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Abstract

Objective

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, and previ-
ous observational epidemiological studies have suggested an association between MS and
male infertility; male infertility due to sperm abnormalities may result from a number of aetio-
logical factors, such as genetics, autoimmune factors, etc., and there are currently no stud-
ies to assess whether MS is associated with sperm abnormalities in men. Therefore, we
performed a Mendelian randomization (MR) analysis to assess the causal relationship
between MS and abnormal spermatozoa.

Methods

In this study, independent single nucleotide polymorphisms (SNPs) strongly associated with
multiple sclerosis (MS) were identified by mining public genome-wide association study
repositories and used as instrumental variables to explore causality. The causal effect of
MS on sperm abnormalities was systematically assessed using two-sample Mendelian ran-
domization (MR) techniques, and various analytical models such as inverse variance
weighting (IVW), MR-Egger and MR-PRESSO were implemented to dissect the association.
In addition, a wide range of sensitivity tests, including Cochran’s Q test to detect heteroge-
neity, MR-Egger intercept analysis to assess bias, leave-one-out to test model robustness,
and funnel plot analysis to detect potential publication bias, were implemented to ensure the
robustness and reliability of the causal inference results.

Results

There was a significant causal relationship between MS and abnormal sperm (OR 1.090,
95% CI [1.017-1.168], p = 0.014); The accuracy and robustness of the results were con-
firmed by sensitivity analysis.
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Conclusion

Here we show that there appears to be a causal relationship between multiple sclerosis and
abnormal spermatozoa. MS as a chronic disease has a higher risk of concomitant sperm
abnormalities in its male patients, and reproductive and fertility issues in men with MS
should receive special attention from clinicians.

Introduction

The World Health Organization defines infertility as the inability to conceive after regular and
unprotected sexual intercourse for at least 12 months. Infertility is a significant global health
issue, impacting an estimated 8-12% of couples of reproductive age [1]. Male factor infertility
is considered to play a role in 50% of infertile couples, being the sole contributor in 20% of
infertility cases, and co-contributing with female infertility factors in approximately 30% of
cases [2]. A comprehensive review has consolidated the evidence implicating male infertility as
a harbinger of augmented risks for chronic conditions, comorbidities, cardiovascular disor-
ders, and oncological diseases, thereby positing male infertility as a prospective biomarker pre-
dictive of long-term health outcomes and mortality trends [3]. Drawing from a corpus of
research, shared etiologies and risk factors underlying male infertility have been postulated
and validated, encompassing lifestyle habits such as tobacco use and alcohol intake, pharma-
ceutical interventions, a history of testicular infections or ongoing pathologies, environmental
toxicant exposures, thermal stress to the testes, traumatic incidents affecting the testicles, as
well as issues pertaining to ejaculation and erectile function [4].

Multiple sclerosis (MS) is a chronic autoimmune, inflammatory, and neurodegenerative
disease that affects the central nervous system (CNS) [5]. It is the most common cause of neu-
rological dysfunction in young adults, typically occurring between the ages of 20 and 40.
Females are affected approximately twice as often as males. MS is characterized by immune
dysregulation that leads to the infiltration of immune cells into the CNS, triggering demyelin-
ation, axonal damage, and neurodegeneration [6]. Disturbances in redox homeostasis are
widely recognised to play a central role in the pathophysiological processes of MS. Research
shows that MS patient populations consistently exhibit increased oxidative stress and impaired
antioxidant defences, whether in the circulatory system, cerebrospinal fluid (CSF) or brain tis-
sue samples obtained at autopsy [7]. In addition, recent research suggests that abnormally ele-
vated serum iron levels may serve as a potential biomarker of cognitive dysfunction in patients
with multiple sclerosis [8]. Multiple factors related to MS can impact fertility, including sexual
dysfunction, endocrine changes, autoimmune imbalances, and disease-modifying therapies
[9]. Studies have shown that women with MS have lower total fertility rates than those without
the condition [10], and a higher incidence of infertility diagnoses compared to women without
MS [11]. However, there is limited research on the impact of MS on male fertility [12].

As an increasingly utilized analytical method, Mendelian randomization (MR) is consid-
ered an ideal tool for optimizing the design of subsequent randomized trials [13]. By using
genetic variants associated with the exposure of interest as instrumental variables, MR can cir-
cumvent unmeasured confounding in observational studies and explore the causal relationship
between potentially modifiable risk factors and health outcomes [14]. Furthermore, genetic
variants have been influencing exposure since conception, indicating that MR can evaluate the
long-term impact of exposure on the risk of outcomes [15]. The objective of this study is to
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Fig 1. An overview of the study design. SNP, single nucleotide polymorphisms. The solid lines represent the
association between the instrumental variables (SNPs) and exposure as well as the association between exposure and
outcome. Dash lines with means that the association meets two basic assumption of mendelian randomization: i) the
genetic variants (SNPs) are independent of confounders between exposure and outcomes; ii) the genetic variants only
influence outcome via exposure. MS and Abnormal spermatozoa reciprocal exposure and outcome.

https://doi.org/10.1371/journal.pone.0308815.g001

assess the causal effect of MS on abnormal sperm using a two-sample MR analysis and to pro-
vide a reference for future research.

Methods

This is a two-sample Mendelian randomization (MR) study design that employs instrumental
variable analysis. The study uses genetic tools, specifically single nucleotide polymorphisms
(SNPs), to predict MS and test its causal relationship with abnormal sperm. The genetic vari-
ants used in the 2SMR analysis must: a) be closely related to multiple sclerosis, b) be indepen-
dent of any confounding factors of multiple sclerosis and abnormal sperm, and c) be unrelated
to the relevant results obtained by other methods [12] (Fig 1). We conducted a comprehensive
search of the exposure and outcome data in the Ieu Open GWAS project database (https://
gwas.mrcieu.ac.uk/) to identify the most appropriate GWAS summary data. To mitigate errors
resulting from stratification effects, such as ancestry and population, we limited our selection
to participants of European descent for the cohort. The analyses were based on publicly avail-
able data that have been approved by relevant review boards.

Data sources

To identify the genetic variants associated with multiple sclerosis (MS), we used the summary
data from a publicly available MS GWAS study (47,429 cases and 68,374 controls) [16]. To
avoid overlap between the exposure and outcome populations, we used the abnormal sperma-
tozoa GWAS study from the FinnGen biobank, which included 915 cases and 209,006 con-
trols. Both GWAS studies included participants of European ancestry. The IEU Open GWAS
database provided the summary data for these two GWAS (MS ID: ieu-b-18; abnormal sper-
matozoa ID: finn-b-R18_ABNORMAL_SPERMATOZ). For more information on the expo-
sure and outcome datasets (S1 Table).

The selection of instrumental variables

Instrumental variables (IVs) are used in MR analysis as intermediaries between the exposure
and the outcome to explore the causal relationship between them. I'Vs are typically genetic
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variants, with single nucleotide polymorphisms (SNPs) being the most commonly used. The
SNPs associated with abnormal spermatozoa were extracted from the IEU Open GWAS proj-
ect (https://gwas.mrcieu.ac.uk/). First, to ensure the independence of the selected genetic
instrumental variables (IVs), we performed a linkage disequilibrium (LD) clustering analysis
using 10 megabases (MB) as the clustering window and referring to the European population
data, excluding SNPs with high P-values according to the criterion of an LD R2 greater than
0.001 [17]. Second, any SNPs with an extremely significant correlation (P value <5x10/-6)
with the study phenotype were also discarded to reduce confounding [18]. For SNPs that were
not directly included in the target GWAS dataset, we complemented them by searching for
suitable surrogate SNPs with an R2 greater than 0.8; if no sufficiently suitable surrogate could
be found, the corresponding SNPs were discarded. Immediately following this, the strength of
each genetic tool was assessed using the F-statistic, the F statistic was calculated using the fol-
lowing formula: F = B2exposure/SE2exposure. An F statistic >10 indicates that there is no
strong evidence of weak instrument bias [19]. We also excluded intermediate frequency SNPs
with allele frequencies greater than 0.42, which are not conducive to subsequent causal infer-
ence because the direction of effect is not easily determined. Finally, we applied the
MR-PRESSO (Mendelian Randomization Pleiotropy RESidual Sum and Outlier) test to iden-
tify and remove SNPs that may harbor pleiotropy, thereby refining the analysis set and increas-
ing the confidence in the results [20].

Statistical analysis

In order to determine the causal effect of MS on abnormal sperm parameters, the present
study used different MR analysis strategies, specifically the Inverse Variance Weighted (IVW)
method, the Weighted Median method and the MR-Egger method. The IVW method was
employed as the principal analytical strategy for estimating causal effects, given its recognition
as the most statistically efficacious approach in discerning causal associations within the con-
text of two-sample Mendelian Randomization (MR) analyses [21]. MR-Egger and Weighted
Median complement IVW estimation by providing more robust effect estimates under relaxed
assumptions of multivariate validity, although this may be at the expense of statistical power.
The weighted median estimator accommodates up to 50% of the instrumental variables (IVs)
being invalid or weakly correlated, whereas the MR-Egger methodology tolerates potential
invalidity across all IVs. Consequently, heightened confidence in the findings is attained when
concordance among these three methodologies is observed, reinforcing the robustness and
credibility of the inferred causal relationships. If we observe inconsistent estimation results
between different MR methods, we will adopt a more stringent strategy of setting thresholds
for instrumental variable p-values to further increase the robustness of the analyses and reduce
potential bias [22].

We used the inverse variance weighted (IVW) indicator of heterogeneity (based on the
Cochran Q test with a p-value < 0.05) to indicate the possible presence of horizontal pleiot-
ropy. In addition, intercept values obtained from MR-Egger regression analyses were used as
an indication of the presence or absence of directional pleiotropy, with p-values less than 0.05
considered evidence of directional pleiotropy [23]. To further analyse and adjust for the effects
of horizontal pleiotropy, we used the MR-Pleiotropic Residuals and Outlier Detection
(MR-PRESSO) method [22]. This method consists of three key steps: first, identifying horizon-
tal pleiotropy; second, correcting for the effects of pleiotropy by excluding outlier SNPs; and
third, comparing causal effect estimates before and after correction to test the significance of
the differences. In particular, MR-PRESSO showed lower bias and higher precision than IVW
and MR-Egger when the proportion of variance in horizontal polytomousness was less than
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10% [20]. We also performed leave-one-out cross-validation to assess the contribution of each
single nucleotide polymorphism (SNP) to the overall Mendelian randomization (MR) effect
estimate and its potential impact on bias. The MR-PRESSO (Mendelian Randomization Pleiot-
ropy RESidual Sum and Outlier) method was employed to identify any outlying data points
within the analysis. Once outliers were detected, they were promptly excised from the dataset.
Subsequently, the MR analysis was repeated to ensure the robustness of the results post-outlier
removal [24]. All statistical analyses were carried out utilizing the TwoSampleMR package
implemented in R software, version 4.2.0.

Results

Based on the screening criteria of the instrumental SNPs, we obtained 134 abnormal spermato-
zoa-independent SNPs from the MS GWAS. To assess potential confounding effects and
ensure accurate interpretation of genetic variants, this study used an online analysis resource,
the Single Nucleotide Polymorphism Annotator (https://snipa.helmholtz-muenchen.de/
snipa3/), to perform multiplicity analyses of SNPs. None of these 134 SNPs were associated
with potential confounding factors for abnormal spermatozoa, such as smoking, alcohol con-
sumption, drugs, and infections. Furthermore, 124 out of the 134 SNPs were extracted from
the GWAS of abnormal spermatozoa. These 124 SNPs were then used as instrumental vari-
ables for MS, each with an F statistic > 10 for the exposure association, indicating a low likeli-
hood of weak bias. S1 Table shows the genes corresponding to each instrumental SNP.

MR analysis shows that MS has a causal effect on the risk of abnormal spermatozoa. The
specific results of the MR analysis and sensitivity analysis are shown in Table 1, while the cor-
responding scatterplot and forest plot are shown in Fig 2, both of which show a positive causal
association between MS and abnormal spermatozoa. The association between MS and the risk
of abnormal spermatozoa was significant (OR = 1.090, 95% CI = 1.018-1.168, P = 0.014) when
analysed using the IVW method, suggesting that MS increases the risk of abnormal spermato-
zoa. Although not statistically significant, the MR-Egger analysis (OR = 1.083, 95%
CI=0.963-1.218, P = 0.184) using the weighted median method (OR = 1.070, 95%

CI =0.959-1.194, P = 0.226) also showed a trend towards MS being associated with an
increased risk of abnormal sperm (see Table 1). The Cochran Q-test showed that the p-values
of both the MR-Egger (p = 0.385) and IVW (p = 0.383) analyses indicated that there was no
heterogeneity problem, which was further confirmed by the fact that there was no significant
difference in the intercept values of the MR-Egger regression (intercept = 0.001; p = 0.890).
The funnel plot morphology showed good symmetry (Fig 2), and no single SNP was found to
have a significant effect on the overall results in the leave-one-out sensitivity analyses where
individual SNPs were excluded one at a time (Fig 2). The results of each of these analyses

Table 1. MR estimates of assessing the causal association between multiple sclerosis (MS) and abnormal spermatozoa.

Exposure

MS

abnormal spermatozoa

Outcome NO.SNP MR method OR 95%CI P
abnormal spermatozoa IVW 1.090 1.018-1.168 0.014
124 MR Egger 1.083 0.963-1.218 0.184
Weighted median 1.070 0.959-1.194 0.226
IVW 1.010 0.941-1.084 0.784
MS 5 MR Egger 1.184 0.747-1.877 0.525
Weighted median 0.998 0.926-1.076 0.962

MR: Mendelian randomization, SNP: single-nucleotide polymorphism, OR: odds ratio, CI: confidence interval, IVW: inverse variance weighted.

https://doi.org/10.1371/journal.pone.0308815.t001
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Fig 2. Mendelian randomization estimates of the associations from MS on abnormal spermatozoa. Sensitivity
analysis (A), scatter plot (B), forest plot (C), and funnel plot (D) of the effect of MS on abnormal spermatozoa.
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strongly reinforce the stability and reliability of the conclusions of our Mendelian randomiza-
tion analysis.

To ensure consistency in the findings across various datasets, we validated our results using
the MS GWAS dataset (GWAS ID: ebi-a-GCST90093330) [25]. The analysis revealed a signifi-
cant association between MS and abnormal spermatozoa (OR 1.128, 95% CI [1.033-1.232],

p = 0.007).

To evaluate the reverse causal effect, we used abnormal spermatozoa as the exposure and
MS as the outcome. Due to the lack of SNPs with p<5x10-8 in the GWAS summary statistics
of abnormal spermatozoa, we selected SNPs with a lower significance threshold (p<5x10-6)
[18]. The results indicated no significant association between abnormal spermatozoa and MS
(OR 1.010, 95% CI [0.940-1.084], p = 0.784) (S2 Table, Fig 3).

Discussion

This two-sample MR study based on large-scale genome-wide data demonstrated a consistent
effect of genetically predicted MS on increased risk of abnormal spermatozoa. The results
remained robust after sensitivity analyses using different Mendelian randomization models.
The epidemiology of MS varies worldwide, suggesting that the aetiology of MS is influenced
by a number of geographical and environmental factors [26, 27]. There are geographical varia-
tions in the prevalence of MS: the further away from the equator, the lower the sunlight expo-
sure and the higher the prevalence [28]. Numerous studies have shown a direct link between
vitamin D deficiency and the risk of MS [29]. As the main source of vitamin D is sunlight-
induced synthesis, it is clear that reduced sunlight exposure leads to lower vitamin D levels
and thus increased risk of MS [30-32]. Vitamin D plays an important role in innate and
acquired immunity as an immunomodulator [33], and also plays a key role in controlling
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Fig 3. Mendelian randomization estimates of the associations from abnormal spermatozoa on MS. Sensitivity
analysis (A), scatter plot (B), forest plot (C), and funnel plot (D) of the effect of MS on abnormal spermatozoa.
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immune and inflammatory responses in the body [34]. Jensen et al. [35] analysed serum vita-
min D levels and sperm quality in 300 male patients and found a positive correlation between
vitamin D levels and sperm quality. The authors concluded that vitamin D promotes optimal
sperm function. Low vitamin D levels were also associated with a high percentage of D sperm
motility, suggesting that low vitamin D levels may be associated with sperm infertility [36].
Some studies [37, 38] have even reported that vitamin D deficiency in vivo may directly or
indirectly affect sperm quality, quantity and development, and that impaired sperm function
may lead to male infertility. Vitamin D exerts its various biological effects by binding to vita-
min D receptors (VDRs) [39], and the expression of VDRs in the testis suggests that vitamin D
has potential autocrine and paracrine effects that affect testicular function and possibly male
infertility [40].

MS is essentially an autoimmune inflammatory disease of the central nervous system, and
the immunopathogenesis of MS may involve the destruction of self-tolerance to myelin and
other central nervous system (CNS) antigens, leading to persistent peripheral activation of
autoreactive T cells [41, 42]. Upon entry into the CNS, an inflammatory cascade is initiated
leading to the release of pro-inflammatory cytokines and chemokines such as interferon-y,
interleukin-2 (IL-2) and tumour necrosis factor (TNF)-o, all of which are key players in medi-
ating inflammation in MS [42, 43], with evidence that TNF-a and interferon-y receptors are
expressed in testicular mesenchymal stromal cells [44, 45] and the hypothalamus [46]. These
cytokines can reduce testosterone production through direct action on the interstitial cells of
the testis [47] and inhibit the production of gonadotropin-releasing hormone (GnRH) and
luteinising hormone (LH) [46]. It has been reported that 24% of men with MS have signifi-
cantly lower testosterone levels than healthy men of the same age [48], and testosterone levels
have a very close relationship with fertility in men [49].
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According to an epidemiological study, infertile men have a higher risk of developing rheu-
matoid arthritis, psoriasis, multiple sclerosis, Graves’ disease, and autoimmune thyroiditis
compared to men who underwent vasectomy [50]. The association between male infertility
and multiple sclerosis is stronger than that between episodic multiple sclerosis and may be
related to chronic inflammation [51]. In particular, chronic inflammation has been reported
in men with low testosterone levels [52]. Studies have shown that there is a positive correlation
between testicular hypoplasia and subsequent MS, and that low testosterone levels are associ-
ated with higher levels of disability in patients who have been diagnosed with MS. Testicular
hypogonadism (a potential marker of hypogonadism) is a risk factor for MS [10]. Although
the mechanism of the association between male infertility and autoimmunity is not clear,
androgens may have a protective role in autoimmunity, which may be impaired in hypogonad-
ism [53].

Multiple sclerosis can affect male sexual function. Up to 70% of male MS patients experi-
ence erectile dysfunction, and up to 50% show ejaculatory changes. Erectile dysfunction in
multiple sclerosis can be attributed to suprasacral, parasympathetic, or peripheral autonomic
nerve lesions [54]. Additionally, multiple sclerosis may impair hypothalamic-pituitary func-
tion, leading to reduced sex hormone levels due to central nervous system damage. There have
been reports of hypogonadotropic hypogonadism, particularly in men with rapid disease pro-
gression [55]. This may be one of the reasons why MS affects male fertility.

Reactive oxygen species (ROS) have been reported to be involved in the pathogenesis of a
variety of diseases, including several chronic inflammatory diseases [56]. Studies have shown
that the pathogenesis of all forms of MS involves inflammation-induced oxidative damage in
the CNS, with ROS and reactive nitrogen leading to mitochondrial dysfunction [57]. Other
studies have suggested that oxidative stress is more pronounced in the progressive stages of
MS and is a key factor in the development of neurodegeneration in patients with progressive
MS [58]. While low levels of ROS inhibit sperm capacitation in humans by reducing adenylate
cyclase activation, high levels induce sperm lipid peroxidation and DNA damage [59]. Sperm
fatty acid membranes contain unstable bonds that are easily oxidized by ROS to produce lipid
radicals. These radicals react with nearby fatty acids in a self-perpetuating cycle, forming lipid
peroxidation. The degradation of sperm membranes, particularly the midpiece sperm mem-
branes, leads to a decrease in sperm vitality, which is a marker of male infertility [60].

The study used data from the IEU Open GWAS database and the FinnGen biobank to
investigate the possible causal relationship between MS and abnormal spermatozoa. Multiple
MR methods were employed, with the IVW method demonstrating significantly higher statis-
tical power than other MR methods, particularly the MR-Egger method [61]. IVW was pri-
marily used to screen for potentially significant results. To ensure the robustness of the IVW
estimates, sensitivity analyses and other MR methods were performed. If there is horizontal
pleiotropy, the IVW estimate may be biased. In such cases, the MR-Egger estimate should be
used as it adjusts the IVW analysis by allowing the horizontal pleiotropy effects of all genetic
variants to be unbalanced or directional [62]. Consistent beta directions across all MR meth-
ods were enforced by most researchers in MR analyses, including this study [63].

Our study found a causal relationship between MS and abnormal spermatozoa, while the
opposite was not observed. That is, abnormal spermatozoa did not cause MS. However, our
study has some limitations. Firstly, the GWAS summary data we used mainly included Euro-
peans, which may lead to biased estimates and affect generalizability. Secondly, the number of
cases of abnormal spermatozoa may not be sufficient, which could introduce bias. The only
publicly available GWAS on abnormal spermatozoa did not report specific characteristics such
as concentration, vitality, and morphology. As a result, it was not possible to further classify
abnormal spermatozoa or perform stratified MR analysis based on specific categories. This
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limitation hinders the ability to draw accurate causal inferences and control for potential
confounders.

Conclusions

Studies have found a causal link between multiple sclerosis and abnormal spermatozoa. Men
with multiple sclerosis have an increased risk of sperm abnormalities and potential fertility
risks. Male reproductive issues are increasingly being studied and discussed, and MS is
strongly associated with men’s future reproductive health. Clinicians should carry out a thor-
ough reproductive assessment of men with MS, and for male patients with MS who have a
need to reproduce, they should intervene early and actively procreate while managing the dis-
ease. In addition, the impact of MS on male reproductive function may also be the result of
multiple underlying factors, and further research is needed to explore the biological mecha-
nisms underlying this association.
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