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Abstract

Malaria which is mainly caused by Plasmodium falciparum parasite remains a devastating
public health concern, necessitating the need to develop new antimalarial agents. P. falcipa-
rum heat shock protein 90 (Hsp90), is indispensable for parasite survival and a promising
drug target. Inhibitors targeting the ATP-binding pocket of the N-terminal domain have anti-
Plasmodium effects. We proposed a de novo active learning (AL) driven method in tandem
with docking to predict inhibitors with unique scaffolds and preferential selectivity towards
PfHsp90. Reference compounds, predicted to bind PfHsp90 at the ATP-binding pocket and
possessing anti- Plasmodium activities, were used to generate 10,000 unique derivatives
and to build the Auto-quantitative structures activity relationships (QSAR) models. Glide
docking was performed to predict the docking scores of the derivatives and > 15,000 com-
pounds obtained from the ChEMBL database. Re-iterative training and testing of the models
was performed until the optimum Kennel-based Partial Least Square (KPLS) regression
model with a regression coefficient R2 = 0.75 for the training set and squared correlation
prediction Q2 = 0.62 for the test set reached convergence. Rescoring using induced fit dock-
ing and molecular dynamics simulations enabled us to prioritize 15 ATP/ADP-like design
ideas for purchase. The compounds exerted moderate activity towards P. falciparum NF54
strain with I1C5 values of < 6uM and displayed moderate to weak affinity towards PfHsp90
(Kp range: 13.5-19.9uM) comparable to the reported affinity of ADP. The most potent com-
pound was FTN-T5 (PfN54 IC5q:1.44uM; HepG2/CHO cells SI> 29) which bound to
PfHsp90 with moderate affinity (Kp:7.7uM), providing a starting point for optimization efforts.
Our work demonstrates the great utility of AL for the rapid identification of novel molecules
for drug discovery (i.e., hit identification). The potency of FTN-T5 will be critical for designing
species-selective inhibitors towards developing more efficient agents against malaria.
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Introduction

Sub-Saharan Africa, especially marginalized populations, has recorded over 90% of the 608,
000 deaths caused by malaria in 2022 [1]. Despite the presence of a malaria vaccine, the emer-
gence of resistant strains indicates a threat to the gains made from decades of implementing
malaria control strategies [2, 3]. It has also been suggested that changes in climate conditions
such as increased temperatures and heavy rainfall may result in an increased mosquito popula-
tion, putting more people at risk of contracting malaria [1]. Countries such as Rwanda [4] and
East Asia [5] have begun to report the spread and dissemination of first-line treatment options
artemisinin-tolerant P. falciparum strains emphasizing the urgent need to develop potent and
reliable anti-parasitic drugs. Future antimalarials should inhibit Plasmodium infection and
growth, potentially counteracting the likelihood of rapid development of drug resistance.
Innovative approaches could explore validated drug target proteins implicated in drug resis-
tance, such as PfHsp90 [6].

In P. falciparum, Hsp90 plays a crucial role during parasite adaptation and development,
from the vector and host environment, which are often accompanied by abrupt increases in
temperature amongst other stresses [7, 8]. PfHsp90 is expressed and essential for the parasite’s
survival at all erythrocytic [9-12] and hepatic stages of development [13]. Distinct expression
profiles of PfHsp90 have been correlated to poor disease prognosis in P. falciparum-infected
individuals [14], making it a prime drug target. PfHsp90 is a dimeric protein composing of the
N-terminal domain (NTD), middle domain and c-terminal domains respectively serving as
binding sites of ATP, client proteins and co-chaperones [15, 16]. Most Hsp90 inhibitors are
small molecules, which compete with ATP for binding the NTD. In the literature these small
molecules, including geldanamycin (GDA), 17-AAG, 17-DMAG and PUH-71, were shown to
be effective antimalarial agents by inhibiting the activities of PfHsp90 [17-19]. Treatment of
parasite cultures with GDA prevented their growth from the late ring to trophozoite stages of
development [17]. In vivo studies demonstrated that in P. berghei-infected mice models, para-
site load was reduced by treatment with GDA [17] and harmine [20]. PfHsp90 was identified
as one of the artemisinin-based combination therapies’ (ACT’s) resistance-conferring alleles
[6] and has been suggested to interact directly with chloroquine resistance transporter (CRT)
protein [18]. Thus, targeting PfHsp90 for malaria treatment could be highly profitable as con-
served proteins are less prone to variation under selection pressure, possibly overcoming the
hurdle of drug resistance [21].

The high sequence conservation between the druggable ATP binding pocket of PfHsp90
versus human Hsp90 poses a risk with regards to human Hsp90 off-target activity. However,
harmine was demonstrated to interact selectively with PfHsp90 using Arg98, which is substi-
tuted with Lys112 in human Hsp90 [20]. Following this discovery, a combination of rational
design and microwave-assisted synthesis were used to derive several analogues of harmine [22,
23], leading the observation thattetrahydro-B-carboline possess moderate activity against P.
falciparum [22, 24]. Comparative structural analyses conducted by Wang and colleagues
(2014) revealed that a glycine hinge loop lining, found in the NTD of both chaperones, adopt
different conformations. In PfHsp90, these residues include Gly118, Gly121, and Gly123 [25]
adopting a straight conformation which enables better accommodation of some compounds.
Therefore, selectivity towards PfHsp90 can be obtained by targeting the Arg98 interaction and
cushioning especially hydrophobic segments of compounds into the glycine rich region [25].
These observations led Wang and colleagues (2016) to use structure guided design to identify
amino alcohol-carbazoles as selective inhibitors of PfHsp90 [26]. Since then, other studies
have also suggested new compound scaffolds displaying anti- Plasmodium activity through tar-
geting PfHsp90 [27, 28]. We have recently used pharmacophore models to suggest four
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chemically diverse inhibitors targeting PfHsp90 [29], suggesting the benefit of rational design
in drug discovery efforts aimed at selective inhibition of the molecular chaperone.

Artificial intelligence and machine learning/active learning (ML/AL)-based virtual screen-
ing methods have proven effective in designing candidate compounds that have advanced to
clinical trials.Is [30]. A selective A2A receptor antagonist, for instance, is currently undergoing
phase 1b/2 studies to be used in patients with solid tumors with elevated adenosine levels [29].
To identify hits and lead compounds, quantitative structure-activity relationship models, or
Auto-QSAR, have been employed [30]. Auto-QSAR is essentially an application of artificial
intelligence and machine learning. Previous studies have implemented auto-QSAR to identify
candidate hits for the etiology of Alzheimer’s disease (AD) [33] and and Chagas disease [31].

Furthermore, the utility of AL models that incorporate docking scores in streamlining the
drug discovery process have been demonstrated. In a recent study, regression-based AL mod-
els were used to rapidly prioritize compounds in large-scale docking, enhancing efficiency and
reducing costs [31]. AL models can effectively select promising candidates for experimental
validation and contribute to accelerating the development of therapeutic agents. These
instances underline the potential of docking-based AL models in drug discovery. By leveraging
the predictive capabilities of docking scores within AL frameworks, researchers can enhance
the drug discovery pipeline’s speed and efficacy.

With this in mind, we aimed to use AL models to generate new chemical entities targeting
PfHsp90. As such, compound 10 (S1B Fig in S1 File) from the literature [28] was used as a ref-
erence compound; its choice was motivated by its demonstrated potency towards P. falciparum
and low cytotoxicity towards human cells. Optimization of compound 10 was undertaken by
reaction-based enumeration to generate AL models enriched by molecular docking. The mod-
els were trained using analogues of compound 10 and a subset of de novo compounds were
docked against PfHsp90 and re-iteratively tested for activity. Candidate hit compounds gener-
ated were evaluated for whole cell potency towards P. falciparum NF54 drug-sensitive strain,
and the safety profiles of the compounds were established by cytotoxicity assays using mam-
malian Chinese hamster cells (CHO) and human hepatocellular carcinoma (HepG2). Select
compounds which exhibited anti-plasmodial activity at the asexual blood stages were then
evaluated for their binding affinity towards PfHsp90.

Methods
In silico analyses

Schrédinger Release 2022-1 was used for all molecular modelling calculations on Maestro
(v12.9) [32], as a graphical user interface (GUI). Several modules in Maestro for ligand prepa-
ration, protein preparation, docking, QSAR modelling and docking post-processing were
used. The Fig 1 shows the in silico process flow-chart of the steps undertaken to design and
generate potential novel inhibitors of PfHsp90.

Protein preparation and receptor grid generation

The three-dimensional (3D) structures of the NTDs of PfHsp90 bound to ADP (PDB code:
3K60-2.3 A; Chain A; [33], human Hsp90 in complex with geldanamycin (GDA) (PDB code:
1YET-1.9 A; [34]) and human Hsp90 bound to ADP (PDB code: 1YBQ-1.5 A; [35]) were
obtained from the protein data bank (http://www.rcsb.org/; [36]). The protein preparation
wizard module of Schrédinger Maestro [37] was used to add hydrogen atoms, correct bond
orders, disulphide bonds, filling in of missing/incorrect side chains and loops of each protein.
The system was minimized with Root-Mean-Square Deviation (RMSD) convergence of 0.30A
using an optimized potential for liquid simulations 4 (OPLS4) force field [32]. Grid files at the
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Fig 1. In silico flow diagram showing methodology used on how the reference compounds 10 and 7 were subjected to induced fit docking (IFD) using
human Hsp90 (PDB code: 1YET) and PfHsp90 (PDB code: 3K60). Followed by the selection of compound 10 which was subsequently subjected to
pathfinder reaction-based enumeration to yield 10, 000 unique design ideas. These design ideas and compounds from the ChEMBL database were further used
to train 13 Auto-QSAR models through reiterative training and testing and scoring of the compounds using standard precision (SP) Glide docking. The
adsorption, distribution, metabolism, excretion, and toxicity (ADME/T) were used to filter the compounds, followed by rescoring by IFD and molecular
dynamics simulations (MDS) to understand the stability of the protein-ligand complex and conformational changes induced upon ligand binding. The relative
binding free energies were estimated by molecular mechanics with generalized born surface area (MM-GB/SA).

https://doi.org/10.1371/journal.pone.0308969.9001

centroid of ADP/GDA were generated using Receptor Grid Generation module for subse-
quent Glide docking [38].

Ligand preparation

In a previous study conducted by Everson and colleagues (2021), compounds 7 (P. falciparum
3D7a1C5y = 0.98 + 0.654 uM) and compound 10 (P. falciparum D7al Cso = 1.11 + 0.969 uM)
were shown to be near sub-molar potency towards chloroquine-sensitive P. falciparum strain.
Due to their proven potency, these compounds were then used as reference compounds for
this study. Therefore, the 2D structure of each compound was drawn using 2D sketcher on
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Maestro and converted to low-energy 3D structures with tautomeric states using the Ligprep
module [39]. The input structures were optimized using OPLS4 force field, generating possible
ionization states at a target pH of 7.4 +/- 2.0 using Epik. Stereoisomers were computed to
retain specified chiralities at most, generating 32 per ligand [39]. This procedure was repeated
for the >2 million compounds from ChEMBL database (https://www.ebi.ac.uk/chembl/g/
#browse/compounds) and 10 000 enumerated products.

Induced fit docking (IFD)

To predict the binding modes and nature of interaction in PfHsp90 upon binding different
ligand, Induced Fit Docking (IFD) was implemented as described by [29]. This study imple-
mented IFD for two main purposes: the first was to dock compound 7 and 10 to the ATP bind-
ing pocket of PfHsp90, to understand their affinity and mode of binding; and secondly, to re-
score newly generated ligands following Auto QSAR prediction. Therefore, a grid box of the
binding site for the prepared structure of PfHsp90-NTD was generated considering the co-
crystallized ligand ADP as a centroid. This was followed by the removal of ADP from ATP
binding region to provide more room for ligand docking and specifying Asn37, Arg98 and
Phe124 as binding residues [33]. To refine the side chains of residues located within a 5A dis-
tance from the ligand, the Prime refinement step was employed. After the initial docking of
each ligand, up to 20 poses were selected for further refinement using the XP mode. The best
pose of each complex was selected based on docking scores, and a visual inspection of the
binding orientation. The visual inspection involved assessing the residues of the protein
involved in binding and orientation of the ligand. Most importantly, assessing the presence of
a hydrogen bond between PfHsp90 and the residue, Arg98, which confers selectivity.

Pathfinder reaction-based enumeration

Compound 10 exhibited a better fit into the ATP bin ding pocket of PfHsp90 following
induced fit docking analysis. The possible routes to synthesize compound 10 were predicted
by retrosynthesis analysis using Pathfinder [40]. Briefly, the 2D structure of compound 10 was
minimized and the lowest energy conformer was determined using the macro model module
[40]. The regiochemistry of bonds that can be disconnected were displayed with a maximum
depth set to 1. Possible retrosynthesis pathways were estimated by employing Pathfinder,
revealing nine pathways for the coupling reactions that are possible for the synthesis of com-
pound 10. Pathways 1 and 2 were Amide_coupling-1 & 2, pathway 3 was amination-1, path-
way 4- was Hayima-1, pathway 5 was Negishi, pathway 6 was oxadiazole-1, pathway 7- was
Stille, and finally, pathways 8 and 9 were Suzuki-1 and-2 cross-coupling reactions. The enu-
meration reaction was employed by using pathway 6. The oxadiazole-1 pathway was chosen
due to its synthetic accessibility and favourable reaction conditions, which could result in a
higher success rate in generating diverse compound structures [41]. We surmised thatdesign
idea compounds from pathway 6 woulddemonstrate chemical features that would have more
affinity and more conducive to interaction with the PfHsp90 receptor. To do this, the reactants
were defined, with reactant 1 containing the benzonitrile moiety was varied by enumerating
nitrile fragments from the e-molecules database. The core/original reactant for reactant 2 was
retained (Fig 2). Since, this core contains important functional groups for recognition of
PfHsp90. Default physiochemical parameters such as a molecular weight (MW) between 150
and 575g/mol, LogP between —1.50 and 5.0, a topological polar surface area (TPSA) between
30 and 150, HBA between 0 and 12, and HBD between 0 and 5, and a maximum number of
rotatable bonds less than 10 were retained for the design ideas [42]. Reactive functional groups
using smiles arbitrary target specification (SMARTS) and Pan Assay Interfering Structures
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Fig 2. Pathway 6 which is oxadiazole-1 coupling was chosen as our pathway of interest. Reactant 1 showing the benzonitrile moiety, whilst reactant 2 depicting
the core structure containing the pyridine-3-carboxylic acid moiety.

https://doi.org/10.1371/journal.pone.0308969.g002

(PAINS) offenders were removed [43]. This enumeration round resulted in 10 000 design
ideas that needed to be further tested for their binding affinities to PfHsp90.

ChEMBL database and enumerated compound preparation

The chemical space was enriched by adding approximately 15 000 randomly selected com-
pounds from the >2 million compounds from ChEMBL database (https://www.ebi.ac.uk/
chembl/g/#browse/compounds). A total of 10 cycles of GlideSP docking was conducted in
each round compounds from ChEMBL and the enumerated ideas were randomly selected and
prepared for docking.

Classical glide SP ligand docking

Glide-based workflow have previously been used to screen many compounds against a target
receptor quickly and accurately [38]. Glide energy terms offer SP (standard precision) for reli-
ably docking ligands with high accuracy, or XP (extra precision) mode, which further elimi-
nates false positives by extensive sampling and advanced scoring, resulting in high enrichment
[38]. In this study, the two sets of ligands (1000 enumerated design ideas and 1000 ChEMBL
database ligands for the initial GlideSP docking) were subjected to ligand docking studies to
select ligands exhibiting favourable binding affinity (> -5 kcal/mol) towards PfHsp90. The
ligands exhibiting favourable binding energies were then used to build the first active learning
(AL) model.

Receptor grid generation

A receptor grid was generated based on ligand binding residues to specify the position and size
of the receptors active site for glide SP ligand docking, utilizing the receptor grid generation
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tool in Maestro v12.9. ADP was decoupled from the receptor and positional constraints were
defined as Asn37, Arg98 and Ile173 in PfHsp90 [25, 33].

Auto QSAR-AL models enriched by GlideSP docking

Auto quantitative structure activity relationship (QSAR) is a best practice protocol for generat-
ing models with limited user input and understanding. It also builds categorical or numerical
models based on physicochemical, topological descriptors and binary fingerprints (i.e., radial,
linear, dendritic, and 2-D molecular prints) [42], where a given model is trained against a par-
ticular random subset of input structures [44]. This study used the Auto QSAR to construct
the AL models. The initial and second models were built by utilizing ligands exhibiting dock-
ing scores > -5 kcal/mol. Subsequently, models 3 to 9 were constructed employing ligands
characterized by docking scores of >-6.0 kcal/mol. Models 10 and 11 were developed specifi-
cally with ligands demonstrating docking scores >-6.5 kcal/mol. Lastly, models 12 and 13
were built using ligands possessing docking scores of >-7 kcal/mol. In each iterative cycle, the
ligands that were chosen in prior rounds were added with newly selected ligands. These com-
bined ligand sets were then partitioned into a training subset encompassing 75% of the data
and a test subset comprising the remaining 25%. Internal validation of the model was assessed
using prediction parameters such as predictive precision of the root mean square error
(RMSE), standard deviation (SD), the accuracy of the training set (R2) and lastly the accuracy
of the test set (Q2) in order to rank of all models [44]. The models were trained, tested, and re-
trained using ligands from enumerated designs from pathway 6 and the ChEMBL dataset until
the model reached convergence. To assess the performance of model 13 Mean Absolute Error
(MAE) analysis was performed by measuring errors between paired observations (predicted
activity and observed activity).

Molecular dynamics simulations

Select docking poses of PfHsp90-inhibitor complexes were subjected to Molecular Dynamics
Simulations using the Desmond package on Maestro [45]. The complexes were solvated in
transferable intermolecular potential with 3 points (TIP3P) water model and enclosed into
orthorhombic boxes with minimized volumes. Ions were added to neutralize the charges using
force field OPLS4. Then, the simulation was conducted as described by [46] with minor adjust-
ments. In general, the simulation was allowed to proceed for 50-150 ns, 100 ps trajectories and
1000 frames. The NPT ensemble class was selected at a temperature of 300 K and a pressure of
1.01 bar.

Free binding energy calculations

The last trajectory from molecular dynamics simulation was subjected to molecular mechanics
with generalized born surface area (MM-GBSA) to establish the free binding energies contrib-
uting to the protein-ligand interactions. In this study, employing the prime module in Maestro
(v13.2) from the Schrédinger Suite 2022-1, the molecular mechanics with generalized born
surface area (MM-GBSA) was performed. This was conducted to calculate free binding ener-
gies to determine the stability of the protein-ligand complexes from the docking conforma-
tions. MM-GBSA estimates the binding free energy of a ligand-receptor complex by
combining molecular mechanics force fields, which describe the intermolecular interactions,
with a solvation model based on the Generalized Born (GB) theory [47].

The calculations for the docked complexes were subjected to an OPLS4 force field, a VSGB
solvation model and the sampling was minimized. The free binding energies were therefore
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calculated using the following equations:

AG,,, = AE + AG,,, + AGSA (1)

solv

AE denotes the difference in minimized complex energy and X energies of unbound recep-
tor and ligand. AGy,y is the difference in GBSA solvation energy of receptor-ligand complex
and X solvation energies of unbound receptor and ligand. AGSA represents the difference in
surface area energy of IFD complex and X surface area energies of unbound receptor and
ligand.

AE =

Ecomplex - Eprotein - Eligund (2)

Ecomplex> Eproteins and Ejigang represent the minimized energies for the protein-inhibitor
complex, the protein, and inhibitor, respectively.

AG AG —AG

solv — solv (protein) — AGSOZV (ligand) (3)

solv (complex)

AGSA = AGSA o 100) — AGSA iy — AGSA 0 (4)

complex protein

AGSA is the nonpolar contribution to the solvent energy of the surface zone. GSA omplex)s
GSA (protein)» and GSA jiganq) denote the surface energies of the protein-inhibitor complex, the
protein, and the ligand, respectively.

In vitro methods

Reagents. Unless otherwise stated, all reagents were purchased from Thermo Fischer Sci-
entific (USA), Sigma-Aldrich (USA) and Promega (Madison, USA).

In vitro anti-Plasmodium assay

In vitro anti-Plasmodial assays were conducted at the H3D testing centre at the University of
Cape Town. All 15 commercially available compounds were evaluated for anti-Plasmodium
activity using a parasite lactate dehydrogenase assay as a marker for parasite survival, as previ-
ously described by [48]. Briefly, the parasites were synchronized at the ring stage using d-sorbi-
tol in water. Approximately 2 mg/mL stock solutions of reference drugs, chloroquine and
artesunate, were prepared in water and DMSO respectively then stored in -20°C. Test com-
pounds and reference drugs were serially diluted to give 10 concentrations with a final volume
of 100 pL in each well. Parasites were incubated in the presence of the compounds at 37°C
under hypoxic conditions (4% CO2 and 3% O2 in N2) for 72 h. The absorbance was measured
at 620 nm on a microplate reader. Survival was plotted against concentration and the IC5,-val-
ues were obtained using a non-linear dose-response curve fitting analysis via the Dotmatics
software platform.

In vitro cytotoxicity

Selectivity of the compounds for the parasites was determined using two cytotoxicity assays
both of which were conducted at the H3D Centre. Compounds were screened against the
mammalian cells, Chinese Hamster Ovarian (CHO) and hepatocellular carcinoma (HepG2),
using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay [49].
Cells were plated to a density of 105 cells/well in 96-well plates and allowed to attach for 24h.
After that compounds were added at various concentrations from 50uM to 16nM and the cells
incubated for a further 48h. Emetine was used as the control. After that MTT was added and
plates were read 4h later. “Survival” was plotted against concentration and the IC5,-values
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were obtained using a non-linear dose-response curve fitting analysis via the Dotmatics soft-
ware platform.

Expression and purification of PfHsp90-NTD and surface plasmon
resonance

The NTD of PfHsp90 was expressed and purified as described in [29] and 20pg/ml of the pro-
tein was used to study the binding affinities of selected ligands using BioNavis Navi 420A
ILVES multi-parametric surface plasmon resonance (MP-SPR) system (BioNavis, Finland) as
previously described [50]. Briefly, PfHsp90-NTD was immobilized to a Carboxymethyl dex-
tran coated sensor slide (BioNavis SPR102- CMD-3D). The sensor slide was activated with 0.1
M EDC/0.05 M NHS. At pH 5, PfHsp90-NTD suspended in 5 mM of sodium acetate was
immobilized on one channel of the 3 CMD chip. 1 M ethanolamine HCI was used to deactivate
the chip by removing excess NHS = EDC, and the sensor cleaned with NaCl/NaOH unspecific
binding molecules. Varying concentrations (0-2000/5000 nM) of compounds FTN-T2 and
FTN-T5 were injected and introduced to the flow cell, allowing binding to the surface. Data
Viewer (BioNavis, Finland) and Trace Drawer software version 1.8 (Ridgeview instruments,
Uppsala, Sweden) were used to process and analyze the steady-state equilibrium constant data
and estimate the binding affinities.

Results
Induced fit docking (IFD) of reference compounds

Previous studies have demonstrated the benefit of rational strategies in designing selective
inhibitors of PfHsp90 [26, 28, 29]. We used compounds 7 and 10 from Everson et al., 2021
which were shown to have potency towards P. falciparum drug-sensitive strain while exhibit-
ing a safety profile towards mammalian cells. This study sought to generate novel inhibitors
with unique scaffolds and preferential selectivity towards binding PfHsp90, a validated malaria
drug target. The main challenge with selective targeting of PfHsp90 is the correspondingly
high sequence and structural similarity of the ATP/druggable pocket of the chaperone versus
that of human Hsp90. Compounds concomitantly inhibiting PfHsp90 and human Hsp90
would likely result in unintended toxicity.

The IFD results showed compound 7 had a slightly lower docking score of -8.031 kcal/mol
(data not shown), making fewer contacts with the PfHsp90 binding pocket. Only two interac-
tions were observed, a hydrogen bond with Phe124 and a water-mediated hydrogen bond with
Lys44 (Fig 3). Compound 10, conversely, had a better fitting into the ATP binding pocket of
PfHsp90, evidenced by a docking score of -10.485 kcal/mol (data not shown). Compound 10
made several hydrogen water-mediated bond interactions with amino acid residues such as
Lys44 and Arg98, respectively and pi-pi interactions with Phe124 and Trp148 (Fig 3). It was
surmised that the interaction with Arg98 could be the basis for the selectivity of the compound
as has been previously described for other selective inhibitors of PfHsp90 [18, 20].

The PfHsp90-compound 10 complex was examined for functional groups forming impor-
tant interactions. It was seen that the phenyl ring of the 2-phenyl-1,3,4-oxadiazole moiety did
not participate in hydrogen bonding or n-ninteraction. Therefore, the phenyl ring was discon-
nected from the 2-phenyl-1,3,4-oxadiazole moiety (Fig 2), giving the synthetic precursors such
as benzonitrile (reactant 1) and the core-containing pyridine-3-carboxylic acid (reactant 2).
Here, the intention was to generate compounds with better affinity for PfHsp90 than com-
pound 10 without altering the core structure.
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Fig 3. Details the ligand interaction diagrams for compound 10 and 7 in the PfHsp90 N-terminal domain ATP binding site. A. Compound 10 making pi
stacking (shown by green lines) interactions with Phe124 and Trp148, a water mediated hydrogen bond with Arg98 and lastly a direct hydrogen bond with Lys44.
B. Compound 7 making a water mediated hydrogen bond with Lys44 and a direct hydrogen bond with Phe124. Positively charged amino acids indicated in blue,
negatively charged amino acids in orange, polar in light blue, non-polar in green, and hydrogen bond interactions in purple.

https://doi.org/10.1371/journal.pone.0308969.g003

Pathfinder analysis and reaction-based enumeration of compound 10

To generate analogues of compound 10, incorporating unique fragment and with probably
more affinity for PfHsp90, we used Pathfinder reaction-based enumeration to create an exten-
sive library of synthetically tractable compounds in silico as was conducted by Konze and col-
leagues (2019). Approximately 10, 000 design ideas of enumerated products incorporating
unique drug-like fragments from commercial databases in place of reactant 2 of compound 10
were generated.

AutoQSAR models

Table 1 details the 13 models built using the AL approach including their statistical parameters.
In each round of model building, parameters such as the values of the ranking score of the
model (score) being the standard deviation of the model (SD), the training set accuracy (R2),
root-mean square error of the test set predictions (RMSE), and test set accuracy (Q2) were
used to select the best performing model. A value of 1 in R2 and Q2 indicate a perfect predic-
tion and a value of 0 for SD and RMSE indicate accuracy. Table 1 indicates the parameters for
evaluating each model‘s performance (overall score, R2, Q2, RMSE and SD) and the total
number of compounds in the training/test used to build the model. For example, the first
model was built by randomly selecting 2000 compounds (1000 enumerated design ideas and
1000 from ChEMBL) aswell as compound 7 and 10. Ligands with docking scores ranging from
-5.0 kcal/mol to -7.6 kcal/mol were retrieved yielding 123 ligands that satisfy the criteria
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Table 1. Statistical data for all 13 AutoQSAR prediction models.

Model

O (G0 [N [N [U [ [W [N =

||t
N - O

13

https://doi.org/10.1371/journal.pone.0308969.t001

Model code
Kpls_linear_36
Kpls_molprint2D_31
Kpls_radial_34
Kpls_molprint2D_42
Kpls_radial_37
Kpls_desc_37
Kpls_desc_44
Kpls_molprint2D_27
Kpls_desc_33
Kpls_radial_33
Kpls_radial_36
Kpls_radial_42
Kpls_desc_23

Score S.D. R’ RMSE Q’ Training set Test set
0.75 0.37 0.77 0.36 0.67 92 31
0.64 0.45 0.63 0.42 0.54 141 47
0.65 0.46 0.68 0.43 0.59 161 54
0.58 0.44 0.68 0.47 0.53 170 57
0.67 0.46 0.67 0.44 0.60 190 64
0.60 0.48 0.59 0.45 0.59 210 71
0.54 0.47 0.59 0.48 0.53 231 78
0.59 0.52 0.58 0.49 0.60 262 88
0.59 0.45 0.71 0.50 0.60 290 97
0.63 0.46 0.71 0.49 0.62 303 101
0.58 0.52 0.63 0.53 0.57 317 106
0.60 0.55 0.64 0.56 0.58 323 108
0.56 0.48 0.75 0.56 0.62 342 114

(> -5.0 kcal/mol), including the two reference compounds. These high-affinity compounds
were then employed to train Auto QSAR models, utilizing an AL approach. AutoQSAR
divided the selected ligands into the training and test sets, with a random training set at 75%
(92 compounds) and test set at 25% (31 compounds), the protocol was repeated for 13 models.
MAE results of our model ranges from 1 to -1, giving an indication that the predictions are
quite accurate as the closer MAE is to 0, the more accurate the model is.

It can be noted on Table 1 that all the models were generated using kernel-based partial
least square regression (KPLS) differing in terms of binary fingerprints. Model 1 used linear,
models 2,4 and 8 used molprint2D, models 3, 5, 10-12 used radial and the remaining models
used KPLS descriptions binary fingerprints (Table 1). It is possible that the difference in the
binary fingerprints of the top scoring models was caused by the inclusion criteria implemented
as compounds were randomly used to train the model. The compounds were chemically and
structurally diverse. Models 2 to model 8 lost some correlations (represented by overall score).
This can be explained by the random variation or statistical fluctuations [51]. However, the
observed decrease in correlation does not necessarily indicate a significant decline in model
performance but rather reflect the inherent variability in the data.

Fig 4A represents that scatter plot of model 1 built with KPLS_linear_36 (Table 1), which is
a QSAR model generated by KPLS with linear fingerprints, had an overall score of 0,75, SD of
0,37, R? 0f 0,77, RMSE 0f 0,36 and Q? of 0,67. In general, model 1 had good predictive activity
for compounds with -5 to -7 kcal/mol suggesting that for the trend line to be more linear
towards the more active compounds (activity score -8 to -10 kcal/mol), more compounds need
to be included in the high activity range. It is can also be noted that modell was trained with a
set of compounds with similar chemical characteristics as they are clustered around the same
region.

The protocol used for building model 1 was repeated to train the second model, with inclu-
sion of top scoring compounds, 1000 enumerated design ideas and 1000 ChEMBL database
compounds for model training. The same procedure was repeated until the model reached
convergence, thus improving the quality of the data by coupling high affinities PfHsp90 with
activities of the compounds. As the procedure was repeated, a growing number of compounds
were added to the high activity region (between -8 kcal/mol and -10 kcal/mol in model 13)
(Fig 4B). Some noise displayed the Auto-QSAR plot in model 2, therefore the activity was
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Fig 4. Auto QSAR-AL scatter plots. A: model 1 showing the performance of the QSAR KPLS model’s predicting activity for experimental binding affinity for the
test set. Model trained 123 ligands with docking scores ranging from -5.0 kcal/mol to -7.6 kcal/mol. B: Model 13, where the model has reached convergance.
AutoQSAR randomly divided the selected ligands into the training at 75% (Blue dots) and test sets at 25% (Red dots).

https://doi.org/10.1371/journal.pone.0308969.9004

adjusted to -6 kcal/mol for training models 3 to 9 (S4-S6 Figs in S1 File).To further avoid noise
in the plots, models 10 and 11 (S6 Fig in S1 File) were developed specifically with ligands dem-
onstrating docking scores >6.5 kcal/mol, lastly, models 12 and 13 were trained using ligands
possessing docking scores of >-7 kcal/mol. Notably, the trend line was linear towards the
observed high activity region. Model 13 (Fig 4B), which is where the model attained its conver-
gence, denotes that the model was eventually able to recognize compounds it has not initially
selected (S2-S6 Figs in S1 File).

Induced fit docking

The AL model enhanced by classical GlideSP ligand docking yielded 236 best docked com-
pounds, with the ability to bind to the receptor PfHsp90-NTD at the ATP binding site. The
ligands exhibited docking scores of -10 kcal/mol to -6 kcal/mol, from a total of 43097 docked
poses. The 236 compounds were then subjected to IFD against receptor PfHsp90. Rescoring
by extra precision (XP), IFD resulted in 113 top-scoring compounds which were selected base-
don the docking score, e-model score, IFD score and a visual inspection of the binding mode
(data not shown). It was interesting to note that, even though AutoQSAR models were only
trained on compounds with docking scores between -5 and -10 kcal/mol, IFD, a more robust
scoring function, was able to calculate compounds with docking scores between > -5 kcal/mol
and > -13 kcal/mol. This is because IFD tends to use a more extensive sampling of ligand con-
formations and protein-ligand interactions compared to GlideSP resulting in increased
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conformational sampling and improved accuracy of predicting ligand binding modes and
binding affinities. Lipinski‘s rule of 5 was used to filter that compounds further to 62 com-
pounds (docking score of -10 to -15 kcal/mol, see S2 Table in S1 File). However, most of the
compounds were not commercially available and a total of 15 compounds were purchased (see
S2 Table in S1 File). The IFD and MM/GBSA results of the top-scoring compounds are pre-
sented in Table 2 and the data for the reminder of the compounds can found in the S2 Table in
S1 File.

Most top scoring study compounds had a higher affinity (docking score range: -10.86 to
-13.49kcal/mol and AGBind range: -25.08 to -67.31kcal/mol) for PfHsp90 compared to the ref-
erence compound 10 (Comp 10) exhibiting docking and AGBind scores of -10.49kcal/mol and
-28.47kcal/mol, respectively. Interestingly, the study compounds also exhibited higher affini-
ties compared to harmine (Table 2), an established selective inhibitor of PfHsp90. It was of
interest to this study to obtain compounds which binds preferentially or selectively towards
PfHsp90 over human Hsp90. Therefore, human Hsp90 was also as a receptor for IFD analysis
using all 62 study compounds. While high docking scores were obtained for human Hsp90 (S3
Table in S1 File range: -8.06 to -12.1kcal/mol), the binding affinities of the compounds were
higher for PfHsp90 (Table 2; S2 Table in S1 File). As previously mentioned, interactions with
Arg98 contribute to selectivity. When comparing the 2D interaction diagrams of PfHsp90 (S7
Figin S1 File) with HsHsp90 (S8 Fig in S1 File), it is interesting to note that despite the dispari-
ties in the docking scores, the study compounds do not display any interaction with the selec-
tivity conferring residue Arg98, except for FTN-T3. This may suggest that other interactions
play a role in the higher docking scores observed in PfHsp90.

Visual inspection of the 2D interaction diagrams of the top-scoring compounds revealed
that these are well accommodated within the ATP binding site of the PfHsp90 (Fig 5; S7 Fig in
S1 File). All the compounds represented in Fig 5 display water mediated-/hydrogen bond
interactions with ATP binding residues such as Asn37, Asp79, Gly83, Asn92, Lys44, Phel24,
and Ala38 [33]. The binding of the compounds with these residues suggest that they will likely
compete with ATP for binding PfHsp90. Interestingly, only compound FTN-T3 seems to be
interacting with the selectivity conferring Arg98 via water-mediated hydrogen bond (Fig 5).
Harmine, a proven inhibitor of PfHsp90, can be observed to interact with Asn37 through a
water mediated hydrogen bond, as well as a salt bridge and hydrogen bond with Asp79 (Fig 5).
We noted that most of the top-scoring compounds make contacts with previously described
ATP binding residues, they do not interact with Arg98, which has been described to contribute
to selectivity [20].

Table 2. Induced fit docking and MMGBSA results of the top-scoring compounds.
Compound | Docking |Glide emodel |IFDScore |AGBind |AGBind AGBind AGBind |GBind |AGBind |AGBind |AGBind vdW

ID Coulomb | Covalent |Hbond Lipo Packing | Solv GB

FTN-T1 -13.49 -83.95 -516.39 -67.31 -40.70 2.48 -6.28 -6.80 -1.67 25.98 -40.31
FTN-T2 -13.10 -66.56 -517.56 -58.66 -40.74 2.88 -6.32 -5.05 -1.39 27.27 -35.31
FTN-T3 -10.457 -101.9 -523.50 -47.95 -37.40 -5.47 -6.80 -5.59 -1.54 33.26 -35.31
FTN-T4 -11.81 -89.54 -521.42 -41.60 -35.74 5.60 -5.37 -5.99 -1.40 25.52 -24.21
FTN-T6 -12.05 -63.46 -519.19 -35.61 -25.42 3.75 -3.73 -6.63 -1.63 29.80 -31.76
FTN-T5 -11.75 -70.28 -514.41 -34.72 -12.96 1.94 -3.33 -8.04 -1.44 19.60 -30.48
FTN-T9 -10.86 -60.37 -518.39 -25.08 -31.65 6.60 -3.25 -8.47 -3.02 38.98 -24.27
Comp 10 -10.49 -76.16 -532.21 -28.47 -16.36 4.24 -3.67 -7.57 -4.04 33.01 -34.08
Harmine -8.29 -41.86 -517.44 -27.52 -3.23 1.65 -1.65 -11.2 -2.70 18.39 -28.76

https://doi.org/10.1371/journal.pone.0308969.t002
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The Auto QSAR model generated compounds which were analogous to each other, com-
pounds FTN-T1, FTN-T2, FTN-T3, FTN-T4, FTN-T6 and FTN-T9 (Table 2; Fig 5) contain a
7H-Purine scaffold, like ADP/ATP. Purine containing compounds, such as ATP and its ana-
logs, are known to have a high affinity to the ATP-binding pocket Hsp90. This is because the
purine ring system allows for the formation of multiple hydrogen bonds and hydrophobic
interactions with the binding pocket residues, resulting in a higher affinity towards the protein.
Compound FTN-T5 contains a 1-methylpyrimidin-2(1H)-one moiety, which likely played a
role in its overall lower binding affinity towards PfHsp90. Compound FTN-T5 seems to be
interacting to PfHsp90 through mainly hydrophobic interactions. It is possible that its overall
lower docking can be attributed to the bad water contacts (Fig 5; S7 Fig in S1 File). It should be
noted that the main drawback of docking is that it does not account for the effects of waters in
binding affinity estimations and ligand strain energy caused by the binding event.

Molecular dynamic simulations

The dynamic behaviour and conformational changes induced on PfHsp90 by top-scoring
compounds was evaluated by molecular dynamics simulations. Fig 6(A)-6(C) show the Root
Mean Square Deviation (RMSD) and Root mean fluctuations (RMSF) of the PfHsp90 and five
top scoring compounds and a known inhibitor harmine. RMSDs are used to assess the average
displacement between a group of atoms in a specific frame relative to a reference frame. The
protein RMSD plots (Fig 6A) offers insights into the structural conformation of the PfHsp90
protein throughout the simulations. By aligning all frames on the reference backbone and cal-
culating the RMSD based on atom selection, the stability of the protein’s and the ligand struc-
tures can be effectively monitored [52]. A well-equilibrated simulation is characterized by
RMSD fluctuations around 1-3 A range for small, globular proteins. In our study, PfHsp90
remains stable in its interactions with all tested ligands, exhibiting an average RMSD of 2 A for
all complexes (Fig 6A). More considerable RMSD changes would indicate significant confor-
mational fluctuations, with RMSD values fixed around 1.7 A, it is deduced that PfHsp90 was
greatly stable.

The ligand RMSD plots for compounds FTN-T1, FTN-T3, and FTN-T4 exhibited remark-
able stability throughout the 100ns simulation, converging at average RMSD values of 1.8A
(Fig 6B). The comp10, FTN-T2, FTN-T5, FTN-T9 and harmine complexes, on the other hand,
displayed signs of binding instability as the ligand RMSD values fluctuated throughout the
simulation trajectory (Fig 6B), with compounds FTN-T2 and FIN-T5 generally equilibrating
at average RMSD of 4.65 A and 6.6 A, respectively. The most significant deviations were seen
for comp10, harmine and FTN-T9, however, displaying average RMSDs of 7 A,

The RMSEF plots (Fig 6C) for all simulated protein-ligand complexes provided valuable
insights into the dynamic behaviour of the protein residues throughout the simulations. We
observed prominent RMSF fluctuations in the residue index window spanning positions 20 to
30, 50 to 70 and 100 to 125. These regions mainly correspond to loops in PfHsp90 indicating
that the loops are less structured and more flexible, leading to pronounced fluctuations during
the simulation.

The 2D ligand-protein contacts diagram revealed that most of the top scoring compounds
bound in the ATP binding pocket of PfHsp90. FTN-T4 displays the most stability, remaining
bound throughout the 100ns simulation time. The exceptional stability of compound FIN-T1
and FTN-T4 is most likely explained by the direct strong hydrogen bond with the NH, group
with Asp79 remaining stable for 99% and 92% of the simulation window, respectively. Phel24
maintained hydrogen bonds with the OH groups of FTN-T1 and FTN-T4, which remained
stable for 84% and 60% of the simulation time, respectively. It should also be noted that the
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Compound Harmine

10

Fig 5. 3D representations of the compounds FTN-T1, FTN-T2, FIN-T3, FTN-T4, FIN-T5, FTN-T6, FTN-T9 and
Harmine in the PfHsp90-NTD binding pocket. The 3D structure of PfHsp90 is rendered in green ribbons, with
residues found at the ATP binding pocket shown in red sticks. Residues Ala38, Arg98 and Ile173 which are unique to
PfHsp90 represented by blue sticks. Water molecules and hydrogen bonds represented in red and yellow, respectively.

https://doi.org/10.1371/journal.pone.0308969.9005
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Fig 6. Molecular dynamics simulation results for compounds FTN-T1, FTN-T2, FTN-T3, FIN-T4, FTN-T5, FTN-T9 and Harmine. A: Ligand RMSD. B:
Protein RMSD plots. C: RMSF plots. D-I: 2D representation of the interaction diagrams for contacts made by the compounds FTN-T1, FTN-T2, FTN-T3, FTN-T4,
FTN-T5 and Harmine, in the binding pocket of PfHsp90-NTD. Reference compound represented as COMP 10.

https://doi.org/10.1371/journal.pone.0308969.9006

simulation interaction diagram (SID) from MDS (Fig 7) managed to capture some important
hydrogen bond interaction network involving water. Compound FTN-T1 makes a direct con-
tact with Arg98. Meanwhile compounds FTN-T3, FTN-T4 and FTN-T5 form water-mediated
hydrogen bonds. Similar to harmine which interacts with Arg98 via three Pi-cation interac-
tion, compound FTN-T2 similarly interacts with Arg98. The data from the 2D interaction dia-
grams of the study compounds and harmine inspired the prediction that these compounds
would likely be selective. Even though MDS does’nt measure the effects of favourable and
unfavourable waters as a docking post-processing approach. Methods such as MM-GB/SA
[47] and more recently Water Map [53, 54], IFD-MD [55] prior to FEP+ were introduced to
account or this challenge. In future studies we will further explore the great utility of the later
approaches in our lead optimization efforts.

Anti-Plasmodium and cytotoxicity of promising compounds

The 15 compounds were tested in vitro for anti-plasmodial activity and profiled for cytotoxic-
ity against the CHO and HepG2 cell lines. Most of the compounds were inactive (PfNF54-ICs
> 6 uM) (data not shown) and at least four compounds showed moderate activity and reason-
able selectivity indeces of >9, (Table 3), suggesting a good safety profile except for compound
FTN_T2. Compound FTN-T5 showed promising anti-plasmodial activity (PINF54-ICs, <

1.5 uM) and low cytotoxicity was observed in CHO and HepG2 cell lines as displayed by good
selectivity margins (average SI > 30) (Table 3). The anti-Plasmodium obtained for all the study
compounds were lower than harmine (Table 3) and the known inhibitor geldanamycin (ICs,
=0.02uM; (11)). However, compound FTN-T5 displayed activity comparable to the reference
compound 10 (Table 3).
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Fig 7. SPR sensorgrams for compounds FTN-T2, FTN-T5, harmine and GDA and Kinetics constants measured by SPR for the interaction between tested
compounds and immobilized PfHsp90 (E). The association rate constant is represented by K, (1/Ms), dissociation rate constant Ky (1/s), and the equilibrium
constant denoting affinity Kp, (uM).

https://doi.org/10.1371/journal.pone.0308969.9007

Table 3. Table displaying ICs, values in uM of promising compound activity against P. falciparum cells, as well as cytotoxicity towards human cells and respective

selectivity indices.
In vitro ICsq (uM)
COMPOUND ID PfNF54/ Pf3D7 Pf3D7Pf3D7 Mammalian cells (SI) HepG2(SI) Study

FTN-T2 449 £1.51 >50 (>8) 1.50 (0) This study
FTN-T3 5.42 £0.58 >50 (>9) >50 (>9) This study
FTIN-T4 5.01 + 0.99 >50 (>10) 27.71(6) This study
FIN-T5 1.44 +0.50 >50 (>35) 42.29(29) This study
FTIN-T9 486+ 1.14 >50 (>10) >50 (>10) This study
Harmine 0.05 + 0.00 ND ND Shahinas et al., 2010

Compound 10 1.11 £ 0.97 >24 (>21) >24 (>21) Everson et al., 2021

*Mammalian cells refer to either Chinese hamster ovarian cells (CHO) or human fibroblast cell line.

https://doi.org/10.1371/journal.pone.0308969.t003
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Binding affinities of promising compounds

Surface plasmon resonance is a technique that reveals information regarding binding affinities,
and the kinetics parameters representing the interaction of a protein and its ligands. Fig 7 dis-
plays the SPR sensorgram for the interactions between compounds FTN-T2 and FTN-T5 and
PfHsp90-NTD (Fig 7A and 7B) aswell as harmine (Fig 7C) and Geldanamycin (Fig 7D). The
sensorgrams exhibit a dose-dependent response of these compounds when interacting with
the immobilized PfHsp90-NTD. FIN-T2 displays a modest binding affinity (Kp = 7 uM; Fig
7E) comparable to GDA but weaker than harmine. FITN-T5, on the other hand, displays a Kp
of 19 uM, which falls within the same order of magnitude as the reported affinity of ADP [19]
for PfHsp90-NTD. Altogether, FTN-T2 shows promising affinity for PfHsp90-NTD while the
affinity of FTN-T5 show somewhat weak affinity.

Structure-activity relationship analysis

As mentioned previously, compound 10 was utilized to generate analogues using Pathfinder
reaction-based enumeration and AutoQSAR. The identified top scoring compounds were sub-
jected to various in vitro and in silico experiments to determine their respective activities.
According to in silico data, the generated compounds display improved binding energies, com-
pared to compound 10, when bound to PfHsp90. The compounds FTN-T1, FTN-T2, FTN-T3,
FTN-T4, FTN-T8 and FTN-T9 contain purine moieties, while FIN-T5 consists of a pyrimi-
dine. Purine-based compounds possess the ability to form multiple hydrogen bonds as well as
hydrophobic interactions that result in higher bonding affinity. Purine groups containing hal-
ogens exhibit the highest docking scores, as observed from the docking scores of FTN-T1
(-13.49 kcal/mol) and FTN-T2 (-13.10 kcal/mol). However, FTN-T1 (consisting of a chloride
bonded to the carbon at the 2-position of the purine) seems to be stable in the binding pocket
of PfHsp90, as evidence by ligand RMSD values that equilibrate around 1.8A (Fig 6B), as
opposed to FTN-T2 (consisting of a bromide bonded to the carbon at the 8-position of the
purine) at around 4.65A after 100ns. Compared to FTN-T1, FTN-T2 and FTN-T3, which con-
sist of a purine moiety, FTN-T5 consists of a pyrimidine.

It is worth noting that despite the lower docking score of FTN-T5, it displayed the highest
antiplasmodial activity among the purchased compounds (Table 3; ICs, = 1.44 uM), followed
by FIN-T2 (Table 3; ICsq = 4.49 uM). On the other hand, corroborating the docking results,
the purine moiety containing FTN-T2 (Fig 7; Kp = 7.11 uM) displays a higher binding affinity
for PfHsp90, compared to the pyrimidine containing FTN-T5 (Fig 7; Kp = 19 uM), as observed
from SPR results.

Discussions

Malaria remains a global public health concern, necessitating the discovery of novel thera-
peutics to combat drug-resistant strains [56]. The PfHsp90 protein, a molecular chaperone,
is critical in the parasite’s survival and virulence [7, 8]. Therefore, by targeting PfHsp90, we
set out to generate starting points for effective antimalarial drugs, likely to circumvent drug
resistance. In this study, we employed an innovative approach, Auto-QSAR-based Active
Learning Docking, to generate potential inhibitors of PfHsp90 as promising anti-Plasmo-
dium agents. Reaction-based enumeration was implemented to convert compound 10 to
generate 10 000 design ideas. While ultra-large screening of large libraries of compounds has
previously been achieved [57], the number of ligands produced would have been computa-
tionally expensive for our resources. We, therefore, devised an AL enhance by docking pro-
tocol to overcome the resource limitation while transversing a large chemical space in a
relatively short time. The protocol was employed to enrich the data set before subjecting
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them to IFD. A is a classification under supervised machine learning techniques that devel-
ops highly accurate models, effective for exploring chemical space with docking and deep
learning as a substitute for complex or expensive implement scoring functions [58]. The pre-
vious studies of [43, 57] have applied active learning in the drug discovery field and were
able to demonstrate that ligand-based QSAR models are capable of “learning” a docking
score over a particular domain, in applications including molecular docking and free energy
calculations, while significantly lowering the computational expenses of screening an exten-
sive library.

The capabilities of the AL approach coupled with docking to screen an extensive data-
base were demonstrated by the 13 rounds of screening the design ideas with Glide SP dock-
ing and predicting their docking scores using various AutoQSAR models prior to docking
compounds. The active learning model was able to “learn” how to predict the activity of
highly active compounds against PfHsp90, from the initial point where the model could
only predict with the highest level of accuracy compounds in the ranges of -5 kcal/mol to
-7 kcal/mol as the model was only trained in this set of compounds and having similar
chemical characteristics. With the addition of more compounds with different chemical
properties to the model, more compounds can be seen in the high activity region ranging
between -8 kcal/mol and -10 kcal/mol (S2 to S6 Figs in S1 File), suggesting that the model
was able to learn how to predict the activity of highly active compounds. The active learn-
ing model yielded 236 ligands promoted to the following filtering point: IFD and Molecu-
lar dynamics simulations. The strong complementarity affinities of these compounds for
PfHsp90 could be explained by due to their resemblance of its natural ligand. Thus, it is
most likely it is proposed that these ligands might outcompete ADP/ATP given their high
docking scores.

The 15 purchased compounds were evaluated for anti-Plasmodium activity. The findings
highlight the promise of FIN-T5 as a hit compound for further optimization, given its
promising activity against the PfNF54 strain of P falciparum. FTN-T5 manifested low cyto-
toxicity towards CHO and HepG2 cell lines. Biophysical investigations revealed that
FTN-T5 binding to PfHsp90-NTD with weak affinity. The binding affinity data was not sur-
prising as MDS predicted high fluctuations in the PfHsp90-FTN-T5 complex, suggesting a
degree of non-specific binding. While it is possible that the weak affinity of FTN-T5 could be
explained by pan-inhibition of other Hsp90 isoform due to the similarity of the ATP binding
pocket architecture, the observed discrepancy between the anti- Plasmodium activity and
binding affinity of FTN-T5 warrants further investigations. We suggest methods such as pull
down assays as FTN-T5 displayed low cytotoxity, raising the prospect that it does not bind to
human Hsp90.

FTN-T5, a pyrimidine-based compound, displaying fewer interactions with the ATP
binding pocket residues. It appears that pyrimidine-based compounds may have reduced
affinity for Hsp90 compared to purine-based compounds. Compound FTN-T2 seems to
bind to PfHsp90 with modest affinity, comparable to GDA. FTN-T2 contain a purine moi-
ety, exhibit strong interactions with the ATP-binding pocket of PfHsp90. The purine ring
system facilitates the formation of multiple hydrogen bonds and hydrophobic interactions
with key binding pocket residues, leading to higher affinity for the protein.

Opverall, this study identity compound FIN-T5 and FIN-T2 as promising starting point for
future multiparameter optimization to improve their binding affinity and potency. Given that
PfHsp90 is a promising drug target in malaria, we believe that the study has contributed more
compounds to be explored for optimization efforts. As the search for effective anti-malarial
agents continues, these findings advocate for the iterative refinement of FTN-T2 and FTN-T5,
using its favorable attributes while addressing some of their weakness.
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Limitations of the study

The MMGBSA and and induced fit docking which consider target site to be flexible add too
much variability for the used machine learning model.
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