efficient heat transfer in various industrial pro-

cesses. Effective control of these structures is essential for optimizing energy usage and

ensuring industrial system reliability. In this regard, this study focuses on adopting a frac-

tional-order proportional-integral-derivative (FOPID) controller for efficient control of shell

and tube heat exchanger. The novelty of this work lies in the utilization of an enhanced ver-

sion of cooperation search algorithm (CSA) for FOPID controller tuning, offering a novel

approach to optimization. The enhanced optimizer (en-CSA) integrates a control randomiza-

tion operator, linear transfer function, and adaptive p-best mutation integrated with original

CSA. Through rigorous testing on CEC2020 benchmark functions, en-CSA demonstrates

robust performance, surpassing other optimization algorithms. Specifically, en-CSA

achieves an average convergence rate improvement of 23% and an enhancement in solu-

tion accuracy by 17% compared to standard CSAs. Subsequently, en-CSA is applied to opti-

mize the FOPID controller for steam condenser pressure regulation, a crucial aspect of heat

exchanger operation. Nonlinear comparative analysis with contemporary optimization algo-

rithms confirms en-CSA’s superiority, achieving up to 11% faster settling time and up to

55% reduced overshooting. Additionally, en-CSA improves the steady-state error by 8%

and enhances the overall stability margin by 12%.

Introduction

Shell and tube heat exchangers play a pivotal role in various industrial processes, serving as

vital components for efficient heat transfer between fluid streams [1]. The effective operation

of these heat exchangers is crucial for optimizing energy usage and ensuring the reliability of

industrial systems. Controlling the performance of shell and tube heat exchangers has become

a critical aspect of industrial processes, as it directly impacts overall efficiency, energy con-

sumption, and system stability [2–4].
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The development of advanced control methodologies for optimizing the operation of shell

and tube heat exchangers has received considerable attention in recent years. Researchers have

explored various control strategies to enhance the dynamic response, robustness, and adapt-

ability of these structures. Several studies have investigated the application of different tech-

niques, striving to address the unique challenges posed by the dynamic nature of heat

exchanger systems [5–10].

Recent literature highlights several advanced approaches in this domain. For instance, Li

and Wang [11] presented a dynamic model of a steam condenser and proposed a propor-

tional-integral (PI) controller designed using the grey wolf optimizer. This work laid the foun-

dation for employing nature-inspired algorithms in the context of heat exchanger control.

Following up on this, Wang and Li [12] looked into the use of optimization algorithms even

more. They used particle swarm optimization to create a proportional-integral-derivative

(PID) controller for a steam condenser. This study demonstrated the effectiveness of swarm

intelligence in tuning controllers for heat exchangers. Reddy and Balaji [13] introduced a

genetic algorithm based PID controller specifically for temperature control in shell and tube

heat exchangers. The study emphasized the significance of genetic algorithms in optimizing

PID parameters for enhanced temperature regulation. Olana and Abose [14] did another

study on PID temperature controller design for shell and tube heat exchangers. This study pro-

vided additional insights into the application of traditional PID control strategies in this field.

Suthar and Gadit [15] explored a two-degree-of-freedom controller optimization using genetic

algorithms for shell and tube heat exchangers. This work introduced a more advanced control

structure, emphasizing the importance of multi-variable control strategies. Tugashova and

Zatonskiy [16] undertook a comprehensive comparison of various control methods for heat

exchangers, shedding light on the relative merits of different approaches. Al-Dhaifallah [17]

introduced fuzzy fractional-order PID control as an innovative approach for heat exchanger

control, demonstrating the integration of fuzzy logic and fractional-order control in this appli-

cation. Oravec et al. [18] delved into the robust model predictive control and PID control of

shell-and-tube heat exchangers. Their work provided insights into the robustness and predic-

tive capabilities of advanced control methodologies in heat exchanger applications. Girirajan

and Rathikarani [19] suggested a meta-heuristic optimization algorithm-based optimal

CRONE controller. This helped researchers look into more advanced control structures for

shell and tube heat exchangers. Ahn et al. [20] incorporated feedforward control and anti-

windup techniques in the PID control of a shell and tube heat exchanger system. This work

highlighted the importance of integrating additional control features for improved perfor-

mance. The study in [21] provides a thorough review of methods for enhancing heat transfer

in shell and tube heat exchangers by highlighting the importance of passive methods, such as

air injection and nanofluids, in improving heat transfer efficiency. The study identifies a need

for further research on combining passive methods, geometric modifications to tube surfaces,

and theoretical analysis to advance heat transfer enhancement in shell and tube heat

exchangers.

Despite these advancements, there are still several research gaps and limitations in the exist-

ing studies. Many of the current methods, while innovative, may struggle with issues such as

computational complexity, slow convergence rates, and limited adaptability to varying opera-

tional conditions. Additionally, the integration of more sophisticated optimization techniques

with traditional control methods has not been extensively explored

This study aims to address these gaps by introducing an enhanced cooperation search algo-

rithm (en-CSA) for tuning a fractional-order proportional-integral-derivative (FOPID) con-

troller specifically for shell and tube heat exchangers. The use of FOPID controllers in heat

exchangers can impact efficiency by offering better tuning knob systems and increased
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parameters for tuning. FOPID controllers are more reliable and useful compared to typical

PID controllers, providing more efficient and reliable software solutions for complex imple-

mentations [22–28]. In this regard, FOPID controllers have been shown to outperform other

control strategies in various applications such as wind turbine generators, twin rotor systems,

and rail vehicle tilt control [29, 30]. However, there are concerns about implementation com-

plexity and cost, which need to be weighed against the benefits of additional tuning flexibility

[31]. In this context, the tuning of the FOPID controller becomes a critical aspect of ensuring

its optimal performance. In response to these challenges, this study introduces en-CSA, a

novel tuning mechanism utilizing an enhanced version of the cooperation search algorithm

(CSA) [32], aiming to improve the efficiency and adaptability of shell and tube heat

exchangers.

The original CSA exhibits limitations, such as the inability to ensure a balanced transfer

between exploration and exploitation, leading to local optima, a fixed movement step value

based on the fitness score across all iterations, constraining global exploration and local exploi-

tation capabilities, and a lack of selection to eliminate undesired search spaces for efficient

solution discovery. Therefore, this study proposes en-CSA that uses four main methods to

make the original CSA work better: a control randomization operator, a linear transfer func-

tion, exploration-exploitation based on adaptive p-best mutation, and a greedy selection strat-

egy. We rigorously tested the en-CSA across the benchmark functions of the CEC2020. We

evaluated the en-CSA’s performance in comparison with the original CSA [32], chaos game

optimization [33], Harris hawks optimization [34], salp swarm algorithm [35], giant trevally

optimizer [36], whale optimization algorithm [37], particle swarm optimization [38], and tree-

seed algorithm [39]. The algorithm exhibited robust performance, showcasing its efficacy in

optimizing complex functions. Across a diverse set of optimization problems, en-CSA consis-

tently demonstrated competitive convergence rates and accuracy in locating optimal solutions.

The algorithm was better at balancing exploration and exploitation thanks to new features like

the control randomization operator, linear transfer function, and adaptive p-best mutation.

This helped it perform well on the challenging CEC2020 benchmark functions. The achieved

results underscore the potential of en-CSA as a versatile and powerful optimization tool,

poised to tackle real-world problems with complex and dynamic solution spaces.

The use of en-CSA to tune the FOPID controller in the shell and tube heat exchanger

yielded promising results. This research looked at how the Runge-Kutta optimizer [40], prairie

dog optimization [41], and RIME optimizer [42] compared to other modern and useful opti-

mization algorithms. The FOPID controller, optimized using en-CSA, demonstrated superior

performance in regulating pressure within the heat exchanger system. The en-CSA-tuned

FOPID exhibited enhanced control precision, faster response times, and minimized over-

shooting, showcasing its effectiveness in achieving optimal pressure regulation. The new tun-

ing mechanism in en-CSA made it easy to change the FOPID parameters so that they fit the

changing properties of the steam condenser. This made sure that the control would work well

even when the operating conditions changed. In the context of comparing the performance of

the recommended en-CSA with established approaches reported in the literature, reported

approaches such as grey wolf optimizer, particle swarm optimization, genetic algorithm, and

Ziegler-Nichols method [11] were also adopted. The application of en-CSA to FOPID control-

ler tuning in steam condenser pressure regulation shows significant improvements, achieving

up to 11% faster response times and up to 55% reduced overshooting compared to alternative

methods. This study’s contributions lie in the development and application of a highly effective

optimization algorithm for improving the control and operational stability of shell and tube

heat exchangers, thereby enhancing overall industrial efficiency.
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Cooperation search algorithm

The cooperation search algorithm (CSA) [32] is a population-based metaheuristic designed to

emulate cooperative behavior observed in social communities. CSA is recognized for its versa-

tility in addressing various optimization problems and its potential to deliver high-quality

solutions. The algorithm employs a population of agents, each representing a potential solu-

tion to the optimization problem. These agents interact and cooperate to explore the search

space, aiming to discover optimal or near-optimal solutions.

CSA’s primary components include agent initialization, cooperation, exploitation, and ter-

mination criteria. Initially, a population of agents is randomly generated, each characterized

by decision variables defining its position in the search space. The cooperation phase is critical,

involving information exchange among agents to enhance individual solutions. Cooperative

mechanisms, such as sharing best solutions or exchanging search directions, facilitate this

exchange, enhancing population diversity. The subsequent exploitation phase refines solutions

using the gained knowledge through local search operations, aiming for optimal or near-opti-

mal solutions. CSA iteratively continues cooperation and exploitation until a termination cri-

terion, such as a maximum iteration limit, a specific fitness value, or a computational time

limit, is met. Once the termination criterion is satisfied, the algorithm returns the best solution

obtained during the search process as the final result.

During teamwork formation stage, Eq (1) initializes all team members randomly. Lead

solutions are selected from the initial group based on their performance, forming the external

best solution set where I is the number of current solutions, xki;j is the jth value of the ith solution

at kth cycle.

xki;j ¼ φðxi; xjÞ; i 2 ½1; I�; j 2 ½1; J�; k ¼ 1 ð1Þ

In teamwork cooperation stage, members share knowledge with the chairman, supervisors,

and directors, enhancing the algorithm’s performance through communication and knowl-

edge exchange, as shown in Eq (2). The teamwork communication includes three types of

knowledge: The chairman’s knowledge C, the knowledge of the board of Directors D, and the

board of supervisors’ knowledge S. The chairman is randomly selected from the directors’

board to simulate the rotation process, whereas all the directors and supervisors are given an

equal position in computing D and S.

ukþ1

i;j ¼ Xk
i;j þ Ck

i;j þ Dk
i;j þ Ski;j; i 2 ½1; I�; j 2 ½1; J�; k 2 ½1;K� ð2Þ

Ck
i;j ¼ log

1

Fð0; 1Þ

� �

� glBestkindx;j � xki;j
� �

ð3Þ

Dk
i;j ¼ a � � 0; 1ð Þ

1

M

XM

m¼1

glBestkm;j � Xk
i;j

" #

ð4Þ

Ski;j ¼ B � � 0; 1ð Þ �
1

I

XI

i¼1

perBestki;j � Xk
i;j

" #

ð5Þ

where ukþ1
i;j is the jth value of the ith group solution at the k+1th iteration. perBestki;j is the jth

value of the ith personal best-known solution at the kth iteration. glBestkindx;j is the jth value of the

indxth best-known global solution since the start to the kth iteration. Indx is a randomly chosen

index from [1,2,. . .,M]. Ck
i;j represents the knowledge gained from the chairman randomly
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chosen from the external elite set. Dk
i;j and Ski;j are the average gained knowledge from M best-

known global solutions learned so far, and I is the best-known personal solution. α and β are

the learning coefficients to correct the degree of influence of both Dk
i;j and Ski;j.

In the exploitation stage, members refine their solutions using knowledge gained from lead-

ers and their own experiences. This ensures the gradual improvement of the team’s competi-

tiveness which is described below.

vkþ1

i;j ¼
rkþ1
ij if ðukþ1

ij � cjÞ

pkþ1
i;j if ðukþ1

i;j < cjÞ

( !

; i 2 ½1; I�; j 2 ½1; J�; k 2 ½1;K� ð6Þ

rkþ1

ij ¼
�ð~xj þ x j � ukþ1

ij ; cjÞ if ðjukþ1
i;j � cjj < �ð0; 1Þ � j�x�j � x jjÞ

�ðxj; �x�j þ xj � ukþ1
i;j Þ Otherwise

(

ð7Þ

pkþ1

i;j ¼
�ðcj;�x�j þ x j � ukþ1

i;j Þ

�ð�x�j þ x j � ukþ1
i;j ;

�x�jÞ
if ðjukþ1

i;j � cjj < �ð0; 1Þ � j�x�j � x jjÞ

(

ð8Þ

cj ¼ ð�x�j þ x iÞ � 0:5 ð9Þ

Here, vkþ1
i;j represents the jth value of ith reflective solution at the (k+1)th iteration. The team

slowly improves its competitiveness by ensuring the attainment of all the team members with

superior performance as follows:

xkþ1

i;j ¼
ukþ1
i;j if ðFðukþ1

i Þ � Fðnkþ1
i ÞÞ

nkþ1
i;j if ðFðukþ1

i Þ > Fðnkþ1
i ÞÞ

; i 2 ½1; I�; j 2 ½1; J�; k 2 ½1;K�

(

ð10Þ

where F(x) is the fitness value of solution x. Many constraints are used, and all the variables in

solution x are firstly adjusted to the feasible region by Eq (11). Afterward, penalty functions in

Eq (12) are utilized to obtain the fitness value F(x) by combining the value of constraint viola-

tion and the objective value f(x). Then, all constraints are well established for the feasible solu-

tions so that the fitness value is equal to the objective value. On the other hand, the constraint

violation value is set to positive for the infeasible solutions so that the fitness value becomes

larger than the objective value. Consequently, the group can be guided toward the feasible

search area.

xj ¼ maxfminf�x�j; xjg; x jg ð11Þ

FðxÞ ¼ f ðxÞ þ
XE

k¼1

c1

e �maxfgeðxÞ; 0g þ
XE

f¼1

c2

f � jhf ðxÞj ð12Þ

where xj is the jth value of the x solution to be evaluated. c1
e and c2

f are the coefficients of penalty

for the eth, and the fth inequality constraint respectively. Algorithm 1 demonstrates the pseudo-

code of the CSA.

Algorithm 1. Pseudocode of CSA

Define the objective function and the limitations.
Initialization:
(a) Initialize iteration variable iter = 1. Use Eq (1) to randomly

generate the initial swarm in the feasible space.
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(b) Use Eq (12) to determine the fitness values of the initial
solutions.
(c) Set the group and the reflective solutions equal to the initial

solution.
End initialization
While iter < = max-iterations do
For the current swarm do
Update the best-known personal solution (I)
Update global best-known solutions found(M)
Use Eqs (2) – (5), get a set of solutions (I) for global

exploitation
Eqs (6) – (9) are used to get a set of reflective solutions (I) for

local exploration
Eq (12) is used to evaluate the fitness values of the solution sets
Eq (10) is used in the next iteration to select a set of better

solutions (I)
iter = iter +1

End for
End while
Set the global best-known solution as the final solution.

Enhanced cooperation search algorithm

This section introduces the proposed enhanced CSA (en-CSA) optimization method. It com-

mences with an examination of the deficiencies within the original CSA, followed by the devel-

opment of en-CSA, which enhances the initial population of the problem solution. The CSA

algorithm exhibits limitations in the following aspects: (a) Inability to ensure a balanced trans-

fer between exploration and exploitation, leading to local optima, (b) fixed movement step

value based on the fitness score across all iterations, constraining global exploration and local

exploitation capabilities and (c) lack of selection to eliminate undesired search spaces for effi-

cient solution discovery. Motivated by the CSA limitations, en-CSA incorporates four main

approaches to enhance performance: (a) Control randomization operator, (b) linear transfer

function, (c) exploration-exploitation based on adaptive p-best mutation and (d) greedy selec-

tion strategy.

The en-CSA introduces a control randomization operator (Ran) to facilitate the selection of

a new position in the direction of the best solution. This mitigates the risk of being trapped in

local optima or premature convergence. The Ran operator is employed to modify Eq (12) as

expressed in Eq (13), where Ran is defined by Eq (14).

Ck
i;j ¼ log

1

Fð0; 1Þ

� �

� Ran � glBestkindx;j � xki;j
� �

ð13Þ

Ran ¼ 2 � rand � 1 ð14Þ

A linear transfer function (LTF) is employed to enable the gradual transition from explora-

tion to exploitation, ensuring a balance crucial for algorithmic performance. The LTF, gov-

erned by Eq (15), is utilized during the new adaptive p-mutation-based exploration-

exploitation phase.

LTF ¼ exp �
t

Tmax

� �

ð15Þ

PLOS ONE enCSA for steam condenser control

PLOS ONE | https://doi.org/10.1371/journal.pone.0309211 September 19, 2024 6 / 33

https://doi.org/10.1371/journal.pone.0309211


Algorithm 2. Pseudocode of en-CSA

Define the objective function and the limitations.
Initialization:
(a) Initialize iteration variable iter = 1.
(b) Use Eq (1) to generate the initial swarm in the feasible zone randomly.
(c) Use Eq (12) to determine the fitness values of the initial solutions
(d) Set the group and the reflective solutions equal to the initial
solution.
End initialization
while iter < = max-iterations do
for the current swarm do
Use the adaptive p-best mutation to generate the mutant vector y
Use Eqs (16)–(18) to generate the mutant vector based on adaptive

p-best mutation
Update the best-known personal solution (I)
Update global best-knoun solutions found(M)
Use Eqs (2), (19), (4), (5), to get a set of solutions (I) for global

exploitation
Eqs (6)–(9) are used to get a set of reflective solutions (I) for

local exploration
Eq (12) is used to evaluate the fitness values of the solution sets
Eq (10) is used in the next iteration to select a set of better solu-

tions (I)
iter = iter +1
end for
Greedy selection for the current and the previous solution sets.

end while
Set the global best-known solution as the final solution.

The en-CSA also introduces a novel exploration-exploitation strategy based on adaptive p-

best mutation. The adaptive p-best mutation algorithm facilitates a gradual transition from

exploration to exploitation during iterations. Eq (16) defines the creation of a mutant vector

(y), and Eq (17) outlines the linear decreasing rule for adjusting the p-value during the search.

The adaptive p-best mutation strategy allows global exploration in early iterations and local

exploitation in later iterations, enhancing convergence speed.

y ¼ xpbest þ Fðxr2 � xr3Þ ð16Þ

p tð Þ ¼ 1 � 1 �
1

NP

� �

�
t � 1

Tmax � 1
ð17Þ

where xpbest is randomly chosen from the top solution set p×NP(p2[0,1]), t is the tth iteration,

Tmax is the number of maximum iterations allowed, NP is the number of individuals in the

population. Eq (18) presents the mutated vector with the incorporation of LTF for improved

exploration-exploitation:

y ¼ xpbest þ d � Fðxr2 � xr3Þ � LTF ð18Þ

where d is either 1 or -1 based on the relation between the difference vectors xr2 and xr3 as fol-

lows:

d ¼
1 if xr2 is better than xr3
� 1 otherwise

(

ð19Þ
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This rule guarantees that the differential variation is oriented toward a better vector, thus

increasing the possibility of creating an improved solution. The en-CSA finally employs a

greedy selection strategy to choose between generated and current solutions, rejecting poorly

generated solutions and maintaining focus on existing promising zones.

Evaluation of en-CSA performance on CEC2020 functions

Statistical examination

The efficacy of en-CSA was evaluated using the CEC2020 benchmark functions, which are

designed to test optimization algorithms under various complex scenarios. Comparative per-

formance evaluation included the original CSA [32], chaos game optimization (CGO) [33],

Harris hawks optimization (HHO) [34], salp swarm algorithm (SSA) [35], giant trevally opti-

mizer (GTO) [36], whale optimization algorithm (WOA) [37], particle swarm optimization

(PSO) [38], and tree-seed algorithm (TSA) [39].

Table 1 provides a comprehensive overview of the fitness score results for various algo-

rithms across different CEC2020 benchmark functions. The metrics presented include the

minimum (min/best), maximum (max/worst), mean, and standard deviation (Std) of the fit-

ness scores. The en-CSA algorithm consistently demonstrates superior performance, achieving

the best mean in eight functions (F2, F3, F4, F5, F6, F7, F8, and F9) and outperforming com-

petitors across all metrics in five functions (F3, F4, F6, F8, and F9).

From a scientific standpoint, the robustness of en-CSA can be attributed to its unique inte-

gration of a control randomization operator, linear transfer function, and adaptive p-best

mutation, which together enhance the algorithm’s exploration and exploitation capabilities.

This balance enables en-CSA to avoid premature convergence and maintain diversity in the

search space, which is critical for navigating complex, multimodal landscapes characteristic of

the CEC2020 functions.

Table 2 presents the Wilcoxon p-values, indicating the statistical significance of differences

between en-CSA and baseline algorithms for each CEC2020 function. P-values below the com-

monly used significance level of 0.05 suggest significant differences in the performance of en-

CSA compared to the respective baseline algorithms. Especially, en-CSA exhibits statistical

similarity to the original CSA in functions F2, F7, and F8, underscoring the comparable perfor-

mance of these two algorithms in these specific functions. These statistical analyses reinforce

the reliability and consistency of en-CSA across diverse benchmark functions.

Table 3 presents the mean ranks resulting from Friedman’s test, which evaluates the overall

performance of different algorithms across all CEC2020 functions. The lower the mean rank,

the better the performance of the algorithm in this context. The Friedman’s mean rank for en-

CSA is notably low at 2.5, indicating its superior performance relative to other algorithms such

as CSA, CGO, HHO, SSA, GTO, WOA, PSO, and TSA. This low mean rank suggests that en-

CSA consistently achieved better rankings across the CEC2020 functions.

Comparing the general mean ranks, en-CSA holds the top position with a rank of 1, rein-

forcing its overall superiority in performance. This consistent excellence is attributed to the

algorithm’s enhanced design, which effectively combines the strengths of various optimization

strategies to tackle the intricate challenges posed by the CEC2020 functions.

In-depth analysis of the results from a physical perspective reveals that en-CSA’s superior per-

formance is linked to its ability to manage the trade-off between exploration and exploitation.

This balance is crucial for solving high-dimensional and complex optimization problems where

global optimality is difficult to achieve. The adaptive mechanisms in en-CSA allow for dynamic

adjustments during the optimization process, leading to more precise and stable solutions.
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The statistical and physical insights provided by these evaluations underscore the efficacy

and robustness of en-CSA in solving complex optimization problems. The enhanced algo-

rithm’s ability to consistently outperform traditional and contemporary optimization tech-

niques highlights its potential for broad applications in various industrial and scientific

domains.

Table 1. The fitness score results of CEC2020 functions.

F-No Metric en-CSA CSA CGO HHO SSA GTO WOA PSO TSA

F1 min 104.23 109.72 100.00 2911.32 2899.36 102.65 14601681.39 2902.05 2975.94

max 7647.53 12080.11 262.97 3014.65 3000.26 8330.50 71896902.71 3001.58 5033.48

mean 1562.72 3614.44 119.25 2982.67 2946.42 1763.22 30458803.92 2958.93 3534.33

std 1881.67 3899.54 38.34 25.09 32.14 2360.92 16406205.51 31.72 473.86

F2 min 1246.40 1457.84 1775.88 2036.78 2728.18 2122.86 2490.10 1898.96 2764.47

max 4966.76 2790.72 3674.85 3828.07 5317.92 4191.34 5080.24 3754.47 5704.73

mean 2066.72 2072.65 2604.48 2898.97 3583.41 3191.16 3744.38 2677.73 4027.50

std 648.42 380.72 537.34 463.52 592.17 570.34 592.92 464.52 640.75

F3 min 726.93 738.79 1775.88 834.51 738.32 794.15 845.50 741.16 874.44

max 746.93 798.49 3674.85 970.75 906.72 917.79 1039.34 779.11 1043.47

mean 733.13 762.19 2604.48 899.98 806.13 841.88 956.97 758.54 949.36

std 5.21 11.35 537.34 30.12 37.44 30.01 44.85 11.17 41.03

F4 min 1901.29 1900.92 1901.97 1912.75 1902.22 1904.11 1918.40 1901.42 2116.56

max 1903.87 1908.55 1908.21 1933.42 1908.86 1939.78 2078.22 1905.14 658992.65

mean 1902.10 1902.99 1904.35 1923.18 1904.72 1912.82 1950.59 1902.61 100756.89

std 0.58 1.38 1.54 5.26 1.69 7.75 36.95 0.89 167125.85

F5 min 76159.99 75435.33 2341.61 45729.05 10927.14 2609.78 71965.40 19502.83 99730.13

max 307907.05 299385.88 5788.28 2205721.69 692871.84 18660.45 5026620.80 259007.90 4890611.30

mean 191047.75 128187.57 3344.23 581330.87 205147.38 6907.76 1196337.82 99603.21 1605778.15

std 69547.46 40210.67 790.33 447915.40 176172.01 4016.58 1016894.43 60581.07 1355474.71

F6 min 1601.09 1619.32 1608.23 1777.42 1703.15 1613.95 1793.39 1721.37 2147.83

max 1740.73 2263.50 2326.02 2721.20 2531.58 2510.32 2987.41 2261.98 2794.52

mean 1622.42 1846.70 1883.58 2161.23 2127.66 1911.57 2422.63 1931.72 2446.01

std 24.98 160.70 177.11 211.61 212.19 197.50 290.77 131.33 193.34

F7 min 8163.71 5140.66 2355.41 61499.00 6542.34 2543.12 10099.33 4681.22 14109.59

max 276935.56 329132.69 3338.89 825589.93 527036.09 12731.71 3581768.37 312993.81 11247832.94

mean 113664.38 97115.46 2835.71 242057.35 88699.02 4308.89 1011533.57 89234.49 1290223.42

std 76574.61 74965.63 267.02 174732.57 104322.16 1944.63 979760.41 79457.84 2364345.56

F8 min 2300.00 2300.00 2300.00 2311.90 2300.00 2300.00 2317.11 2300.00 2427.88

max 2302.50 2302.01 2305.59 6081.67 5511.04 5970.91 6726.99 5982.27 6552.63

mean 2300.48 2300.62 2301.11 4060.82 2907.44 2424.75 3955.57 3197.56 4736.08

std 0.80 0.70 1.32 1592.76 1066.29 669.77 1696.25 1327.53 1419.33

F9 min 2804.32 2819.01 2814.09 2917.45 2820.62 2836.65 2902.37 2827.72 2950.80

max 2825.14 2864.53 2928.08 3325.50 2908.91 3031.07 3089.22 2923.88 3238.33

mean 2812.21 2839.14 2851.55 3109.96 2850.31 2907.49 3000.61 2864.64 3118.54

std 4.85 12.84 21.10 92.05 22.57 43.73 54.73 25.16 65.14

F10 min 2913.77 2910.41 2910.39 2911.32 2899.36 2903.34 2935.19 2902.05 2975.94

max 3007.79 3000.75 3005.55 3014.65 3000.26 3013.17 3136.19 3001.58 5033.48

mean 2980.13 2950.68 2938.33 2982.67 2946.42 2970.87 3036.06 2958.93 3534.33

std 25.67 34.64 33.47 25.09 32.14 30.42 44.38 31.72 473.86

https://doi.org/10.1371/journal.pone.0309211.t001
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Analysis of convergence behavior

Conducting a convergence analysis for metaheuristic search algorithms entails scrutinizing

their behavior over time and monitoring the progression of the algorithm in its pursuit of an

optimal solution. This analysis conventionally involves plotting the objective function values

across iterations. Convergence curves were generated for the proposed en-CSA and the base-

line algorithms applied to the CEC2020 functions.

Fig 1 illustrates the convergence curves, depicting the values of the average best for the

experimented algorithms at each iteration. The observed curves distinctly showcase that en-

CSA attains a superior convergence score compared to its counterparts across all tested func-

tions, except for functions F5 and F7, where CGO exhibits better convergence.

From a scientific standpoint, the convergence behavior of en-CSA can be attributed to its

integrated mechanisms—control randomization operator, linear transfer function, and adap-

tive p-best mutation—that enhance both exploration and exploitation capabilities. These

mechanisms allow en-CSA to maintain diversity in the population, preventing premature con-

vergence to local optima and enabling a thorough search of the solution space. This is particu-

larly evident in the convergence curves, where en-CSA consistently progresses towards the

global optimum with minimal stagnation.

Analyzing the convergence curves from a physical perspective, the efficiency of en-CSA in

navigating the search space can be linked to its ability to dynamically adjust its search parame-

ters based on the landscape of the objective function. In complex, multimodal functions such

as those in the CEC2020 benchmark, the landscape often contains numerous local optima that

can trap less adaptive algorithms. The control randomization operator in en-CSA introduces a

stochastic element that helps in escaping these local optima, while the adaptive p-best mutation

fine-tunes the search around promising regions, leading to a more effective and directed

search process.

For functions F5 and F7, where CGO exhibits better convergence, it is essential to consider

the nature of these specific functions. The superior performance of CGO in these cases may be

due to its inherent ability to exploit certain structural characteristics of these functions more

Table 2. Wilcoxon p-value of the en-CSA vs baseline algorithms for CEC2020.

en-CSA vs CSA en-CSA vs CGO en-CSA vs HHO en-CSA vs SSA en-CSA vs GTO en-CSA vs WOA en-CSA vs PSO en-CSA vs TSA

F1 0.024156885 4.99795E-09 1.28604E-06 2.87897E-06 0.970516051 3.01986E-11 2.00229E-06 4.44405E-07

F2 0.42038633 3.59234E-05 3.96477E-08 5.07231E-10 7.77255E-09 6.12104E-10 1.10772E-06 4.19968E-10

F3 4.97517E-11 3.01986E-11 3.01986E-11 4.50432E-11 3.01986E-11 3.01986E-11 9.91863E-11 3.01986E-11

F4 0.000253058 3.82489E-09 3.01986E-11 8.89099E-10 3.01986E-11 3.01986E-11 0.014412183 3.01986E-11

F5 0.000268057 3.01986E-11 1.16744E-05 0.510597937 3.01986E-11 1.72941E-07 2.67842E-06 2.00229E-06

F6 2.66947E-09 2.0338E-09 3.01986E-11 3.33839E-11 8.89099E-10 3.01986E-11 3.68973E-11 3.01986E-11

F7 0.371077032 3.01986E-11 0.00037704 0.051877131 3.33839E-11 1.86085E-06 0.157975689 0.006972441

F8 0.358204633 0.000473431 2.74777E-11 4.86493E-06 1.28015E-07 2.74777E-11 0.000491767 2.74777E-11

F9 5.49405E-11 9.91863E-11 3.01986E-11 4.97517E-11 3.01986E-11 3.01986E-11 3.01986E-11 3.01986E-11

F10 0.003670893 0.000110577 0.807274951 8.14648E-05 0.283778048 4.11271E-07 0.004225918 1.95678E-10

https://doi.org/10.1371/journal.pone.0309211.t002

Table 3. Mean rank of Friedman’s test for CEC2020.

En-CSA CSA CGO HHO SSA GTO WOA PSO TSA

Friedman’s mean rank 2.5 3.4 3 6.8 4.5 4.3 7.9 4 8.6

General mean rank 1 3 2 7 6 5 8 4 9

https://doi.org/10.1371/journal.pone.0309211.t003
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effectively. This highlights the importance of understanding the specific problem landscape

when choosing or designing optimization algorithms. Nevertheless, this comprehensive analy-

sis substantiates the efficiency of en-CSA in navigating the search space and converging toward

Fig 1. Convergence of en-CSA compared to CSA, CGO, HHO, SSA, GTO, WOA, PSO, and TSA using benchmark functions.

https://doi.org/10.1371/journal.pone.0309211.g001
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optimal solutions for a diverse range of functions within the CEC2020 benchmark. The consis-

tent superior performance of en-CSA, as depicted in the convergence curves, reinforces its

effectiveness in optimization endeavors, showcasing its robustness and adaptability in han-

dling complex optimization problems.

Analysis of boxplot behavior

Boxplots are graphical representations employed to succinctly summarize the distribution of per-

formance scores. This analytical method proves valuable in visually identifying outlier values,

assessing the symmetry of the distribution, and comparing both the spread and central tendency

of the generated scores. A narrow boxplot indicates a strong correlation between the data points,

with a smaller and narrower boxplot being indicative of better performance for an algorithm.

Fig 2 provides the boxplot curves illustrating the performance of the en-CSA across the

CEC2020 functions. The en-CSA boxplots, observed for all tested functions, are notably nar-

row, suggesting a consistent performance with minimal variability. Additionally, en-CSA con-

sistently exhibits nearly the lowest median and variability among its competitors for each

function.

From a scientific standpoint, the narrow and low median boxplots of en-CSA reflect its abil-

ity to consistently find high-quality solutions across multiple runs. This consistency is crucial

for optimization algorithms as it indicates reliability and robustness in performance. The con-

trol randomization operator and adaptive p-best mutation mechanisms in en-CSA contribute

to this consistency by ensuring a balanced exploration and exploitation process, reducing the

likelihood of being trapped in local optima and enhancing convergence to global optima.

Analyzing the boxplots from a physical perspective, the low variability and median values

indicate that en-CSA maintains stable performance even in the presence of complex, multi-

modal landscapes typical of the CEC2020 functions. The stability is a result of the algorithm’s

adaptive mechanisms that dynamically adjust the search strategy based on the landscape of the

objective function. This adaptability allows en-CSA to efficiently navigate through different

regions of the search space, ensuring that the solutions are not only optimal but also robust

against perturbations and variations in the problem landscape.

Moreover, the ability of en-CSA to maintain narrow boxplots across diverse functions high-

lights its versatility and robustness in handling a wide range of optimization problems. This

versatility is particularly important in real-world applications where the nature of the optimi-

zation problem can vary significantly, and an algorithm needs to perform well across different

scenarios.

This graphical analysis underscores the robust performance and stability of en-CSA across

diverse optimization scenarios within the CEC2020 benchmark. The consistently narrow box-

plots and low median values reinforce en-CSA’s effectiveness in achieving reliable and consis-

tent results, making it a powerful tool for solving complex optimization problems.

Exploration–exploitation analysis

The exploration-exploitation dynamics exhibited by en-CSA in addressing the CEC2020 test

functions are elucidated in Fig 3. The depicted curves reveal a nuanced and well-balanced

exploration-exploitation behavior demonstrated by en-CSA across a majority of CEC2020

functions. Specifically, the algorithm dedicates a substantial amount of time to exploration,

particularly during the initial stages of its operation.

From a scientific standpoint, this deliberate emphasis on exploration in the early phases

contributes to the algorithm’s efficacy in traversing the solution space comprehensively. Explo-

ration involves investigating diverse regions of the search space to avoid premature
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convergence to local optima, while exploitation focuses on refining solutions around promis-

ing regions to achieve optimality. The control randomization operator and adaptive p-best

mutation mechanisms in en-CSA are pivotal in managing this balance. The randomization

operator introduces stochasticity, enhancing the exploration capability, while the adaptive p-

best mutation fine-tunes the search process, enhancing exploitation.

Fig 2. Boxplot of en-CSA compared to CSA, CGO, HHO, SSA, GTO, WOA, PSO, and TSA using benchmark functions.

https://doi.org/10.1371/journal.pone.0309211.g002
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Analyzing this behavior from a physical perspective, the initial extensive exploration allows

en-CSA to build a broad understanding of the solution landscape. This is particularly impor-

tant for complex, multimodal functions like those in the CEC2020 benchmark, where the land-

scape may contain numerous local optima. By extensively exploring the search space early on,

en-CSA reduces the risk of becoming trapped in suboptimal regions. As the algorithm

Fig 3. Demonstration of en-CSA’s exploration-exploitation capability through benchmark functions.

https://doi.org/10.1371/journal.pone.0309211.g003
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progresses, it gradually shifts focus towards exploitation, concentrating computational efforts

on refining the most promising solutions identified during the exploration phase.

This strategic allocation of computational efforts, as evidenced by the exploration-exploita-

tion curves, underscores en-CSA’s adaptive and effective approach in navigating complex opti-

mization landscapes. The balance between exploration and exploitation is crucial for

maintaining diversity in the population and ensuring convergence to high-quality solutions.

The dynamic adjustment of this balance by en-CSA, facilitated by its enhanced mechanisms,

allows it to adaptively respond to the characteristics of the problem landscape, enhancing its

overall optimization performance.

Analysis of population diversity

The examination of population diversity serves as a critical means to assess the equilibrium

between exploration and exploitation within the proposed algorithm. In this study, diversity

curves of the en-CSA were generated, as depicted in Fig 4. The observed curves delineate that en-

CSA consistently upholds heightened population diversity throughout the optimization process.

From a scientific standpoint, maintaining high population diversity is essential for ensuring

a comprehensive search of the solution space. High diversity prevents premature convergence

to local optima by encouraging the exploration of various regions within the search space. The

control randomization operator and adaptive p-best mutation mechanisms in en-CSA play

crucial roles in sustaining this diversity. These mechanisms introduce variability and adapt-

ability into the population, allowing the algorithm to continuously generate diverse candidate

solutions.

Analyzing the behavior from a physical perspective, the strategic maintenance of diversity

is instrumental in mitigating the risk of being confined to local optima, thereby fostering

exploration across a broader spectrum of the solution space. This is particularly important for

complex, multimodal functions, where the landscape may contain numerous local optima. By

maintaining a diverse population, en-CSA ensures that it can explore multiple regions simulta-

neously, increasing the likelihood of escaping suboptimal solutions and discovering the global

optimum.

The deliberate emphasis on increased population diversity augments the algorithm’s capac-

ity for efficient exploitation as well. Once promising regions are identified, the algorithm can

effectively refine solutions within these regions, leveraging the diverse candidate solutions to

achieve optimal performance. The dynamic adjustment of diversity, facilitated by en-CSA’s

enhanced mechanisms, allows the algorithm to balance exploration and exploitation adaptively

based on the problem landscape.

This diversity analysis underscores en-CSA’s adaptive and well-informed approach to bal-

ancing exploration and exploitation dynamics. The algorithm’s ability to sustain high popula-

tion diversity throughout the optimization process enhances its robustness and efficacy in

navigating complex optimization landscapes. The adaptive mechanisms within en-CSA ensure

that it can maintain this balance, thereby contributing to its superior performance in solving

the CEC2020 benchmark functions.

Dynamic modeling of steam condenser

The outer configuration of a shell-and-tube type condenser typically exhibits a cylindrical or

elliptical shape, as illustrated in Fig 5. This structure comprises end closures that form water

chambers. A perforated tube plate is positioned between the end closures and the shell, incor-

porating numerous cooling water pipes arranged hierarchically. Steam enters the condenser

shell through an upper steam admission pipe, connected directly or indirectly to exhaust
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equipment via a compensator. A gathering tank (hot well water tank) for condensed water is

located in the lower part of the shell, with the air outlet port situated at its lower section, draw-

ing air through this nozzle.

The operational process of the steam condenser unfolds as follows: Steam is introduced

into the condenser via the steam admission pipe, initiating radiant condensation upon contact

Fig 4. Diversity of the population of en-CSA with respect to benchmark functions.

https://doi.org/10.1371/journal.pone.0309211.g004
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with the tube wall. Concurrently, latent heat is transferred to the cooling water through the

surface of the cooling water pipe. Cooling water, with an inlet temperature, enters the water

chamber through the cooling water pipe, distributing across all pipes of the first procedure in

the lower part of the condenser shell. The cooling water progresses through subsequent water

chambers along the first six cooling water pipes, engaging in heat exchange with the steam.

After multiple procedures, the cooling water, now with an outlet temperature, is discharged

from the outlet pipes.

Due to the lack of system sealing, air is continuously drawn out from the condenser to

maintain the required vacuum degree. The drawn gas consists of both air and steam. Initially,

during condensation, the air volume is considerably smaller than the total steam amount. As

steam and air move towards the exhaust port, continuous steam condensation leads to a grad-

ual decrease in steam quality within the mixture. Conversely, the relative content of air pro-

gressively increases. The steam condensation process concludes when the relative content of

air entering the cooling zone reaches a significant level. The mathematical model of the shell-

and-tube condenser can be expressed as follows. For the steam zone, the governing equations

are provided as [11, 12]:

dGs
dt
¼ Gstþ Gost � Gc � Gss ð20Þ

Fig 5. Structure diagram of shell-and-tube condenser.

https://doi.org/10.1371/journal.pone.0309211.g005
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dPs
dt
¼
Rs dGs

dt

� �

V
Tsþ 273:15ð Þ ð21Þ

dGsHs
dt
¼ Gst�Hstþ Gost�Host � Gcþ Gssð Þ �Hs ð22Þ

where Gs, Gst, Gost, Gc, Gss, Ps, Rs, V, Ts, Hs, Hst and Host respectively represent the steam

content in the shell side, the exhaust volume of steam turbine, the other steam inlet of the con-

denser, the main steam condensate, the amount of steam drawn out by vacuum pumping

equipment, the internal steam pressure of the condenser, the steam gas constant, volume of

gas in the condenser, temperature of the saturated gas, the average enthalpy of the steam, the

enthalpy of the steam turbine exhaust, and other inlet enthalpy. Eqs (20), (21), and (22) respec-

tively represent the steam mass equation, vapor pressure equation, and average enthalpy of

steam in the condenser. For the air zone, the governing equations are provided as [11, 12]:

dGa
dt
¼ Gvbþ Gnþ Gg � Ga ð23Þ

dPa
dt
¼
Ra dGa

dt

� �

V
Tsþ 273:15ð Þ ð24Þ

Pc ¼ Psþ Pa ð25Þ

where Gvb, Gn, Gg, Ga, Pa, Ra, and Pc respectively denote the air quantity of the condenser

from the vacuum break valve, the air volume of the normal drain condense, the air amount

from the seal leakage of the condenser, the air quantity from air extractor, the air pressure in

the condenser, the gas constant of the air, and the absolute pressure. Eqs (23), (24), and (25)

respectively represent air mass equation, air pressure equation, and absolute pressure equation

in the condenser. For the hot water zone, the governing equations are provided as [11, 12]:

Lc ¼
Gw
rAw

ð26Þ

dGw
dt
¼ Gcþ Ggp � Gwo ð27Þ

dGwHw
dt

¼ Gc�Hcwþ Ggp�Hgp � Gwo�Hwð Þ ð28Þ

where Lc, Gw, ρ, Aw, Ggp, Gwo, Hgp, Hw, and Hcw respectively denote the hot well water level,

the hot water quality, the hot well water density, the hot well cross-sectional area, the bubbling

oxygen exhaust volume, the condenser water outlet quantity, the bubbling oxygen exhaust

steam enthalpy, the enthalpy of hot well water, and enthalpy of saturated water corresponding

to the condenser pressure. Eqs (26), (27), and (28) respectively represent hot well water level

equation, hot water quality equation, and enthalpy equation of hot well water. The mathemati-

cal model of the condenser tube side is formulated by the dynamic heat balance equation of

the circulating water, which is given by [11, 12]:

MwCw
dT2

dt
¼ Q � Qw ¼ UADtm � FcwCp T � Tcwð Þ ð29Þ
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where Mw, Cp, Q, Qw, U, Δtm, A, Fcw, Tcw, and T respectively represent the circulating water

quantity, the circulating water heat capacity, the steam outlet heat, the circulating water heat

absorption quantity, the condenser heat transfer coefficient, the logarithmic mean temperature

difference, the condenser heat transfer area, the circulating water flow, the circulating water

inlet temperature, and the circulating water outlet temperature. The value of Δtm is calculated

as follows [11, 12].

Dtm ¼
T � Tcw

ln ððTs � TcwÞ=ðTs � TÞÞ
ð30Þ

The overcooling of condenser is calculated by Δtw = Tc−Tw where Tc is the saturated water

temperature of the vapor pressure in the condenser and Tw is the condenser hot well water

temperature. The heat transfer error of the condenser is calculated by δt = Ts−T where Ts is

saturated gas temperature corresponding to saturation pressure in condenser. In the context

of the dynamic heat balance, we make the assumption that the total condensation is fixed and

that the incoming steam and outgoing condensate are in a saturated state. Thus, the thermal

energy transferred from steam to the flowing water is equivalent to the heat potential of the

steam. The heat emitted by the steam may be estimated and computed using the following

equations:

dT
dt
¼

Fcw
Mcw

Tcw � Tð Þ þ
Q

Mcwþ Cp
ð31Þ

The mass balance of steam and condensate relies on the assumption of continuous space

and constant volume of steam and air. To clarify, in order to sustain the desired amount of

vapor condensation in the condenser (at a specific vacuum level), it is necessary to regulate the

outflow of condensed water within a specific range. To simplify the model, we use the assump-

tion that the condensate’s input and outflow are in a saturated state. Hence, the equation that

represents the ideal gas model is:

dP
dT
¼
RTc
V

Fs � Fcð Þ ð32Þ

FOPID controlled steam condenser system tuned by en-CSA

Fundamentals of FOPID

The attainment of further enhancements is viable through the implementation of a FOPID

controller, which constitutes a more sophisticated and generalized iteration of the conven-

tional PID controller [43]. The superiority of FOPID control over PID control is evident across

various dimensions [44]. Firstly, it integrates five specifications, affording two additional

parameters compared to PID, thereby augmenting flexibility in control design. Secondly, it

readily achieves iso-damping properties across a broader frequency range. Thirdly, it exhibits

heightened robustness. Lastly, it yields superior outcomes for diverse scenarios, including

higher-order systems, non-minimum phase systems, nonlinear systems, and systems charac-

terized by extended time delays. The transfer function of a FOPID controller is expressed as

follows, where Kp, Ki, Kd, λ, and μ denote the proportional gain, integral gain, derivative gain,

fractional integral order, and fractional derivative order, respectively [44].

CFOPID sð Þ ¼ Kp þ
Ki

sl
þ Kds

m ð33Þ

This equation reveals that the classical proportional (P), proportional-integral (PI), propor-

tional-derivative (PD), and proportional-integral-derivative (PID) controllers can be discerned
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as specific instances of the FOPID controller, depending on the fractional order values. Fig 6

(A) visually elucidates the correlation between FOPID and classical controllers, depicting the

generalized FOPID control extending PID control from a singular point to a comprehensive

plane. The associated block diagram of the FOPID controller is presented in Fig 6(B).

Optimization problem and application of en-CSA

To ascertain a viable and effective solution for the speed condenser, the challenge is formulated

as a constrained minimization problem, rendering it amenable to optimization algorithms. In

outlining the minimization problem, this investigation employs a prescribed approach for

optimizing the FOPID controller. Initially, the problem is expressed as

X ¼ ½x1; x2; x3; x4; x5� ¼ ½Kp;Ki;Kd; l; m�, and subsequently, the integral of time absolute error

(ITAE) cost function [45] is embraced for judicious minimization using the proposed en-CSA.

ITAE ¼
Z1

0

t � jeðtÞj � dt ð34Þ

Here, e(t) signifies the error signal, and the minimization of the ITAE cost function is con-

strained within the variable ranges: 1�Kp�20, 0.1�Ki�10, 0.05�Kd�2, 0.5�λ�1.5 and

0.5�μ�1.5. Fig 7 elucidates the application of the en-CSA in the design of the FOPID-con-

trolled nonlinear condenser system. In this context, the closed-loop response to a step change

in the P setpoint, transitioning from 90 kPa to 95 kPa, is employed.

Simulation results and discussion

Parameters of test system

Before delving into the analyses and presenting the simulation results, it is imperative to estab-

lish a clear understanding of the parameters and variables governing the steam condenser sys-

tem under examination. Table 4 provides a detailed compilation of these parameters and

Fig 6. The plane (a) and block diagram (b) of a FOPID controller.

https://doi.org/10.1371/journal.pone.0309211.g006
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variables, each crucial for the accurate representation and evaluation of the system’s perfor-

mance. The values assigned to parameters are documented in the table, expressed in their

respective units.

Fig 7. Application of the en-CSA to nonlinear condenser system.

https://doi.org/10.1371/journal.pone.0309211.g007

Table 4. Parameters/variables of steam condenser system.

Parameter/Variable Value Unit

R 0.461526 kJ/kgK

V 3 m3

λ 2265.65 kJ/kg

UA 356.972 kW/K

Mcw 6500 kg

Cp 4.2 kJ/(kgK)

α 0.3162 K/kPa

β 68.0958 ˚C

α1 0.087292 -

α2 0.00073787 -

Fs 4 kg/s

Fc 4 kg/s

Fcw 107.8881 kg/s

P 90 kPa

T 80 ˚C

Tcw 60 ˚C

Tc 96.5538 ˚C

Q 9062.6 kW

https://doi.org/10.1371/journal.pone.0309211.t004
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From a scientific standpoint, these parameters include key factors such as the heat transfer

coefficients, steam flow rates, condenser pressure, and cooling water temperature, among oth-

ers. Each of these parameters plays a significant role in determining the dynamic behavior and

performance of the steam condenser system. For instance, the heat transfer coefficient directly

influences the efficiency of heat exchange between the steam and cooling water, impacting the

overall thermal performance of the condenser.

Analyzing from a physical perspective, understanding these parameters is vital for accu-

rately simulating the system’s response to various control strategies. The heat transfer coeffi-

cient, for example, determines how effectively the steam condenses and transfers heat to the

cooling water. Variations in steam flow rates affect the pressure and temperature within the

condenser, influencing the condensation process and the system’s thermal efficiency. Cooling

water temperature, another critical parameter, impacts the condenser’s ability to maintain

optimal pressure and temperature levels for efficient operation.

Furthermore, the interplay between these parameters needs to be thoroughly understood to

develop and validate effective control strategies. The FOPID controller, optimized using the en-

CSA, relies on accurate modeling of these parameters to achieve precise control of the condenser

pressure. Any deviations or inaccuracies in these parameters can significantly affect the control-

ler’s performance, leading to suboptimal pressure regulation and potential system instability.

Thus, the detailed compilation of these parameters in Table 4 serves as the foundation for

the subsequent simulation analyses. By accurately defining and understanding these variables,

we can ensure that the simulation results are reflective of the real-world behavior of the steam

condenser system. This, in turn, allows for a more reliable evaluation of the en-CSA optimized

FOPID controller’s effectiveness in managing the condenser pressure and enhancing overall

system performance.

Statistical performance of recommended en-CSA

In order to evaluate the suggested en-CSA, this study compared it to three other modern and

effective optimization algorithms: the Runge-Kutta optimizer (RUN) [40], prairie dog optimi-

zation (PDO) [41] and RIME optimizer [42]. A fair assessment was conducted with a popula-

tion size of 30 and a total iteration number of 50, repeated 25 times to ensure robustness and

reliability of the results.

From a scientific perspective, this comparative analysis is essential to ascertain the efficacy

and robustness of en-CSA in solving optimization problems. The choice of these benchmark

algorithms provides a diverse set of optimization strategies, allowing for a comprehensive eval-

uation of en-CSA’s performance across different paradigms.

Fig 8 illustrates the integral of time-weighted absolute error (ITAE) objective function val-

ues for all runs. It is clear that en-CSA consistently achieves the lowest values with the smallest

standard deviation, indicating its superior optimization capability. The ITAE metric, com-

monly used in control systems, measures the performance by integrating the absolute error

over time, weighted by time. Lower ITAE values signify better performance, as they indicate

quicker and more accurate convergence to the desired solution.

Furthermore, Fig 9 presents a boxplot analysis, reaffirming that en-CSA attains the lowest

objective function values with a comparatively small distribution. Boxplots visually summarize

the distribution, central tendency, and variability of the data, highlighting the consistency and

reliability of en-CSA’s performance. The narrow spread of the en-CSA boxplot, coupled with

its low median values, underscores its robust performance in achieving optimal solutions.

To provide a quantitative comparison, Table 5 presents numerical statistical analyses across

various metrics, including the best, worst, mean, and standard deviation (SD) values. Notably,
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en-CSA outperforms the other algorithms in terms of the best, worst, and mean values, with

the lowest ITAE values recorded. The standard deviation for en-CSA is also remarkably lower

than its counterparts, indicating a higher degree of consistency and stability in its perfor-

mance. From a physical perspective, this stability is crucial as it implies that en-CSA can reli-

ably find optimal solutions across multiple runs, a desirable trait for practical applications

where consistency is key.

These findings collectively support the assertion that the recommended en-CSA algorithm

demonstrates superior statistical performance when compared to the selected state-of-the-art opti-

mization algorithms. The enhanced mechanisms within en-CSA, such as the control randomiza-

tion operator and adaptive p-best mutation, contribute significantly to its ability to explore and

exploit the search space effectively, thereby achieving better optimization outcomes.

Evolution of ITAE and best FOPID parameters

Fig 10 visually captures the dynamic changes in the ITAE objective function, emphasizing the

evolution of ITAE and the determination of optimal FOPID parameters. Metaheuristic

Fig 8. ITAE objective function values for all runs of en-CSA, CSA, RUN, PDO and RIME algorithms.

https://doi.org/10.1371/journal.pone.0309211.g008
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optimization methods, characterized by their swarm-based nature, navigate solution spaces

randomly to seek optimal solutions. These methods aim to minimize the ITAE objective func-

tion within the confines of the solution space during each iteration, ultimately converging

toward the best possible solutions.

From a scientific standpoint, ITAE is a crucial performance metric for control systems, as it

combines both the magnitude of the error and the duration for which the error persists. Lower

ITAE values indicate a more effective control system, as the system quickly and accurately

responds to disturbances.

Fig 9. Boxplot analysis for ITAE objective function using en-CSA, CSA, RUN, PDO and RIME algorithms.

https://doi.org/10.1371/journal.pone.0309211.g009

Table 5. Comparative numerical statistical analysis.

Metric en-CSA CSA RUN PDO RIME

Best 12.3398 14.3100 16.4032 17.9525 15.9775

Worst 13.4899 16.3535 17.9041 20.0906 18.0242

Mean 12.8661 15.0131 16.9889 18.7688 16.6231

SD 0.3154 0.5031 0.3875 0.5221 0.5614

https://doi.org/10.1371/journal.pone.0309211.t005
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Fig 10 illustrates the fluctuations of the ITAE objective function across specified iterations

for all algorithms, each displaying distinct convergence curves based on their search mecha-

nism characteristics. The en-CSA algorithm is particularly distinguished by its well-balanced

mechanism, which allows it to achieve global solutions without being affected by local minima

or premature convergence, unlike other algorithms. This balanced approach is essential in

maintaining diversity in the solution space, preventing the algorithm from settling prema-

turely on suboptimal solutions.

Physically, en-CSA’s rapid convergence to lower ITAE values in early iterations indicates its

efficiency in exploring the solution space and identifying optimal FOPID controller parame-

ters. The algorithm’s ability to maintain a broad search early on, followed by a more focused

exploitation phase, enables it to fine-tune the FOPID parameters effectively. This swift conver-

gence underscores the efficiency and effectiveness of en-CSA in optimizing control parame-

ters, ensuring that the FOPID controller performs optimally under varying conditions.

Additionally, Table 6 supplements the visual representation by detailing the obtained con-

troller parameters through different algorithms. The comparative analysis of FOPID parame-

ters obtained by en-CSA and other algorithms offers deeper insights into the optimization

process. The table showcases the specific values for the FOPID controller’s parameters (e.g.,

Fig 10. Change of ITAE objective function for en-CSA, CSA, RUN, PDO and RIME algorithms.

https://doi.org/10.1371/journal.pone.0309211.g010
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proportional gain, integral gain, derivative gain, and fractional orders) optimized by each algo-

rithm, providing a quantitative basis for comparing their performance.

By examining these parameters, one can gain a deeper understanding of how en-CSA fine-

tunes the controller settings to achieve superior performance. For instance, the en-CSA may

adjust the proportional gain to ensure a swift response to errors, while simultaneously fine-

tuning the integral and derivative gains to minimize steady-state error and dampen oscilla-

tions, respectively. The fractional orders in the FOPID controller allow for a more flexible and

precise adjustment of the control action, further enhancing the system’s performance.

Table 6. Obtained controller parameters via different algorithms.

Parameters en-CSA CSA RUN PDO RIME

Kp 5.5547 5.2449 5.8877 5.2479 5.7250

Ki 0.9190 0.8503 0.8810 1.4482 1.1871

Kd 1.9675 1.2131 1.3916 1.9420 1.7104

λ 1.0005 1.0022 1.0021 0.9943 0.9958

μ 0.9332 0.9157 0.8746 0.7363 0.8054

https://doi.org/10.1371/journal.pone.0309211.t006

Fig 11. Time response of the en-CSA based condenser with respect to different algorithms of CSA, RUN, PDO and RIME.

https://doi.org/10.1371/journal.pone.0309211.g011
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Nonlinear simulation result

In the examination of nonlinear simulation results, Fig 11 illustrates the time response of the

condenser under the influence of various optimization algorithms, each contributing to the

evolution of the system’s behavior. The system undergoes a step change in setpoint pressure,

transitioning from 90 kPA to 95 kPA at the 10-second mark. This dynamic change is further

elucidated in Fig 12, which provides a zoomed-in view of Fig 11, facilitating a detailed inspec-

tion of the system’s response to the altered setpoint.

From a scientific standpoint, analyzing the time response of the condenser is crucial for

understanding how well the control algorithms manage sudden changes in operating condi-

tions. The step change in setpoint pressure simulates a realistic scenario where the system

must quickly adapt to new conditions, reflecting its robustness and adaptability.

The efficacy of the recommended en-CSA becomes particularly evident in Fig 11, where it

exhibits the lowest overshoot and settling time compared to other algorithms. Overshoot and

settling time are critical parameters in control systems. Overshoot refers to the extent to which

the system exceeds its target value, while settling time is the duration the system takes to

Fig 12. Zoomed view of Fig 11.

https://doi.org/10.1371/journal.pone.0309211.g012
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stabilize within a certain range around the target value. Minimizing these parameters is essen-

tial for achieving a stable and efficient control system.

This observation is further quantified in Fig 13, which offers a comparative analysis of nor-

malized settling times and overshoots for en-CSA, alongside other algorithms such as CSA,

RUN, PDO, and RIME. The normalized metrics provide a standardized way to compare the

performance across different algorithms, making the analysis more robust and generalizable.

Especially, en-CSA demonstrates a normalized settling time of 16.5104 and a normalized

overshoot of 8.7070%, establishing it as the algorithm with the most favorable performance in

minimizing overshoot and achieving a swift settling time. These outcomes underscore the

effectiveness of en-CSA in optimizing the condenser system’s time response dynamics, thereby

contributing to enhanced control and stability.

Physically, the reduced overshoot achieved by en-CSA means that the system can reach its

new setpoint without excessive fluctuations, which is crucial for maintaining the integrity and

efficiency of industrial processes. A swift settling time indicates that the system can quickly sta-

bilize after a disturbance, ensuring minimal downtime and consistent performance.

Fig 13. Comparison of normalized settling times and overshoots for en-CSA, CSA, RUN, PDO and RIME methods.

https://doi.org/10.1371/journal.pone.0309211.g013
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The superiority of en-CSA can be attributed to its balanced exploration-exploitation

mechanism, which allows it to efficiently navigate the solution space and identify optimal

control parameters. By maintaining high population diversity and employing adaptive strat-

egies, en-CSA effectively avoids local optima and ensures robust convergence to the global

optimum.

Comparison with published approaches

In the context of comparing the performance of the recommended en-CSA with established

approaches reported in the literature, this section employs the time response analysis and sub-

sequent metrics for evaluation. Fig 14 displays the time-dependent response of the condenser

system when it experiences a sudden shift in setpoint pressure, going from 90 kPA to 95 kPA

at the 10-second mark. It is worth mentioning that en-CSA shows the smallest amount of over-

shoot and takes the least amount of time to settle in this dynamic situation, as clearly shown in

the depiction.

Fig 15 presents a quantitative evaluation of normalized settling times and overshoots for

en-CSA, compared to other methods such as grey wolf optimizer (GWO), particle swarm

Fig 14. Time response of the en-CSA based condenser with respect to reported approaches of GWO, PSO, GA and ZN.

https://doi.org/10.1371/journal.pone.0309211.g014
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optimization (PSO), genetic algorithm (GA), and Ziegler-Nichols (ZN) [11]. The en-CSA is

remarkable for its normalized settling time of 16.5104 seconds and a normalized overshoot

of 8.7070%, which are the lowest values compared to other optimization methods. This

result demonstrates the exceptional effectiveness of en-CSA in delivering a quick and con-

sistent response, exceeding the performance of previously documented methods in the

literature.

Conclusion

This study addresses the critical need for optimizing shell and tube heat exchangers in indus-

trial processes, particularly for pressure regulation. For the control aspect, we used the FOPID

controller due to its promising feature of capturing the dynamic behavior of complex systems.

The novel contribution of this work lies in the introduction and application of en-CSA opti-

mizer for tuning the FOPID controller. The innovative features of en-CSA include a control

randomization operator, linear transfer function, and adaptive p-best mutation integrated

with original CSA. The effectiveness of en-CSA was rigorously tested using the CEC2020

benchmark functions, demonstrating superior convergence rates and accuracy in locating

optimal solutions compared to other optimization algorithms. Application of en-CSA to

Fig 15. Comparison of normalized settling times and overshoots for en-CSA, GWO, PSO, GA and ZN methods.

https://doi.org/10.1371/journal.pone.0309211.g015
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FOPID controller tuning in shell and tube heat exchangers yielded remarkable results, with

significant improvements in pressure regulation, faster response times (up to 11%), and mini-

mized overshooting (up to 55%) compared to alternative methods. These findings underscore

en-CSA’s potential as a reliable tool for optimizing control parameters in real-world scenarios,

thereby enhancing operational stability and efficiency in industrial processes. The success of

en-CSA in both benchmark functions and practical steam condenser control highlights its ver-

satility and broad applicability as a powerful optimization tool.
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predictive control and PID control of shell-and-tube heat exchangers, Energy 159 (2018) 1–10. https://

doi.org/10.1016/j.energy.2018.06.106

19. Girirajan B., Rathikarani D., Optimal CRONE controller using meta-heuristic optimization algorithm for

shell and tube Heat Exchanger, IOP Conf Ser Mater Sci Eng 1166 (2021) 012058. https://doi.org/10.

1088/1757-899X/1166/1/012058

20. Ahn J.-K., So G.-B., Lee J.-Y., Lee Y.-H., So M.-O., Jin G.-G., PID Control of a Shell and Tube Heat

Exchanger System Incorporating Feedforward Control and Anti-windup Techniques, Journal of Institute

of Control, Robotics and Systems 20 (2014) 543–550. https://doi.org/10.5302/J.ICROS.2014.14.0009

21. Marzouk S.A., Abou Al-Sood M.M., El-Said E.M.S., Younes M.M., El-Fakharany M.K., A comprehen-

sive review of methods of heat transfer enhancement in shell and tube heat exchangers, J Therm Anal

Calorim 148 (2023) 7539–7578. https://doi.org/10.1007/s10973-023-12265-3

22. Jamil A.A., Tu W.F., Ali S.W., Terriche Y., Guerrero J.M., Fractional-Order PID Controllers for Tempera-

ture Control: A Review, Energies (Basel) 15 (2022) 3800. https://doi.org/10.3390/en15103800

23. Izci D., Ekinci S., Fractional order controller design via gazelle optimizer for efficient speed regulation of

micromotors, E-Prime—Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100295.

https://doi.org/10.1016/j.prime.2023.100295

24. Izci D., Ekinci S., Eker E., Kayri M., A novel modified opposition-based hunger games search algorithm

to design fractional order proportional-integral-derivative controller for magnetic ball suspension sys-

tem, Advanced Control for Applications 4 (2022) e96. https://doi.org/10.1002/adc2.96

25. Abualigah L., Ekinci S., Izci D., Zitar R.A., Modified Elite Opposition-Based Artificial Hummingbird Algo-

rithm for Designing FOPID Controlled Cruise Control System, Intelligent Automation & Soft Computing

38 (2023) 169–183. https://doi.org/10.32604/iasc.2023.040291

26. Izci D., Ekinci S., A novel-enhanced metaheuristic algorithm for FOPID-controlled and Bode’s ideal

transfer function–based buck converter system, Transactions of the Institute of Measurement and Con-

trol 45 (2023) 1854–1872. https://doi.org/10.1177/01423312221140671

PLOS ONE enCSA for steam condenser control

PLOS ONE | https://doi.org/10.1371/journal.pone.0309211 September 19, 2024 32 / 33

https://doi.org/10.1016/j.applthermaleng.2019.114696
https://doi.org/10.1016/j.ijthermalsci.2020.106742
https://doi.org/10.1016/j.ijthermalsci.2020.106742
https://doi.org/10.1016/j.ijthermalsci.2022.107655
https://doi.org/10.1016/j.ijthermalsci.2023.108175
https://doi.org/10.1016/j.ijthermalsci.2023.108175
https://doi.org/10.1155/2015/120975
https://doi.org/10.1166/jctn.2017.6659
https://doi.org/10.1088/1757-899X/925/1/012020
https://doi.org/10.1088/1757-899X/925/1/012020
https://doi.org/10.5815/ijem.2021.01.05
https://doi.org/10.5815/ijem.2021.01.05
https://doi.org/10.1109/ISCO.2017.7855651
https://doi.org/10.1134/S0040579520060226
https://doi.org/10.1016/j.aej.2022.07.066
https://doi.org/10.1016/j.energy.2018.06.106
https://doi.org/10.1016/j.energy.2018.06.106
https://doi.org/10.1088/1757-899X/1166/1/012058
https://doi.org/10.1088/1757-899X/1166/1/012058
https://doi.org/10.5302/J.ICROS.2014.14.0009
https://doi.org/10.1007/s10973-023-12265-3
https://doi.org/10.3390/en15103800
https://doi.org/10.1016/j.prime.2023.100295
https://doi.org/10.1002/adc2.96
https://doi.org/10.32604/iasc.2023.040291
https://doi.org/10.1177/01423312221140671
https://doi.org/10.1371/journal.pone.0309211


27. O. Can, S. Ekinci, D. Izci, Honey Badger Algorithm for Adjustment of FOPID Controller Adopted in An

Automatic Voltage Regulator System, in: 2022 Global Energy Conference (GEC), IEEE, 2022: pp. 262–

265. https://doi.org/10.1109/GEC55014.2022.9986660.

28. Ekinci S., Izci D., Hekimoğlu B., Optimal FOPID Speed Control of DC Motor via Opposition-Based

Hybrid Manta Ray Foraging Optimization and Simulated Annealing Algorithm, Arab J Sci Eng 46

(2021) 1395–1409. https://doi.org/10.1007/s13369-020-05050-z

29. Karahan O., Design of optimal fractional order fuzzy PID controller based on cuckoo search algorithm

for core power control in molten salt reactors, Progress in Nuclear Energy 139 (2021) 103868. https://

doi.org/10.1016/j.pnucene.2021.103868

30. Tepljakov A., Alagoz B.B., Yeroglu C., Gonzalez E., HosseinNia S.H., Petlenkov E., FOPID Controllers

and Their Industrial Applications: A Survey of Recent Results, IFAC-PapersOnLine 51 (2018) 25–30.

https://doi.org/10.1016/j.ifacol.2018.06.014

31. Ekinci S., Izci D., Eker E., Abualigah L., An effective control design approach based on novel enhanced

aquila optimizer for automatic voltage regulator, Artif Intell Rev 56 (2023) 1731–1762. https://doi.org/

10.1007/s10462-022-10216-2

32. Feng Z., Niu W., Liu S., Cooperation search algorithm: A novel metaheuristic evolutionary intelligence

algorithm for numerical optimization and engineering optimization problems, Appl Soft Comput 98

(2021) 106734. https://doi.org/10.1016/j.asoc.2020.106734

33. Talatahari S., Azizi M., Chaos Game Optimization: a novel metaheuristic algorithm, Artif Intell Rev 54

(2021) 917–1004. https://doi.org/10.1007/s10462-020-09867-w

34. Heidari A.A., Mirjalili S., Faris H., Aljarah I., Mafarja M., Chen H., Harris hawks optimization: Algorithm

and applications, Future Generation Computer Systems 97 (2019) 849–872. https://doi.org/10.1016/j.

future.2019.02.028

35. Mirjalili S., Gandomi A.H., Mirjalili S.Z., Saremi S., Faris H., Mirjalili S.M., Salp Swarm Algorithm: A bio-

inspired optimizer for engineering design problems, Advances in Engineering Software 114 (2017)

163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

36. Sadeeq H.T., Abdulazeez A.M., Giant Trevally Optimizer (GTO): A Novel Metaheuristic Algorithm for

Global Optimization and Challenging Engineering Problems, IEEE Access 10 (2022) 121615–121640.

https://doi.org/10.1109/ACCESS.2022.3223388

37. Mirjalili S., Lewis A., The Whale Optimization Algorithm, Advances in Engineering Software 95 (2016)

51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

38. Poli R., Kennedy J., Blackwell T., Particle swarm optimization, Swarm Intelligence 1 (2007) 33–57.

https://doi.org/10.1007/s11721-007-0002-0

39. Kiran M.S., TSA: Tree-seed algorithm for continuous optimization, Expert Syst Appl 42 (2015) 6686–

6698. https://doi.org/10.1016/j.eswa.2015.04.055

40. Ahmadianfar I., Heidari A.A., Gandomi A.H., Chu X., Chen H., RUN beyond the metaphor: An efficient

optimization algorithm based on Runge Kutta method, Expert Syst Appl 181 (2021) 115079. https://doi.

org/10.1016/j.eswa.2021.115079

41. Ezugwu A.E., Agushaka J.O., Abualigah L., Mirjalili S., Gandomi A.H., Prairie Dog Optimization Algo-

rithm, Neural Comput Appl 34 (2022) 20017–20065. https://doi.org/10.1007/s00521-022-07530-9

42. Su H., Zhao D., Heidari A.A., Liu L., Zhang X., Mafarja M., et al. RIME: A physics-based optimization,

Neurocomputing 532 (2023) 183–214. https://doi.org/10.1016/j.neucom.2023.02.010

43. Shah P., Agashe S., Review of fractional PID controller, Mechatronics 38 (2016) 29–41. https://doi.org/

10.1016/j.mechatronics.2016.06.005

44. Izci D., Ekinci S., Zeynelgil H.L., Hedley J., Fractional Order PID Design based on Novel Improved

Slime Mould Algorithm, Electric Power Components and Systems 49 (2021) 901–918. https://doi.org/

10.1080/15325008.2022.2049650
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