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Abstract

Tyrosinase, a copper-containing oxidase, plays a vital role in the melanin biosynthesis path-
way. Mutations in the tyrosinase gene can disrupt the hydroxylation of tyrosine, leading to
decreased production of 3,4-dihydroxyphenylalanine (DOPA). Consequently, this impairs
the subsequent formation of dopaquinone, a key precursor in melanin pigment synthesis.
This study aimed to identify the deleterious non-synonymous single nucleotide polymor-
phisms (nsSNPs) within the TYR gene that exert an influence on the human TYR protein.
Additionally, we evaluated the impact of 10 FDA-approved drugs on the protein stability of
mutated structures, exploring the potential for inhibitory pharmaceutical interventions.
Through various bioinformatics tools, we detected 47900 nsSNPs, particularly K142M,
151N, M179R, S184L, L189P, and C321R, which were found to be the most deleterious
variants, decreasing the protein stability. These drugs (Sapropterin, Azelaic Acid, Menoben-
zone, Levodopda, Mequinol, Arbutin, Hexylresorcinol, Artenimol, Alloin and Curcumin) inter-
acted with the binding sites in four mutant models K142M, 1151N, M179R, and S184L
proving that these ligands directly bind with the active site of mutant tyrosinase protein to
inhibit it's working. On the other hand, two mutant models L189P and C321R did not show
any binding site residue interaction with any ligands. In conclusion, this in-silico analysis of
deleterious nsSNPs in the TYR gene, coupled with the evaluation of ligands/drugs on
mutated tyrosinase structures not only advances our understanding of molecular variations
but also highlights promising pathways for targeted inhibitory interventions in the intricate
network of melanin biosynthesis.
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Introduction

Pigmentation is a complex biological process that imparts color to an organism’s skin, hair,
feathers, and various structures through the presence of pigments [1]. These pigments, which
possess the ability to absorb and reflect specific light wavelengths, contribute diverse types to
the surrounding tissues. Among these pigments, melanins stand out as the most prevalent in
animals and are produced by specialized cells known as melanocytes [2, 3]. Melanin exhibits a
spectrum of colors, ranging from black to brown to yellow, playing a crucial role in determin-
ing the coloration of an animal’s skin, hair, and eyes [4]. The orchestration of pigmentation
involves a network of genes, such as TYR, MC1R, OCA2, SLC45A2, ASIP, and KIT. The KIT
gene is particularly involved in the development of melanocytes, the cells responsible for pro-
ducing pigments [5, 6]. On the other hand, MC1R and SLC45A2 play pivotal roles in the pro-
duction of melanin pigment. ASIP and OCA2 contribute to the regulation and transportation
of melanin, respectively, adding layers of complexity to the fine-tuned process of
pigmentation.

Tyrosinase, a crucial copper-containing oxidase, plays a vital role in the melanin pigment
production, dictating the vibrant colors of skin, hair, and eyes in both human and animals [1,
4,7]. Serving as a linchpin in various biosynthetic pathways, this multifaceted enzyme cata-
lyzes the hydroxylation of tyrosine, initiating the synthesis of 3,4-dihydroxyphenylalanine
(DOPA) [8, 9]. This considered as a rate-determining step, propels the subsequent conversion
of DOPA into dopaquinone, which further transforms into eumelanin and pheomelanin—dis-
tinct forms of melanin responsible for diverse pigmentation. Beyond its primary role in mela-
nogenesis, tyrosinase showcases versatility by contributing to neurotransmitter synthesis,
insect cuticle development, and the production of catecholamines and thyroid hormones [10,
11]. Moreover, the variations in TYR gene are associated with various genetic disorders affect-
ing pigmentation, such as oculocutaneous albinism type 1 (OCA1) and melanoma [12]. OCA1
is a rare autosomal recessive disorder characterized by the absence or significant reduction of
melanin, leading to vision problems, photophobia, and an increased susceptibility to skin can-
cer due to reduced protection against UV radiation [13]. In addition, the variations in this
gene is implicated in the development of certain types of melanoma, a form of skin cancer aris-
ing from melanocytes [13]. Therefore, this gene has key role in pigmentation.

The tyrosinase gene spans a total length of 117,885 base pairs and is situated at the 11q14.3
locus, having six exons. The protein sequence encoded by tyrosinase consists of 529 amino
acids, with a molecular mass of 60,393 Da [14]. Within the genetic variations, SNPs play a sig-
nificant role, occurring at single positions in DNA sequences in both coding and noncoding
regions of proteins [15]. Notably, SNPs in the coding region can induce alterations in the
amino acid sequence, thereby introducing structural and functional modifications to the nor-
mal protein [16]. There are three primary types of SNPs in the coding region: synonymous
SNPs (sSNPs), which maintain the amino acid sequence; nonsynonymous SNPs (nsSNPs),
causing changes in the protein sequence and subsequent structural modifications; and non-
sense SNPs, which generate premature stop codons, resulting in the production of non-func-
tional truncated proteins [17]. A study indicates that approximately 50% of disease-causing
variants in TYR gene are nsSNPs [18]. The impact of an SNP on the structure and function of
a protein is contingent on the specific amino acid affected and its location within the protein.
Currently, more than 600 million SNPs have been identified in the human genome, with a sub-
stantial proportion residing in the coding regions of proteins [19].

Various synthetic and natural compounds may use to treat melanoma and skin diseases via
target the TYR gene [20-22]. Sapropterin, a synthetic drug, treats phenylketonuria by influenc-
ing the metabolism of phenylalanine [23]. Azelaic Acid, used topically, reduces inflammation
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and fights bacteria in skin conditions like acne [24]. Menobenzone is a chemical in some sun-
screens, absorbing UV radiation [25]. Levodopa, used for Parkinson’s disease, is a precursor to
dopamine [26]. Mequinol and arbutin are depigmenting agents used in skincare, while hexyl-
resorcinol has antiseptic properties [27]. Artenimol treats malaria, alloin in aloe vera has laxa-
tive properties, and curcumin in turmeric is studied for its anti-inflammatory and antioxidant
benefits [28]. In addition, the imperative to expedite the analysis of the huge number of varia-
tions in diverse genomes is being studied using different bioinformatics algorithms and tools
[29]. These user-friendly resources play a crucial role in efficiently screening and functionally
assessing critical nsSNPs, which exert influence over structural conformations. Therefore, this
study aimed to identify deleterious nsSNPs within the TYR gene and understand their impact
on the human TYR protein. Additionally, the study meticulously explores the effects of ligands
on the stability of mutated protein structures, with a focus on therapeutic interventions pos-
sessing inhibitory potential.

Methodology
Prediction of nsSNPs in the TYR gene and protein

In the exploration of the TYR gene, 47,900 Single Nucleotide Polymorphisms (SNPs) have
been meticulously investigated, revealing 651 non-synonymous variations. This comprehen-
sive dataset, encompassing RS_ID, chromosome number, position, and variants, was meticu-
lously sourced from the National Center for Biotechnology Information (NCBI) database.
Concurrently, the protein sequence was retrieved from UniProt KB (ID: P14679). To discern
the noteworthy impact of non-synonymous SNPs (nsSNPs) within the human TYR gene, an
array of nine in-silico tools was judiciously employed. These tools include SIFT (Sorting Intol-
erant from Tolerant), Polyphen2 (Polymorphism Phenotyping v2), CADD (Combined Anno-
tation-Dependent Depletion), Condel (CONsensus DELeteriousness score), SNAP2,
PANTHER (Protein Analysis Through Evolutionary Relationships), SNP&Go (Single Nucleo-
tide Polymorphism database & Gene ontology), PhD-SNP (Predictor of human Deleterious
Single Nucleotide Polymorphisms), and P Mut predictor (Mutation’s Pathology Predictor).
Each algorithm was executed using default settings, with specific cutoff values applied. Nota-
bly, the CADD tool identified variants with a Phred score exceeding 20, representing the top
1% from Genome-Wide Associated Studied Data. Other tools were employed with the follow-
ing criteria: SIFT p-value < 0.05, PolyPhen p-value > 0.95, Condel score > 0.522, SNAP2
score > 20, PANTHER p-value > 0.5, SNP&GO p-value > 0.5, PhD-SNP p-value > 0.5, and P
Mut p-value > 0.5 [30]. The selection criterion for further analysis involved filtering the most
common deleterious nsSNPs verified by at least 8 out of the 9 tools. This approach ensures a
robust and reliable identification of potentially impactful variations within the TYR gene, lay-
ing the foundation for further analysis.

Impact of selected deleterious nsSNPs on the protein stability

Mu Pro (http://mupro.proteomics.ics.uci.edu/) and I-Mutant (http://folding.biofold.org/i-
mutant/i-mutant2.0.html) tools were used to investigate the impact of selected deleterious
nsSNPs on the protein stability. A decrease in the protein stability means that the mutation
causes conformational alterations that may inhibit its normal functioning in biological path-
ways. The accuracy of the I-Mutant tool is 77% where the amino acid sequence and the muta-
tions of residues and their respective positions are taken as input. Mu Pro, a machine learning
tool, on the other hand, shows the differences in the protein state and strengths caused by
amino acid variants. AAG<0 is taken as the cutoff value for both tools, describing the mutation
as damaging.
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Consurf (http://ConSurf.tau.ac.il/), a web-based server, gives information on structurally
buried and functionally exposed amino acids in a protein structure. It also helps in determin-
ing whether the mutation resides in the conserved region or not. The conservation scale ranges
from 1 to 9, where a 1-3 score refers to the variable, a 4-6 score is associated with the average
region, and a score of 7-9 on the scale shows a highly conserved region [31].

Structural analysis of deleterious nsSNPs

Hope is a web-based server (https://www3.cmbi.umcn.nl/hope/) used to analyze the structural
effects of amino acid mutations in protein sequences. It gives information about the hydropho-
bicity, size, and charge of wild-type and mutant structures. The most deleterious nsSNPs
which decreased the protein stability, caused more hydrophobicity, changed the overall charge
of the protein, and are present in the most conserved region of a sequence selected for further
study [32]. Inter Pro, an online server (https://www.ebi.ac.uk/interpro/) was used to study the
functional domains of the tyrosinase protein. Interpro classifies proteins into families and pro-
vides functional analysis by predicting the domains and biological sites [33].

Molecular docking analysis

AF-P14679-F1-model_v4 model from the AlphaFold database was downloaded and mutant
models were built through the FoldX suite. Previously, only one PDB complex (7RK7) of tyros-
inase bound with TIL 1383i-TCR and human_class I MHC HLA-A2 has been reported, which
has a short tyrosinase nonameric peptide (369-377 AA). Therefore, we searched for the com-
plete structure of tyrosinase in the AlphaFold structure prediction server, an Al-based compu-
tational algorithm to predict possible 3D structures of unknown proteins. FoldX Suite version
5.0 (http://foldxsuite.crg.eu/) was used to build mutagen models and their energy minimiza-
tion. PyMol was used for the visualization of native and mutant models [34]. Molecular dock-
ing studies were conducted to assess structural changes induced by mutations in tyrosinase.
The STRING database (https://string-db.org/) identified proteins in melanin-production path-
ways associated with tyrosinase. FDA-approved drugs targeting tyrosinase for controlled mela-
nin production and depigmentation, sourced from DrugBank (https://go.drugbank.com/
drugs/DB16626) and HMDB (https://hmdb.ca), were selected as ligands. Using AutoDock
Vina in PyRx-0.8, wild type and mutant protein models were docked with 20 chosen drugs
within a search space of X:168.6175A, Y:99.9621A, and Z:104.3704A. Discovery Studio Visual
2021 facilitated the visualization of docked complexes. Employing a semi-flexible docking pro-
tocol with specified torsional degrees of freedom, binding residues of the target protein were
kept flexible while others remained rigid [30]. The top 5 ligands, based on minimum binding
energies in the docked complexes, were selected for detailed analysis, showcasing their poten-
tial impact on tyrosinase function.

Results

Prediction of the nsSNPs in TYR gene

The human TYR gene contains a total of 47900 single nucleotide polymorphisms (SNPs).
45531 (95.054%) SNPs lay in the intronic region and 1359 (2.837%) SNPs lay in the UTR
regions. 651(1.359%) SNPs were non-synonymous whereas, 259 (0.545) SNPs were synony-
mous. Other types of SNPs are Stop Gained 37 (0.077%), Splice Site 33 (0.068%), and Frame-
shift 30 (0.062%) as depicted in Fig 1.
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Fig 1. Distribution of SNPs.
https://doi.org/10.1371/journal.pone.0308927.9001

Prediction of the deleterious nsSNPs in the TYR protein and its stability

In the quest to identify deleterious and disease-causing non-synonymous single nucleotide
polymorphisms (nsSNPs), 651 variants were analyzed. CADD identified 264 nsSNPs with a
Phred score >20, SIFT revealed 234 variants with a P value <0.01, and Polyphen?2 predicted
158 nsSNPs with a P value >0.995. Condel predicted 267 nsSNPs with a default score >5.22.
SNAP2 and PROVEAN predicted a comprehensive list of 10,576 and 10,223 variants at the
amino acid level, from which 651 variants of interest were filtered. SNP&GO predicted 524
nsSNPs, while the PhD SNP tool predicted 288 nsSNPs with a disease-causing effect and P
value >0.5. P Mut tool identified 139 variants as disease-causing with P >0.5. Through rigor-
ous filtering, 25 nsSNPs emerged as the most deleterious variants, unanimously identified by
at least 8 out of 9 tools. Moreover, Mu Pro and I-Mutant revealed that 22 out of the 25 variants
were predicted to decrease protein stability, with 3 variants supported by only one tool. The
Consurf tool highlighted two structurally buried and four functionally exposed amino acids
within the highly conserved region of the protein (Fig 2). Based on a detailed analysis (Table 1)
pinpointed K142M, I151N, M179R, S184L, L189P, and C321R as the most deleterious variants,
diminishing protein stability while residing in the highly conserved region of the tyrosinase
protein is depicted in the S1 Table. All these five variants were supported by 11 out of 12 tools.

Structural analysis of the deleterious nsSNPs in TYR protein

InterPro Scan revealed that the selected mutations are localized within the central tyrosinase
copper-binding domain of the tyrosinase protein. Further analysis using the HOPE server pro-
vided the structural impact of mutations in the tyrosinase protein (Table 2). Notably, all
mutants were found to impact the protein structure, with the exception of L189P. Additionally,
GORIV analysis was employed to assess differences in amino acids within alpha helices, beta
strands, and coils. Fig 3 visually represents the comparison of wild type and two mutant pro-
tein models (M179R and S184L), revealing their identical secondary structures marked with a
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Fig 2. ConSurf results for residues conservation. Colors of ConSurf results showing the level of confidence for the sequence
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residues in Tyrosinase protein.

https://doi.org/10.1371/journal.pone.0308927.9002

star. In contrast, the remaining four mutant models exhibited distinct secondary structures, as
illustrated in the Fig 3.

Molecular docking analysis

The predictive analysis of the tyrosinase protein’s active pocket, including 28 pivotal amino
acids (117Leu,118Leu, 119Val, 121Arg, 124Phe, 125Asp, 126Leu, 127Ser, 129Pro, 130Glu,
133Lys, 134Phe, 230Asn, 231Phe, 232Thr, 234Pro, 450Ser, 453Gln, 454Asp, 456 Asp, 458 Asp,
459Ser, 462Asp, 463Tyr, 465Lys, 466Ser, 467Tyr, 469Glu), were predicted. Fig 4A depicted the
3D structure of the native tyrosinase protein, while Fig 4B highlights the binding pocket in
blue. Furthermore, Fig 5 predicted a visual representation of all mutations, with normal and
mutant positions distinguished in blue and red, respectively. To probe potential therapeutic
ways, 10 FDA-approved drugs—Sapropterin, Azelaic Acid, Menobenzone, Levodopa, Mequi-
nol, Arbutin, Hexylresorcinol, Artenimol, Alloin, Curcumin—were subjected to docking stud-
ies with both native and six mutant protein models (Table 3). Remarkably, the Mutant model
K142M demonstrated active site interactions with four ligands (Sapropterin, Artenimol,
Alloin, and Curcumin), while the docked complexes of the I151N mutant model exhibited

active site binding with five ligands (Menobenzone, Mequinol, Arbutin, Hexylresorcinol, and
Artenimol). Similarly, the M179R mutant model displayed active site docking with five ligands
(Sapropterin, Azelaic Acid, Menobenzone, Levodopa, and Hexylresorcinol). Conversely,
S184L bound with Azelaic Acid, Levodopa, and Alloin through its active site. The native
model displayed a more easily binding of the active site, interacting with select ligands such as
Sapropterin, Mequinol, and Alloin. Among the total of 28 residues within the active site of the
tyrosinase protein, only 15 residues actively participated in the binding process across various
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Table 1. The functional consequences of nsSNPs and prediction of disease-associated nsSNPs in human TYR gene.

Mutations Deleterious Nature of nsSNPs Effect on the Conserve
Protein Stability | Analysis

dbSNP rsID | Variant | AA SIFT | Polyphen | CADD | Condel | SNAP2 | PANTHER | SNP&GO | PhD | P Mut | MuPro |IMutant| Consurf
Variant SNP

Score Score Phred | Score Score P Score P Score P P>0.5 Effect Effect Score>7
<0.05 >0.95 Score | >0.522 >20 >0.5 >0.5 Score
>20 >0.5
rs756049855 | A/T D199V 0 1 269 | 0.66 32 0.74 10 81091 Decrease | Increase | 5,e
(93%)
Disease
rs1013801316 | G/A G346R 0.01 0.994 35 0.7 29 0.85 10 91 0.69 Decrease | Decrease | 5,e
(86%)
Disease
rs1395444792 | T/C F3928 0 0.996 31 0.71 27 0.74 10 710.78 Decrease | Decrease | 3,e
(88%)
Disease
rs1287652457 | G/T G436C 0.02 0.974 24| 0.58 28 0.57 10 810.70 Decrease | Decrease | 2,b
(86%)
Disease
rs750027827 | G/T C276F 0 0.999 29 0.67 38 0.85 10 210.86 Decrease | Decrease | 5,e
(91%)
Disease
rs200960909 | G/C D42H 0.01 0.999 232 | 0.64 23 0.74 10 510.58 Decrease | Decrease | 3,e
(82%)
Disease
rs538081629 | G/A A241T 0.01 1 26.4 0.69 -68 0.74 10 6 0.59 Decrease | Decrease | 7,e
(82%)
Disease
1759359525 | G/C C244S 0 0.999 26.6 | 0.63 29 0.85 10 310.78 Decrease | Decrease | 6,e
(88%)
Disease
rs996525532 | T/C C24R 0 0.998 249 | 0.61 45 0.45 10 810.85 Decrease | Decrease | 7,b
(91%)
Disease
rs373333305 | G/A C24Y 0 0.998 247 0.59 51 0.41 10 6| 0.81 Decrease | Decrease | 7,b
(89%)
Disease
rs938515275 | T/C C321R 0 0.999 26.1 0.63 39 0.57 10 1/ 0.60 Decrease | Decrease | 9,e,f
(83%)
Disease
rs777884034 | G/T D148Y 0 0.841 254 | 0.64 64 0.85 10 810.89 Decrease | Decrease | 6,b
(92%)
Disease
rs1204511442 | G/T G101V 0 0.994 26| 0.66 49 0.46 10 6 0.87 Decrease | Decrease | 7,e
(91%)
Disease
1764905692 | G/C GI106A 0.01 0.885 254 0.64 33 0.85 10 810.85 Decrease | Decrease | 5,e
(91%)
Disease
rs1463152051 | G/T G154W 0.01 0.886 25.6 0.65 89 0.74 10 910.89 Decrease | Decrease | 6,b
(92%)
Disease
rs747095957 | T/A I151N 0 0.998 26.3 0.68 21 0.48 10 910.86 Decrease | Decrease | 9,b,s
(91%)
Disease

(Continued)
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Table 1. (Continued)

Mutations Deleterious Nature of nsSNPs Effect on the Conserve
Protein Stability | Analysis
dbSNP rsID | Variant | AA SIFT | Polyphen | CADD | Condel | SNAP2 | PANTHER | SNP&GO | PhD | P Mut | MuPro |IMutant| Consurf
Variant SNP
Score Score Phred | Score | Score P Score P Score P P>0.5 Effect Effect Score>7
<0.05 >0.95 Score | >0.522 | >20 >0.5 >0.5 Score
>20 >0.5
rs754250982 | A/T K142M 0 0.998 263 | 0.68 30 0.54 10 6(0.87 Decrease | Increase | 9,e,f
(91%)
Disease
rs367963483 | T/G L138R 0 0.993 27.2 0.67 40 0.47 10 6091 Decrease | Decrease | 6,b
(93%)
Disease
rs1212067038 | T/C L189P 0 1 27.3| 0.67 47 0.46 10 810.79 Decrease | Decrease | 8,e,f
(89%)
Disease
15769645029 | T/G M179R 0.02 0.953 249| 0.66 38 0.74 10 210.77 Decrease | Decrease | 9,e,f
(88%)
Disease
rs367543066 | C/T S184L 0.32 0.987 23.8| 0.61 33 0.74 10 710.82 Decrease | Decrease | 9,b,s
(90%)
Disease
rs1287735969 | G/T ‘W238L 0.01 0.999 28.5 0.72 31 0.44 10 910.88 Decrease | Decrease | 5,e
(92%)
Disease
rs748052034 | G/C W475C 0.01 0.996 29.2 0.76 56 0.46 10 60.84 Decrease | Decrease | 1,b
(90%)
Disease
rs547058090 | A/G Y173C 0 1 26.8| 0.74 36 0.41 10 71091 Decrease | Decrease | 7,b
(93%)
Disease
15768206729 | G/C G485R 0.01 0.999 24.8| 0.63 25 0.74 10 6042 Increase | Decrease | 1,b
(85%)
Neutral
https://doi.org/10.1371/journal.pone.0308927 1001
Table 2. The structural consequences of deleterious nsSNPs in human TYR gene and domain analysis.
Mutation HOPE server InterProScan
More Hydrophobic Smaller in Size Charge on Wild Type Charge on Mutant Domain
C321R Wild Type Wild Type Neutral Positive Tyrosinase_Cu-bd
Common central domain of tyrosinase
I151N Wild Type Wild Type None None NA
K142M Mutant Mutant Positive Neutral NA
L189P None Wild Type None None Tyrosinase_Cu-bd
Common central domain of tyrosinase
M179R Wild Type Wild Type Neutral Positive Tyrosinase_Cu-bd
Common central domain of tyrosinase
S184L Mutant Wild Type None None Tyrosinase_Cu-bd
Common central domain of tyrosinase

https://doi.org/10.1371/journal.pone.0308927.t002
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SECONDARY STRUCTURE PREDICTION
B Native B M17SR mS184L mK142M ®I151IN ®L189P mC321R

—
28 83 8 8 3
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Fig 3. Secondary structure prediction of wild type and all mutants. Models are classified according to secondary structures. Three models; Native,
M179R, and S184L have same structure.

https://doi.org/10.1371/journal.pone.0308927.g003

docked complexes. Interestingly, mutant models L189P and C321R in docked complexes
exhibited a lack of interaction between binding site residues and ligands. These findings
enhance our understanding of the dynamic interactions within the active site and illuminate
potential therapeutic ways for the identified tyrosinase protein mutations.

Discussion

Mutations in the tyrosinase protein may disrupt the normal melanin production pathway by
inducing abnormal production of 3,4-dihydroxyphenylalanine (DOPA), which subsequently
converts into dopaquinone—a crucial molecule responsible for melanin pigment production
[10, 35]. In addition, reduced melanin production diminishes skin protection against sunlight,
elevating the risks of discoloration, uneven texture, and even skin cancer [36]. Conversely,
heightened melanin production may lead to dark spots on the skin and adrenal disorders [37].
The over-expression of tyrosinase results in an increased intracellular dopamine content, cou-
pled with formation of melanin pigments in neuronal somata, ultimately triggering apoptotic
cell death [19]. Given tyrosinase’s crucial role in the initial and rate-determining step of mela-
nin production, any mutation in this protein can profoundly alter its function within the body
[1, 4, 38]. Therefore, the use of advanced bioinformatics tools and computational approaches
[34] to investigate the structural and functional impact of disease-causing nsSNPs on tyrosi-
nase protein helped in studying the alterations in the normal functioning of tyrosinase protein.

Sequence-based strategies provided a great podium to study closely associated protein mem-
bers [30].
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N-terminal
\ /
C-terminal /’

Fig 4. A) Protein model of Tyrosinase protein. C-terminal and N-terminal end of the 3D structure ended with coil and loop respectively. B).
Binding pocket of Tyrosinase protein is shown in blue color.

https://doi.org/10.1371/journal.pone.0308927.g004

In this study, we identified six particularly detrimental variants—K142M, I151N, M179R,
S184L, L189P, and C321R—that significantly compromise protein stability. It is also crucial to
note that all six mutations were situated within the highly conserved and functional region of
the tyrosinase protein. Previous studies indicated the existence of a primary domain, referred
to as "Tyrosinase_Cu-bd," which serves as a common central domain of tyrosinase [39, 40].
This domain was found to harbor four mutations—C321R, L189P, S184L, and M179R. Nota-
bly, two mutations, I151N and K142M, were not confined within the tyrosinase_Cu-bd central
domain. These structural changes in terms of hydrophobicity, size, and charge on the mutant
and wild-type protein structure may associate with the disrupt of the normal melanin
production.

Molecular docking analysis [32] revealed the structural alteration in mutant models as com-
pared to the wild-type protein structure. In this study, 10 FDA approved drugs (Sapropterin,
Azelaic Acid, Menobenzone, Levodopda, Mequinol, Arbutin, Hexylresorcinol, Artenimol,
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Fig 5. Superimposed structures of deleterious variants C321R(5a), I151N(5b), K142M(5c), L189P(5d), M179R(5¢), and S184L(5f). All the wild
type and mutant residues are shown in blue and red colors respectively.

https://doi.org/10.1371/journal.pone.0308927.g005

Alloin, Curcumin) were used as a target and/or inhibitor of tyrosinase protein with wild type
and six mutant models of tyrosinase protein. The results (Table 3) depicted that 15 residues
(117Leu,118Leu, 119Val, 121Arg, 124Phe, 126Leu, 130Glu, 133Lys, 134Phe, 230Asn, 231Phe,
232Thr, 234Pro, 453Gln, 454Asp) from the binding pocket of tyrosinase protein were involved
in the protein-ligands interactions. The native model did not interact with ligands through a
binding pocket proving that these ligands do not bind with the normal tyrosinase protein.
However, some ligands interact with the binding sites in four mutant models K142M, I151N,
MI179R, and S184L proving that these ligands directly bind with the active site of mutant tyros-
inase protein to inhibit it’s working. Two mutant models L189P and C321R on the other hand
did not show any binding site residues interaction with any ligands. The interacting residues
of these two models with all 10 ligands showed a very different residual interaction as com-
pared to the native and other four mutant models” docking interactions. Similarly, some
researchers assessed potential pharmaceutical agents targeting both wild-type ABL1 and the
T315I mutant ABL1. They conducted molecular docking analyses involving some FDA-
approved small-molecule drugs. They revealed chlorhexidine and sorafenib as promising "new
use" drugs specifically targeting wild-type ABL1, while nicergoline and plerixafor exhibited
potential for targeting T315I ABLI. Notably, their investigation highlighted the pivotal
involvement of residues situated within the ATP-binding site and the A-loop motif in the drug
discovery process targeting ABL1 [41]. In another study, Banavath et al. identified novel tyro-
sine kinase inhibitors for drug resistant T315I mutant BCR-ABL via molecular docking [42].
Others have done similar type of studies on various targets [43-46]. Therefore, our study sug-
gests that clinical trials and in vitro experiments validating these findings hold significant
promise in advancing the fight against skin cancer and associated diseases.
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Table 3. Interaction analysis of FDA approved (Drugs) ligands with wild-type and mutant structures of tyrosinase.

Name of Name of | Conventional Hydrogen Van der Waals Interactions Carbon Pi-Bonds Unfavorable
Ligand Receptor Bonds Hydrogen Bonds Bonds
Sapropterin Native Cys103, Lys104, Phel07, | Met96, Asn102 Phel05, Gly106, Trp108, Cys103 Cys103
Argl16 GIn223, Gly446, | Leu216, Leul18, Glu219, GIn220, Glu229,
Leu445, Tyr447
K142M Argl21, Glul30, Asn230 | Leull8, Vall19, Leul26, Lys133, Phel34, Thr232
Phe231, Pro234
I151IN CYS89, GLY97 LEU59, THR88, GLN90, CYS91, PHE9S, LEU432 MET96, TYR433,
CYS100, TYR425, ARG434, ASP437 PRO431
M179R Glu229, Argl16, Gly446 | Asnl102, Phel07, GIn220, Phel05, Leu445, | Lys104, Cys103, Argll6
Tyr447, Leul18, GIn223, Trp108, Lys224, Gly106
Gly109
S184L Ser375 His367, Met374, GIn376, Ser380, Phe386, | Asn364, His202 Val377, Phe347 His180
Leul84, Phe207, Ile368, Ser360
L189P Asnl02, Asp437 Phe429, Cys103, Arg217, Gly97, Leu213, Met96, Phel05, Phe438,
GIn220, Leu445, 1le440 Tyr433, Lys104
C321 CYS89, ASP437 LEU59, THR88, GLN90, CYS91, GLY97, MET96, TYR433
TYR425, PRO431, LEU432, ARG434,
Azelaic Acid Native Phel05 Phel07, Gly106, Asp444, Leu445, Phe438, Tyr433, Lys104, Met96
Leu432, Asp437, Argd34
K142M Ser79, Trp80 Ser61, Asn62, Ala63, Pro64, Thr72, Leu65, Ile418
Arg77, Glu78, Phe200, Gly419, Asn421,
Ser424, Tyr425, Val427
I151IN ARG217 GLY97, PHE98, ASN102, GLN220, MET96, PHE105, ASP437
PRO431, LEU445 LEU213, PHE429,
TYR433, PHE438
M179R Asn230, Pro234, Glu130, Phel34, Tyr137 Lys133, Phe231, Leul26 Thr232,
Asp228
S184L Glul30, Argl21 Phel34, Thr232, Lys133, Tyr137, Asp228 Pro234, Leul26, Phe231
L189P | Arg217, Asn102, Cys103 | Gly97, Lys104, Gln220, Leud45, Asp437, Phe429, Leu213, Met96,
Phe438 Tyr433, Phel05,
C321 TRP80, TYR425 LEU60, SER61, ALA63, PRO64, THR72, LEU®65, ILE418 ASNG62
GLU78, SER79, GLY419, SER424
Menobenzone Native Met96, Phe438, Phel05, Ile440, Asp437, Lys104, Leu445, Tyr433
Leu432
K142M His202 His180, Ser360, His363, His367, Ser375, Asn364 Val377, Ile368 Ser380
Phe386, His390
1151N Leull7, Leull8, Argl21, Glul30, Lys133, Thr232, Leul26 Valll9
Phel34, Asn230, Phe231, Pro234
M179R Phel34, Lys133, Argl21, Asp228, Asn230, Glul30 Leul26
Thr232, Phe231, Pro234
S184L His202 His363, His180, Ser375, Ser360, Phe386, Asn364 Val377,1le368 Ser380
His390, His367, Phe347
L189P Asnl02, Arg217, Cys103, Lys104, Leu445, Tyr433, Phe438, Phel05,
Asp437, Leu213, Phe429, Pro431, Gly97, Met96
GIn220
C321 SER79 SER61, ALA63, GLY419, HIS420, GLU78 THR?72, LEU65, ILE418
ASN421, SER424
(Continued)
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Table 3. (Continued)

Name of Name of | Conventional Hydrogen Van der Waals Interactions Carbon Pi-Bonds Unfavorable
Ligand Receptor Bonds Hydrogen Bonds Bonds
Levodopda Native Leu432, Cys91 GIn90, Leu59, Asn57, Ile58, Tyr425,
Pro431, Thr88, Cys89
K142M Ser61, Asn62, Ala63, Pro64, Thr72, Glu78, Trp80, Gly419, Ile418, leu65
Ser79 His420, Asn421, Ser424
I151N SER61, ASN62, ALA63, | LEU60, PRO64, LEU65, ARG77, GLU78, | TRP80, SER424
SER424, TYR425 SER79, PHE200, ILE418, GLY419,
ASN421, MET426, VAL427
M179R Glul130 Lys133, Asn230, Val119, Thr232, Pro234, Leul26 Argl21
Phe231, Phel34
S184L Glul30, Argl21, Vall19 | Lys133, Phe231, Phel34, Tyr137, Pro234, Leul26
Asn230, Thr232
L189P Asnl102, Cys103, Arg217 | Asp437, Leu445, Lys104, Phe429, GIn220, Phe438 Met96, Tyr433, Phel05
Gly97, Leu213
C321 ALAG63, ARG77, SER79, | SER61, ASN62, PRO64, LEU65, THR72,
SER424, TYR425 GLU78, TRP80, PHE200, ILE418,
GLY419, ASN421, VAL427
Mequinol Native Argllé GIn220, GIn223, Cys103, Phel05, Leu216, | Gly106, Phe107 Leull8 Leu445
Tyr447, Gly446,
K142M Ser79 Ala63, Thr72, Pro417, His420, Asn421, Glu78 Leu65, Ile418 Gly419
Ser424
I15IN Argl21, Lys133, Phel34, TYR137, Glul30 Leul26, Pro234
Phe231, Thr232
MI179R Ser79 Gly419, Ser424, His420, Asn421, Ala63, Ile418, Leu65
Thr72, Glu78
S184L Ser79 Thr72, Ala63, His420, Asn421, Ser424, Glu78 Ile418, Leu65
Ser61, Gly419,
L189P Gly97, Tyr149, Arg217, Asn102, GIn220, 1le430 Phel05, Met96, Phe429,
Argl16, Cys103, Lys104 Tyr433, Pro431
C321 SER79 SER61, ALA63, THR72, GLY419, HIS420, GLU78 ILE418, LEU65
ASN421, SER424
Arbutin Native Asp437, Leu59, Asn57, Arg434, Tyr433, Ile58, Leud32, Thr88, Tyr425
Cys89, Cys9l GIn90, Pro431, Gly97, Met96, Phe95,
Lys104
K142M Argl196,11e198, Asn364 | Ser184, Met185, Asp186, Asp197, Asp199, Glu203, Val377
His202, Phe347, GIn378
I151N Glu130 Leull8, Vall19, Phel34, TYR137, Lys133 Argl2l
Asn230, Phe231, Thr232
M179R Tyr282 Gly191, Gly190, Thr155, Ser287, Ser284, His285, Ser287
Glu281, Asn283, His285, Leul88
S184L Ser375, Asn364 Aspl199, His202, Ser360, Ala365, Ile368. Glu203, Val377
His367, Ser380, Phe347
L189P Arg217, Cys103, Asp437 | Leud45, Leu213, Lys104, GIn220, Asn102, Phel05, Tyr433, Phe438, Phe98
11e430, Gly97, Tyr149, Pro431, Phe429 Met96
C321 ARG196, ILE198, SER184, MET185, ASP186, ASP197, GLU203, VAL377
ASN364 ASP199, HIS202, PHE347, GLN378
(Continued)
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Table 3. (Continued)

Name of Name of | Conventional Hydrogen Van der Waals Interactions Carbon Pi-Bonds Unfavorable
Ligand Receptor Bonds Hydrogen Bonds Bonds
Hexylresorcinol Native GIn90 Tyr425, Leu59, Ile58, Thr88, Cys89, Leu432, Cys91, Tyr433
Pro431, Met96, Lys104
K142M His180, His202, Phe207, Phe347, Ser360, Val377, lle368
His363, Asn364, His367, Ser375, GIn376,
Ser380, Phe386
I151IN Glul30 Argl21, Phel34, ASP228, Asn230, Leul26, Lys133,
Thr232 TYR137, Phe231,
Pro234
MI179R Glul30, Lys133, Tyr137, Thr232, Asn230, Phe231 Phel34, Pro234, Leul26,
Asp228 Phe231
S184L Val377 Asn364, Phe347, His202, His180, Leul84, Val377, lle368
Ser380, Phe386, GIn376, Ser375, His367,
Thr309, Ser360
L189P Arg217 Phe438, Pro431, Gly97, Asn102, GIn220, Leu445, Met96, Tyr433,
Cys103, Asp437 Leu213, Phe429, Lys104,
Phel05
C321 LYS131, ASP132, ALA136, GLU250, PHE135, PHE268
TYR251, MET252, GLY253, SER267
Artenimol Native Glu229 Gly227, Lys224, GIn223, GIn220, Argl16,
Trp108, Phel07, Cys103, Gly109, Gly101,
Asn102
K142M Lys133 Valll9, Argl21, Leul26, Glul130, Phel34, Phe231
Asp228, Asn230, Thr232, Pro234
1151IN Lys133 Vall19, Argl21, Leul26, Glu130, Phel34, Phe231
ASP228, Asn230, Thr232, Pro234
MI179R Gly66, Asn421 Pro417, Met332, His420, Pro64, Ala414, | Pro417, Asn415 Pro205,
Asn415, Leu65, Ile418
S184L Glu203, His202, Phe207, Phe347, His367, Val377
His363, Asn364, Ser360, 1le368
L189P GIn378, Ser184, Argl196, 1le198, Glu203, Val377 Aspl199
Asp197, His202, Phe347
C321 ASN122, ASP237, ASP240, CYS247 ILE246, Phe124 TRP236
Alloin Native Leu452, Arg402, Arg403 GIn399, Arg405, Asp454 Arg402, Arg403
K142M Valll9, Argl21, Glul30, | Lys133, Tyr137, Asn230, Phe231, Thr232, Glul130, Leul26 Asp228
Phel34 Pro234
I151N LEU188, GLN286 ASP75, VAL83, THR155, TYR156, GLY73, VAL74 ASP76 GLY157,
GLN158, ASN161, LEU189, GLY190 LYS160
M179R Asn364, GIn359, Ala357 | Ser360, Arg308, Thr309, GIn376, Ser375, Tle368 Ala348, Ser358
Val377, Ser349, Gly346, Phe347, Lys334
S184L Argl21, Vall19, Leul18, Leull7, Thr232, Asn230 Asp228, Leul26 Glu130
Pro234, Phel34, Lys133, Phe231, Tyr137
L189P Aspl199, Glu345, GIn376 | GIn378, Ser375, 11e368, His363, His367, Asn364 Val377
Phe347, His202, Glu203
C321 GLU203, HIS367 HIS202, THR309, LYS334, SER360, PHE347, ILE368,
HIS363, ASN364, ALA365, SER375 VAL377
(Continued)
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Table 3. (Continued)

Name of Name of | Conventional Hydrogen Van der Waals Interactions Carbon Pi-Bonds Unfavorable
Ligand Receptor Bonds Hydrogen Bonds Bonds
Curcumin Native Cys103 Gly227, Glu229, Trp108, Gly109, Asn102, | Leu216, GIn223, | Lys224, Argl16, Leulls, Lys224
Phe107, GIn220, Gly446, Leud45, Tyr447 | Glu219, Gly106 Phel05
K142M Argl21, Lys133 Vall19, Ille123, Phel34, Tyr137, Asp228, Glul30 Leul26

Asn230, Phe231, Thr232, Pro234

I151N LEU279 LEU188, ILE194, ARG196, GLU280, TYR282, SER284
GLU281, TYR282, SER284, HIS285,
GLN286
M179R Arg52 Pro110, Phe95, Gly101, Leu49, Ser40, Gly109, Ser44 Arg52, Trp39, Cys103,
Gly47, Asn99, Asn102, Phel07, GIn220,
Trp108, Lys224, Glu229
S184L Arg52, Glu229 Ser44, Gly47, Leu49, Ser50, Phe95, Asn99, Gly109, Lys224, Arg52, Trp39,
Gly101, Asn102, Phel07, Trp108, Pro110, Cys103, Trp39
Argl16, GIn220,
L189P His367, Asn364 GIn378, Asp199, Phe347, His363, GIn376, Val377, His202, His180,
Arg196, Ser184, 11e198, Glu203, Ser380, His202, His367, Val377
Phe207
C321 LYS334, SER360 ASP199, HIS202, THR309, ALA357, GLU203 VAL377, PHE347

https://doi.org/10.1371/journal.pone.0308927.t003

ASN364, ALA365, HIS367,ILE368,
SER375

Conclusion

In conclusion, our study identified significant non-synonymous single nucleotide polymor-
phisms (nsSNPs) in the TYR gene, particularly K142M, 1151N, M179R, S184L, L189P, and
C321R, which adversely impacted the stability of the tyrosinase protein. Additionally, we
explored the potential inhibitory effects of 10 FDA-approved drugs on mutated tyrosinase
structures. Notably, these drugs exhibited binding interactions with specific mutant models,
providing valuable insights for targeted pharmaceutical interventions in the intricate network
of melanin biosynthesis. This comprehensive approach enhances understanding of molecular
variations and suggests promising ways for further research and therapeutic development for
discoloration, uneven texture, skin cancer, dark spots on the skin, and adrenal disorders.
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