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Abstract

Coccomyxa sp. KJ is a unicellular green microalga that accumulates abundant lipids when

cultured under nitrogen-deficient conditions (KJ1) and high nitrogen levels when cultured

under nitrogen-sufficient conditions (KJ2). Considering the different characteristics between

KJ1 and KJ2, they are expected to have different effects on rumen fermentation. This study

aimed to determine the effects of KJ1 and KJ2 on in vitro ruminal fermentation, digestibility,

CH4 production, and the ruminal microbiome as corn silage substrate condition. Five treat-

ments were evaluated: substrate only (CON) and CON + 0.5% dry matter (DM) KJ1

(KJ1_L), 1.0% DM KJ1 (KJ1_H), 0.5% DM KJ2 (KJ2_L), and 1.0% DM KJ2 (KJ2_H). DM

degradability-adjusted CH4 production was inhibited by 48.4 and 40.8% in KJ2_L and

KJ2_H, respectively, compared with CON. The proportion of propionate was higher in the

KJ1 treatments than the CON treatment and showed further increases in the KJ2 treat-

ments. The abundances of Megasphaera, Succiniclasticum, Selenomonas, and Rumino-

bacter, which are related to propionate production, were higher in KJ2_H than in CON. The

results suggested that the rumen microbiome was modified by the addition of 0.5–1.0% DM

KJ1 and KJ2, resulting in increased propionate and reduced CH4 production. In particular,

the KJ2 treatments inhibited ruminal CH4 production more than the KJ1 treatments. These

findings provide important information for inhibiting ruminal CH4 emissions, which is essen-

tial for increasing animal productivity and sustaining livestock production under future popu-

lation growth.

Introduction

The sustainability of livestock production is crucial because the demand for animal protein

products, such as meat and milk, is increasing with global population growth. Ruminants play

a pivotal role in supplying food to humans; however, they are also the primary emitters of

methane (CH4), a greenhouse gas (GHG). CH4 emitted during ruminal fermentation accounts
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for 39% of the GHG emissions in the agricultural sector [1]. Additionally, CH4 emissions result

in dietary energy losses ranging from 2 to 12% in ruminants [2]. Thus, inhibiting ruminal CH4

emissions is essential for increasing animal productivity and sustaining livestock production.

Consequently, dietary strategies for mitigating ruminal CH4 using feed additives, such as syn-

thetic compounds [3, 4], cashew byproducts [5], fats and fatty acids [6–9], and organic acids

[10–12], have attracted substantial attention.

Microalgae are microscopic unicellular organisms that efficiently convert solar energy into

valuable bioactive compounds, such as proteins, lipids, and carbohydrates, thus indicating

their commercial potential to enhance the nutritional value of animal feed supplements [13].

For example, dietary Spirulina platensis increases the average daily gain in lambs [14] and milk

yield in cows [15]. Microalgae have also attracted attention as feed additives to inhibit CH4

production in ruminants. Some microalgae are rich in n–3 polyunsaturated fatty acids

(PUFA) and can inhibit methanogenesis in the rumen, thereby shifting volatile fatty acid

(VFA) production from acetate to propionate [16]. In fact, several microalgae, such as Euglena
gracilis [17] and Chlorella vulgaris [18], inhibit CH4 production during ruminal fermentation.

However, microalgae can also cause adverse effects in ruminants. For example, dietary Schizo-
chytrium sp. decreases milk yield in dairy cows [19], while Nannochloropsis gaditana, Phaeo-
dactylum tricornutum, and Schizochytrium sp. do not have anti-methanogenic effects in vitro
[20]. Thus, although microalgae can be used as feed additives for ruminants, the effects of

microalgal supplementation are debatable and different types of microalgae have different

effects on rumen fermentation, CH4 production, and animal productivity.

Coccomyxa sp. KJ (IPOD FERM BP-22254) is a unicellular green microalga isolated from

hot springs in Japan and belongs to the class Trebouxiophyceae. Coccomyxa sp. KJ can grow

under low-pH conditions (pH 3.0–4.0) [21]. Owing to these characteristics, Coccomyxa sp. KJ

can be cultivated in an open pond without contamination by other microorganisms and can

be easily produced on an industrial scale. The KJ strain exhibits different characteristics when

cultured under different conditions. For example, it accumulates lipids at> 30% of the dry cell

weight when cultured under nitrogen-deficient conditions (KJ1) [21]. In contrast, the KJ strain

contains high amounts of nitrogen when cultured under nitrogen-sufficient conditions (KJ2).

KJ1 can be used in biofuel production [22], whereas KJ2 and its components can be used as

immune-promoting supplements [23] and antiviral agents [24–27]. In ruminant feeds, KJ1

and KJ2 represent promising supplements as fat and nitrogen sources. In particular, because

KJ2 contains a high amount of linolenic acid [23], using it as a feed additive for ruminants

could change the fatty acid composition of milk and meat, thereby improving the product

quality. In addition, supplementation with Coccomyxa sp. KJ is expected to change the rumen

microbiome, resulting in the inhibition of CH4 production by the high amount of long-chain

PUFAs [23], thus, this microalga has promising potential as a CH4 inhibitor [7–9].

Considering the differences in the characteristics between KJ1 and KJ2, the effects of these

two types of Coccomyxa sp. KJ on rumen fermentation are expected to differ. However, previ-

ous studies have not investigated these differences. Furthermore, previous studies have not

reported on the use of Coccomyxa sp. KJ as a feed additive for ruminants. Thus, the appropri-

ate amount to use an additive must be determined. Therefore, this study aimed to determine

the appropriate amount of supplementary Coccomyxa sp. KJ and investigate the effects of KJ1

and KJ2 as additives to corn silage substrate, which is commonly used for dairy production in

Japan and worldwide, on in vitro ruminal fermentation, digestibility, CH4 production, and the

ruminal microbiome.
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Materials and methods

Ethical approval

The study was approved by the Utsunomiya University Animal Ethics Committee (approval

no. A22-0013). Anesthesia and euthanasia were not performed in this study.

Substrate, additives, and experimental treatments

Collected corn silage was dried at 60˚C, ground using a sanitary crusher (SC-02, Sansho Indus-

try Co. Ltd, Osaka, Japan), and passed through a 1 mm screen. The sample was used as the sub-

strate for in vitro incubation. KJ1 and KJ2 were separately incubated in open ponds,

concentrated by centrifugation, and dried to a powder at 140˚C using a drum dryer. The dried

KJ1 and KJ2 powders were used as additives (Fig 1). The following five experimental treat-

ments were applied: I) substrate only (CON), II) CON + 0.5% dry matter (DM) KJ1 (KJ1_L),

III) CON + 1.0% DM KJ1 (KJ1_H), IV) CON + 0.5% DM KJ2 (KJ2_L), and V) CON + 1.0%

DM KJ2 (KJ2_H).

In vitro experiments

Two female Holstein cows (body weight: 593 ± 63.6 kg, parity: 3 and 4) at the Utsunomiya

University Farm were used. The animals were mostly housed in a tie-stall housing system,

although they were allowed to graze on Italian ryegrass-based pasture from 09:00 to 13:00. The

cows were primarily fed corn silage and concentrate five times daily at 05:30, 07:00, 13:00,

17:00, and 21:00. The ingredient compositions of the concentrate were as follows: 28.6% corn,

24.2% soybean meal, 13.2% barley, 8.8% wheat bran, 8.2% rice bran, 6.6% cotton seed, 5.5%

fodder beet, 2.7% CaCO3, 1.1% NaCl, and 1.1% vitamin-mineral premix on a fresh matter

basis. The average 7-day feed intake of corn silage and concentrate before sampling was

7.7 ± 0.14 kg and 7.4 ± 0.35 kg on a DM basis, respectively. Additionally, timothy hay was

offered at< 2.5 kg daily. The cows were provided ad libitum access to water.

Rumen liquid (approximately 200 mL) was collected from each animal through orogastric

tubing before the first feeding. The rumen samples were strained through four layers of gauze

and mixed equally. The mixed samples were placed in preheated collection bottles and

Fig 1. Images of dried powders of two types of Coccomyxa sp. KJ. The images on the left and right show KJ1 and KJ2, respectively.

https://doi.org/10.1371/journal.pone.0308646.g001
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immediately transferred to the laboratory within 30 min. The rumen sample and artificial

saliva [28], which was flushed with CO2, were mixed at a ratio of 1:4. The mixture (40 mL) was

infused into each test tube containing 0.5 gDM of the substrate and additives under a stream

of CO2. All tubes were immediately closed with rubber stoppers fitted with a plastic syringe to

collect fermentation gas. The tubes were then incubated for 24 h at 39˚C. Each treatment and

blank containing only the mixture was set up in triplicates. The cumulative gas production at

0, 3, 6, 9, 12, 18, and 24 h was recorded during incubation. After incubation, samples (0.5 mL)

were collected for DNA extraction and stored at −80˚C, and additional 0.5 mL of the culture

was mixed with 4.5 mL of methyl green formalin saline (MFS) solution to count the number of

protozoa [29]. The remaining samples were centrifuged at 500 × g for 5 min. Subsequently, the

pH was measured (LAQUAtwin pH-33B, HORIBA, Kyoto, Japan), and 10 mL of the superna-

tant was mixed with 2 mL of 25% metaphosphate solution to analyze the VFA and ammonia

nitrogen (NH3-N) concentrations. The residue was used to determine DM degradability. The

gas production, CH4 production, and DM degradability values for the experimental treatments

were correlated with those of the blank.

Chemical analyses

The substrate and additives were analyzed for DM, ether extract, and crude ash content

according to the standards of the Association of Official Analytical Chemists (AOAC; 930.15,

920.39, and 942.05, respectively) [30]. The crude protein content was determined using the

Dumas method with a nitrogen analyzer (Sumigraph NC-TRINITY; Sumika Chemical Analy-

sis Service, Tokyo, Japan). The amylase-treated neutral and acid detergent fiber contents were

determined as previously described [31]. The chemical compositions of the experimental feeds

and substrates are shown in Tables 1 and 2, respectively. To measure DM degradability, the

incubation residue was dried at 105˚C until reaching a constant weight. To determine the fatty

acid composition of Coccomyxa sp. KJ, direct transesterification was performed using a previ-

ously described method [32]. The fatty acid methyl ester (FAME) contents were analyzed

using a gas chromatography system (GC-2010 Plus, Shimadzu Co., Ltd., Kyoto, Japan)

equipped with a flame ionization detector (FID) and a capillary column (SP-2560, 100

m × 0.25 mm × 0.2μm, Supelco, Pennsylvania, USA) at a split rate of 100. The column, injec-

tor, and detector temperatures were 185˚C, 250˚C, and 250˚C, respectively. The FAME con-

tents were identified by matching the retention times with the standards of the Supelco1 37

Component FAME Mix. VFA concentrations were measured using gas chromatography (GC-

2014, Shimadzu, Kyoto, Japan) equipped with a FID and a Restek Stabilwax column (30

m × 0.32 mm × 0.50 μm) at a split rate of 5. The temperatures of the injection and detector

were 200˚C and 250˚C, respectively. The column temperature was linearly increased from

120˚C to 230˚C at 10˚C/min. CH4 production was determined using a GC-2014 (Shimadzu)

Table 1. Chemical composition of the feeds and Coccomyxa sp. KJ (% dry matter basis).

Concentrate Corn silage KJ1 KJ2

Dry matter (%) 88.9 38.1 96.9 95.5

Crude protein 24.0 5.9 20.6 55.9

Ether extract 5.6 3.9 22.8 11.5

aNDF 22.8 42.1 23.4 10.2

ADF 9.1 25.1 8.1 2.4

Crude ash 8.6 4.9 1.7 4.7

aNDF, amylase-treated neutral detergent fiber; ADF, acid detergent fiber

https://doi.org/10.1371/journal.pone.0308646.t001
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equipped with a FID and a capillary column (SH-Q-BOND, 30 m × 0.53 mm × 20 μm, Shi-

madzu) at a split rate of 5. The column, injection, and detector temperatures were 220˚C,

250˚C, and 250˚C, respectively. The NH3-N concentration was analyzed using the microdiffu-

sion method [33].

DNA extraction, amplicon sequencing, and bioinformatics

The liquid samples after incubation were thawed and centrifuged at 12,000 × g at 4˚C for 15

min. After removing the supernatants, the pellets were used for DNA extraction, as previously

described [34] and slightly modified [35]. The extracted DNA was stored at -20˚C until use.

To amplify prokaryotic DNA, the V3–V4 hypervariable region of the 16S rRNA genes was

amplified using PCR with Pro341F (50-CCTACGGGNBGCASCAG-30) and Pro805R (50-GAC
TACNVGGGTATCTAATCC-30) primers [36]. Additionally, RP841F (50-GACTAGGGATTG
GARTGG-30) and Reg1302R (50-AATTGCAAAGATCTATCCC-30) were used for protozoal

18S rRNA gene amplification [37]. Forward and reverse primers were tagged with the Illumina

overhang adapter (forward: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG, reverse:

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG). Amplification was performed under the

following conditions: 95˚C for 3 min; followed by 25 or 35 cycles of 95˚C for 30 s, 55˚C for 30

s, and 72˚C for 30 s for the prokaryotic and protozoal primers, respectively; and a final elonga-

tion step at 72˚C for 5 min. The samples were indexed using a Nextera XT index kit (Illumina,

San Diego, CA, USA) and paired-end sequenced on an Illumina MiSeq platform (2 × 300 bp).

After sequencing, the data were analyzed using QIIME2 [38]. Paired-end reads were

trimmed and merged, and chimeric sequences were removed using the DADA2 plugin [39],

followed by the construction of a feature table of amplicon sequence variants (ASVs). Taxon-

omy was assigned using the SILVA 138 reference database [40]. For the prokaryotic analysis,

ASVs taxonomically assigned to the unassigned kingdom, eukaryotes, mitochondria, and chlo-

roplasts were removed, whereas ASVs assigned to the unassigned kingdom, bacteria, and

archaea were removed for protozoa. For diversity analysis, all sequence data were rarefied to

the lowest sample depths of 32,879 and 1,737 sequences per sample for the prokaryotes and

protozoa, respectively. The observed ASVs and Shannon diversity indices [41] were estimated

using the ‘Phyloseq’ package of R [42]. The weighted UniFrac distance metric based on ASV

was calculated using the ‘Phyloseq’ package [42], and the principal coordinates analysis

(PCoA) plot was visualized with ‘ggplots2’ in R [43].

Statistical analyses

The pH, gas and CH4 production, DM degradability, NH3-N content, VFA concentration,

protozoal count data, and alpha diversity were analyzed using the GLM procedure in SAS

Table 2. Chemical composition of the substrates in treatments (% dry matter basis).

Item1 CON KJ1_L KJ1_H KJ2_L KJ2_H

Crude protein 5.9 6.0 6.1 6.2 6.4

Ether extract 3.9 3.9 4.0 3.9 3.9

aNDF 42.1 42.0 41.9 41.9 41.7

ADF 25.1 25.0 25.0 25.0 24.9

Crude ash 4.9 4.9 4.9 4.9 4.9

1The values were calculated based on data in Table 1.

aNDF, amylase-treated neutral detergent fiber; ADF, acid detergent fiber

https://doi.org/10.1371/journal.pone.0308646.t002
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Studio 9.04.01. The mathematical model was as follows:

Yij ¼ mþ Ti þ eij

where μ represents the overall mean, Ti represents the effect of treatment, and eij represents

the residual error. For beta diversity, permutational multivariate analysis of variance (PERMA-

NOVA) with 9,999 permutations was performed. Differential abundance analysis between

each group for microbial composition was performed using the Wald test within DESeq2

based on the read count matrix [44], and P-values were adjusted using the Benjamini–Hoch-

berg method. Differences were considered statistically significant at P < 0.05.

Results

Fatty acid composition

The fatty acid composition of the Coccomyxa sp. KJ is shown in Table 3. The percentages of

C16:0 (palmitic acid) in KJ1 and KJ2 were equivalent at 19.15 and 17.82%, respectively. The

C18:1 (oleic acid) content in KJ1 was largely dominant at 56.67% and was approximately 2.7

times higher than that in KJ2 (20.87%). In contrast, PUFA such as C18:2 (linoleic acid) and

C18:3 (linolenic acid) in KJ2 were 10.63 and 29.61%, respectively, and were more abundant

compared to KJ1.

In vitro gas and CH4 production

Total gas production was decreased after 24 h of incubation in KJ1_H, KJ2_L, and KJ2_H

(P< 0.05) compared to that in CON. In contrast, no significant differences were observed

between the KJ1_L and CON treatments (Table 4 and S1 Fig). Similarly, total CH4 production

in KJ1_H, KJ2_L, and KJ2_H was 34.1, 51.3, and 41.6% lower than that in CON (P < 0.05),

respectively (Fig 2A). DM degradability-adjusted CH4 production was inhibited by 48.4 and

40.8% in KJ2_L and KJ2_H compared to that in CON (P < 0.05), respectively (Fig 2B).

Degradability, rumen fermentation characteristics, and protozoa

population

No significant differences were observed in pH, NH3-N, or protozoa count among the treat-

ments (Table 4). DM degradability in KJ2_L was lower than in CON (P < 0.05), whereas no

significant differences were observed among the other treatments (Table 4). No significant dif-

ferences were observed among the treatments in the total VFA concentration and proportion

of each VFA except for propionate (Table 4). The proportion of propionate in the

Table 3. Fatty acid composition (%) of Coccomyxa sp. KJ.

KJ1 KJ2

C16:0 19.15 17.82

C18:0 3.56 0.78

cis-C18:1 56.67 20.87

cis-C18:2 5.78 10.63

cis-C18:3 11.13 29.61

C20:0 0.57 0.00

cis-C20:1 0.60 0.00

Others 2.56 20.29

https://doi.org/10.1371/journal.pone.0308646.t003
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KJ1-supplemented treatments was higher than that in the CON treatment and was further

increased in the KJ2-supplemented treatments (P< 0.05).

Rumen microbiome after in vitro incubation

The Shannon diversity index of KJ2_H was lower than that of CON for the rumen prokaryotes

(Fig 3A). However, the number of observed ASVs was not significantly different among treat-

ments (Fig 3A). Additionally, the observed ASVs of KJ2_L and KJ2_H were lower than those

Table 4. Effect of two types of Coccomyxa sp. KJ on in vitro rumen fermentation after 24 h incubation.

Treatment SEM P value

CON KJ1_L KJ1_H KJ2_L KJ2_H

Gas production (mL/0.5gDM) 57.0a 56.2a 48.7b 40.6c 45.7bc 1.54 < 0.01

pH 6.87 6.90 6.84 6.85 6.79 0.05 0.61

NH3-N (mgN/dL) 0.82 0.73 0.84 0.93 0.96 0.07 0.22

Protozoa (×105/mL) 0.94 0.86 0.67 1.00 0.93 0.11 0.34

DM degradability (%) 46.5a 46.5a 45.2ab 43.5b 45.4ab 0.45 < 0.01

VFA concentration

Total VFA (mmol/L) 35.2 37.4 38.3 24.9 30.7 4.40 0.25

Acetate (%) 52.7 51.8 51.7 50.2 49.6 1.25 0.42

Propionate (%) 32.4c 33.9b 34.8b 35.6a 35.9a 0.23 < 0.01

iso-Butyrate (%) 0.2 0.3 0.0 0.0 0.0 0.17 0.55

Butyrate (%) 11.3 10.9 10.7 11.2 11.4 0.75 0.96

iso-Valerate (%) 1.5 1.4 1.3 1.1 1.4 0.30 0.87

Valerate (%) 1.9 1.6 1.6 2.0 1.9 0.24 0.79

abcLSMeans in a row with different superscripts significantly differ (P < 0.05).

SEM, standard error of means; DM, dry matter; NH3-N, ammonia nitrogen; VFA, volatile fatty acids

https://doi.org/10.1371/journal.pone.0308646.t004

Fig 2. In vitro methane (CH4) production after 24 h of incubation. (A) Cumulative CH4 production and (B) dry

matter degradability-adjusted CH4. Significant differences are indicated by different superscripts (P < 0.05). IVDMD,

in vitro dry matter degradability.

https://doi.org/10.1371/journal.pone.0308646.g002
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of CON for the rumen protozoa (Fig 3B). Beta diversity analysis based on weighted UniFrac

distance showed significant differences in the rumen prokaryote communities among treat-

ments (PERMANOVA, P< 0.05). In particular, prokaryotic communities in KJ2_L and

Fig 3. Rumen microbial diversity after 24 h of in vitro incubation. Alpha diversity of (A) rumen prokaryotes and (B)

protozoa at the ASV level. Different letters at the top indicate significant differences between treatments (P< 0.05). Beta

diversity of principal coordinate analysis (PCoA) based on weighted UniFrac distances of (C) rumen prokaryotes and (D)

protozoa at the ASV level. Significance was analyzed using a permutational multivariate analysis of variance with 9,999

permutations.

https://doi.org/10.1371/journal.pone.0308646.g003
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KJ2_H were distinctly different from those in CON and KJ1_L (Fig 3C). However, no differ-

ences were observed among treatments for rumen protozoa communities (Fig 3D).

Based on 16S rRNA amplicon sequencing, 18 bacterial and two archaeal phyla were observed,

and Bacteroidota, Firmicutes, and Proteobacteria accounted for approximately 95% of the total

abundance (Fig 4A). Compared to CON, the abundance of Verrucomicrobiota and Patescibac-

teria was low while that of Firmicutes was high in KJ1_H and KJ2_H (adjusted P< 0.05) (S1

Table). Additionally, the abundances of 14, 11, and 22 genera were significantly different in

KJ1_H, KJ2_L, and KJ2_H, respectively, compared with CON (S1 Table). However, no signifi-

cant difference was observed between CON and KJ1_L (S1 Table). Compared with CON, Butyri-
vibrio, Shuttleworthia, Megasphaera, and Succiniclasticum were enriched in KJ1_H and KJ2_H

(adjusted P< 0.05) (Fig 4B and S1 Table). Furthermore, the abundance of Pseudobutyrivibrio,

Selenomonas, and Ruminobacter was also higher in KJ2_H than in CON (adjusted P< 0.05)

(Fig 4B and S1 Table). In contrast, the abundance of 10 genera, most of which accounted

for< 1.0% of total abundance, was lower in KJ2_H than in CON (adjusted P< 0.05).

For the rumen protozoa, only one phylum, Ciliophora, was identified. Seven genera were

identified, and Entodinium was the most abundant (93.5%), followed by Charonina (2.4%),

and Diplodinium (2.3%) (S2 Fig). Only Polyplastron in KJ2_H was lower than that in CON

(adjusted P< 0.05); however, no significant differences were observed at the genus level

between CON and the other treatments.

Discussion

To our knowledge, this study is the first to investigate the effects of two types of Coccomyxa sp.

KJ (KJ1 and KJ2) on rumen total gas and CH4 production, rumen fermentation characteristics,

and the rumen microbiome under in vitro conditions. The use of microalgae as feed additives

Fig 4. Microbial communities after 24 h of in vitro incubation. (A) Taxonomic distribution of the rumen microbiome at the phylum level. All phyla

with a relative abundance of< 0.1% in all treatments were combined into “Others.” (B) Relative abundances of significantly different genera between

CON and KJ2_H (adjusted P< 0.05). Differential genera were identified using DESeq2. Only genera with a relative abundance of at least 0.5% were

present.

https://doi.org/10.1371/journal.pone.0308646.g004
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has been predicted to inhibit CH4 production from the rumen. In a previous study, adding 10

and 25% E. gracilis reduced ruminal CH4 production in vitro by 4.4 and 11%, respectively,

when hay and concentrate (50%:50%) were used as substrates [17]. Additionally, in vitro rumi-

nal CH4 production was reduced by approximately 19% by supplementation with 2% and 3%

C. vulgaris [18]. In this study, supplementary KJ1 and KJ2 decreased CH4 production by 34.1–

51.3% compared to that in CON, indicating that Coccomyxa sp. KJ, particularly KJ2, had a sig-

nificantly stronger inhibitory effect on ruminal CH4 than other microalgae. Importantly, the

amounts of additives used in this study were very low, from 0.5 to 1.0%. Generally, feed addi-

tives are more expensive than basal diet. Therefore, the addition of a significantly lower

amount of Coccomyxa sp. KJ is an economical and feasible strategy to decrease ruminal CH4

production.

One possible factor for reducing ruminal CH4 is the fatty acid content, particularly mono-

unsaturated fatty acids (MUFAs) and PUFAs, in Coccomyxa sp. KJ. In a previous study, Martin

et al. [7] reported that adding 5.7% linseed oil, which has a high PUFA content, inhibited CH4

production from dairy cows by 64%. Furthermore, calcium salts of long-chain fatty acids,

most of which are PUFAs, from linseed oil drastically decrease in vitro ruminal CH4 produc-

tion [8, 9]. KJ1 and KJ2 used in this study included high amounts of oleic and linolenic acid,

respectively. Considering that the ruminal CH4 reduction effect of linolenic acid is higher than

that of oleic acid [45], KJ2 likely had a greater reduction effect on ruminal CH4 production

than KJ1. However, it is curious that Coccomyxa sp. KJ had a significant reduction effect on

ruminal CH4 emissions, although the ether extract content of KJ1 and KJ2 was only 11.5–

22.8% DM, and the amount of fatty acids added was much lower than that in previous studies

[7, 8]. Therefore, substances other than fatty acids in Coccomyxa sp. KJ may be responsible for

inhibiting ruminal CH4.

Although CH4 synthesized by methanogens using H2 and CO2 as substrates is the primary

H2 sink in the rumen, propionate production is associated with disposable H2 [46]. Therefore,

increasing the proportion of propionate competes for H2 with methanogenesis by methano-

gens, thereby inhibiting CH4 production. Several studies have demonstrated that the propor-

tion of propionate in the rumen increases with CH4 inhibition [8, 47, 48]. Similarly, compared

with the CON treatment, the addition of KJ1 increased the proportion of propionate, and the

addition of KJ2 led to an even greater increase in the current study.

The increase in propionate may be attributed to changes in the rumen microbiome caused

by the addition of KJ1 and KJ2. Beta diversity analysis indicated that the ruminal microbiota

in KJ1_H, KJ2_L, and KJ2_H was significantly different from that in CON. In addition, the

proportion of some bacterial genera related to propionate production increased with the addi-

tion of 1.0% KJ2. For example, when 1.0% KJ2 was added, a significant increase was observed

in the relative abundances of Selenomonas, Succiniclasticum, and Ruminobacter, which are

associated with propionate synthesis via the succinate pathway. This result is consistent with

that of a previous study in which ruminal CH4 was inhibited after adding calcium salts of

long-chain fatty acids [8]. Ruminobacter produces succinate in the rumen [49], whereas Sele-
nomonas and Succiniclasticum can promote the metabolism of carbohydrate fermentation-

derived succinate to propionate [50, 51]. Furthermore, Megasphaera, which converts lactate to

propionate via the acrylate pathway in the rumen [49], was also enriched in the KJ2_H treat-

ment. Megasphaera spp. are more abundant in low than in high-CH4-emitting sheep [52], and

Megasphaera elsdenii is more abundant in the rumen of cows with a high feed efficiency [53].

The relative abundance of the genus Megasphaera is positively correlated with the average

daily gain [54] and microbial proteins that can be used to synthesize milk proteins [55]. There-

fore, increasing Megasphaera abundance by adding KJ2 would benefit milk production. The

abundance of Shuttleworthia, which is positively correlated with the propionate concentration
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in the rumen [56, 57], was also increased in KJ1_H, KJ2_L, and KJ2_H. Thus, the increasing

proportion of propionate produced through the addition of KJ1 and KJ2 can be attributed to

the higher abundance of these genera that contribute to propionate production.

Similarly, the abundance of Butyrivibrio and Pseudobutyrivibrio, the main butyrate-produc-

ing bacteria in the rumen [58], increased with the addition of 1.0% KJ2. Some researchers have

demonstrated that the abundance of these genera is positively correlated with CH4 emissions

[59], which is inconsistent with our results. As Butyrivibrio spp. and Pseudobutyrivibrio spp.

can perform ruminal biohydrogenation of unsaturated fatty acids, such as linoleic and α-lino-

lenic acid [60–63], increased PUFAs caused by adding KJ2 lead to an increase in the abun-

dance of these bacteria. Thus, Butyrivibrio spp. and Pseudobutyrivibrio spp. may not be

positively correlated with CH4 emissions when PUFA suppress CH4 production in the rumen.

Ciliate protozoa, which are hydrogen producers in the rumen, harbor methanogens on the

cell surface and in the cytoplasm as endosymbionts [64, 65]. Interspecies hydrogen transfer

has been observed between rumen ciliates and methanogens, resulting in enhanced methano-

genesis in the rumen [66]. In the present study, the alpha diversity of protozoa decreased in

the 0.5% and 1.0% KJ2 treatments compared to the CON treatment, suggesting that KJ2 has a

toxic effect against protozoa. The reduction in protozoan diversity may be related to suppress-

ing ruminal CH4 production.

The addition of KJ1 and KJ2 did not affect ruminal pH, NH3-N concentrations, and total

VFAs, suggesting that Coccomyxa sp. KJ had no negative effect on ruminal characteristics.

However, a slight reduction in DM degradability was observed with the addition of 0.5% KJ2

(CON: 46.5%; KJ2_L: 43.5%). This finding may be attributed to the antimicrobial effect of Coc-
comyxa sp. KJ, particularly MUFAs and PUFAs, on bacteria. In the present study, reduced pro-

karyotic alpha diversity was observed after addition of 1.0% KJ2. Similarly, the addition of

calcium salts of long-chain fatty acids decreases alpha diversity, resulting in reduced DM

degradability and CH4 production [8].

In this study, we evaluated the effects of supplementation with Coccomyxa sp. KJ as the

corn silage source because corn silage is a common roughage source in dairy production.

Although many studies have investigated the effects of feed additives on in vitro rumen fer-

mentation under corn silage conditions [67, 68], different effects have been reported for sub-

strate at different concentrate to roughage ratios [69]. Therefore, we need to verify whether

supplementary Coccomyxa sp. KJ has an inhibitory effect on ruminal CH4 under different sub-

strate conditions.

In conclusion, both types of Coccomyxa sp. KJ—KJ1 and KJ2—had a high inhibitory effect

on rumen CH4 production when only 0.5–1.0% was added. In particular, KJ2 had a greater

inhibitory effect on ruminal CH4 production than KJ1. Furthermore, Coccomyxa sp. KJ modi-

fied the rumen microbiome, resulting in increased propionate and decreased CH4 production.

These findings provide important information for inhibiting ruminal CH4 emissions, which is

essential for increasing animal productivity and sustaining livestock production under future

population growth. Future in vivo studies are needed to validate the inhibitory effect and to

determine the optimal dose of Coccomyxa sp. KJ supplementation without decreasing digest-

ibility and productivity.

Supporting information

S1 Fig. In vitro gas production during 24 h of incubation.

(TIF)

S2 Fig. Relative abundance of protozoa after 24 h of incubation.
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