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Abstract

Ginkgo biloba extracts (GBE) have been shown to effectively improve cognitive function in

patients with Alzheimer’s disease (AD). One potential therapeutic strategy for AD is to pre-

vent loss of adult hippocampal neurons. While recent studies have reported that GBE pro-

tects against oxidative stress in neurons, the underlying mechanisms remain unclear. In this

study, an AD-like rat model was established via bidirectional injection of amyloid beta 25–35

(Aβ25–35; 20 μg) in the hippocampal CA1 region. Learning and memory abilities of experi-

mental rats were AD assessed in response to oral administration of 7.5 g/L or 15 g/L Ginkgo

biloba extract 50 (GBE50) solution and the peroxidation phenomenon of hippocampal mito-

chondria determined via analysis of mitochondrial H2O2 and several related enzymes. Lev-

els of the oxidative stress-related signaling factor cytochrome C (Cyto C), apoptosis-related

proteins (Bax, Bcl-2 and caspase-3) and caspase-activated DNase (CAD) were further

detected via western blot. 8-Hydroxydeoxyguanosine (8-OHdG), the major product of DNA

oxidative stress, was evaluated to analyze DNA status. Our results showed elevated H2O2

levels and monoamine oxidase (MAO) activity, and conversely, a decrease in the activities

of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the hippocampus

of AD rats. Administration of GBE50 regulated the activities of these three enzymes and

induced a decrease in H2O2. GBE50 exerted regulatory effects on abnormally expressed

apoptotic proteins in the AD rat hippocampus, enhancing the expression of Bcl-2, inhibiting

release of Cyto C from mitochondria, and suppressing the level of caspase-3 (excluding

cleaved caspase-3). Furthermore, GBE50 inhibited DNA damage by lowering the genera-

tion of 8-OHdG rather than influencing expression of CAD. The collective findings support a

protective role of GBE50 in hippocampal neurons of AD-like animals against mitochondrial

oxidative stress.
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1. Introduction

Alzheimer’s disease (AD) is a common neurodegenerative disorder that causes progressive

cognitive dysfunction and memory impairment. AD is characterized by neuronal loss, extra-

cellular deposits of amyloid beta (Aβ) in senile plaques and intraneuronal neurofibrillary tan-

gles [1,2]. In the brain of AD patients, Aβ deposits constituting senile plaques are believed to

play a key role in oxidative stress-mediated pathogenesis [3]. Several studies have shown that

Aβ triggers the occurrence of oxidative stress, which, in turn, promotes further accumulation

and deposition of Aβ [4–6]. Accumulated Aβ aggregates have been shown to play a pivotal role

in oxidative stress, leading to mitochondrial dysfunction, energy failure, lipid peroxidation,

protein oxidation and DNA/RNA oxidation that contribute to the pathogenesis of AD [7–9].

According to the mitochondrial cascade hypothesis, age-associated loss of mitochondrial func-

tion affects the expression and processing of β-amyloid precursor protein (APP), producing

Aβ oligomers that accumulate into plaques in AD [9].

Ginkgo biloba L. leaf extract (GBE) has a long history of usage in a traditional Chinese med-

icine and recently been incorporated in numerous commercial herbal products. Several studies

indicate that Ginkgo biloba extracts provide benefits in the management of brain injury and

depression [10–12]. Furthermore, anti-apoptotic and anti-oxidative properties of GBE are well

documented, which are mainly due to its ability to scavenge free radicals [13–15]. Mitochon-

dria are major cellular generators of reactive oxygen species (ROS) that cause oxidative dam-

age [3,16]. EGb761, a commercial GBE product mainly composed of Ginkgo biloba flavonoids

(22–27%) and terpene lactones (5–7%), is widely used as an anti-dementia drug in clinical

research [17,18]. Dried Ginkgo biloba extract 50 (GBE50) is a novel form of Ginkgo biloba
extract similar to EGb761 containing Ginkgo biloba flavonoids (44%) and terpene lactones

(6%) as its active components [19]. One proposed mechanism for the neuroprotective function

of EGb761 is preventing activation of mitochondria-mediated apoptotic pathways [20]. How-

ever, in recent years, research on GBE50 has predominantly focused on cardiovascular protec-

tion and the molecular mechanisms underlying its anti-oxidative activity in AD remain to be

established.

In this study, an AD-like rat model was generated via bilateral injection of Aβ25–35 into the

hippocampal CA1 region. Levels of peroxidation in the hippocampus, particularly in mito-

chondria, along with oxidative stress and apoptosis induced by peroxidation were subse-

quently evaluated, with the objective of ascertaining whether GBE50 could inhibit these

pathological changes and improve cognitive ability in animals.

2. Materials and methods

2.1 Materials

GBE50 (Lot No. 111201) with a composition of� 44% Ginkgo biloba total flavonoids (� 24%

flavonol glycosides,� 20% free flavones),� 6% lactones (� 3.1% Ginkgo biloba lactones

and� 2.9% bilobalide) and� 5 parts per million ginkgolic acids was supplied by SPH Xing

Ling Sci. & Tech. Pharmaceutical Co., Ltd. (Shanghai, China). The compounds of GBE50

sourced from the above company have been identified via UPLC-Q/TOF-MS analysis in a pre-

vious study [21]. The product was prepared as 7.5 g/L and 15 g/L solutions using the solvent

1% (w/v) sodium carboxymethycellulose (CMC). Vitamin E (VE, Lot No.03120202) was pur-

chased from SPH Sine Pharmaceutical Laboratories Co., Ltd., China. The capsule contents

(100 mg) were removed, added to 10 mL of 1% CMC solvent and stirred evenly to generate a

VE suspension (10 mg/mL). Aβ25–35 (No. A4559; Sigma, USA) was dissolved in sterile double-

distilled water at a concentration of 5 μg/μL and incubated to induce aggregation at 37˚C for 4
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days before use. The preparation and aggregation procedures for Aβ25–35 were performed

according to previously described methods [22,23].

2.2 Animals

Male Sprague-Dawley rats (220 ± 10 g) were obtained from the Experimental Animal Center

of Shanghai University of Traditional Chinese Medicine (SHUTCM). Rats were housed in

groups of six and maintained in a regulated environment (23˚C, 50% humidity, 12 h light-

dark cycle), with ad libitum access to food and water. All experiments were approved by the

Animal Committee of Shanghai University of Traditional Chinese Medicine (approval num-

ber: PZSHUTCM2212260003). The number of animals in the experimental groups was kept to

a minimum and all studies were conducted in a manner designed to cause the least harm and

suffering to animals.

2.3 Hippocampal injection and drug administration

Sixty-five rats were used for study and divided into six experimental groups: Sham (control

animals administered vehicle only, sterile water, n = 11), Model (Aβ25–35 injection, n = 10),

CMC (CMC plus Aβ25–35, n = 11), VE (vitamin E plus Aβ25–35, n = 11), G1 (75 mg/kg GBE50

plus Aβ25–35, n = 11) and G2 (150 mg/ kg GBE50 plus Aβ25–35, n = 10). For surgical purposes,

rats were anesthetized with 2% isoflurane delivered in O2 at a flow rate of 1 L/min and placed

onto a stereotaxic apparatus. Subsequently, 20 μg Aβ25–35 was injected into the rat hippocam-

pus [24]. Briefly, 2 μL Aβ25–35 aggregates were gradually administered into each CA1 region of

bilateral hippocampus with a 10 μL Hamilton syringe. The coordinates for hippocampal injec-

tion (3.5 mm posterior to bregma, 2.5 mm lateral to the sagittal suture, 2.9 mm ventral to the

dura) were similar to those used by Shen et al. [24]. Sham-operated animals received an equiv-

alent volume of sterile distilled water. Accurate injection was confirmed via histological exami-

nation of the brain.

Drugs were administered orally via gastro-esophageal gavage the day after hippocampal

injection, once daily for 15 days. The doses of GBE50 (75 and 150 mg/kg/d) and VE (100 mg/

kg/d) provided to rats were similar to those established in a previous study [25,26]. The CMC

group of rats received 1% CMC solution while the sham and model groups were provided

saline solution.

2.4 Behavior tests

The Morris water maze (a 150 cm wide and 70 cm high round pool with four styles of white

shapes on a black wall and filled to a depth of 50 cm with opaque water at a temperature of

22 ± 2˚C) was used to examine spatial memory of animals after drug administration. The plat-

form was a cylinder 12 cm in diameter placed in the center of the first quadrant of the pool 30

cm from the wall and submerged 1.5 cm below the water surface. Rats were trained in five

daily acquisition sessions (four trials each day with 30 min intervals) to detect the hidden plat-

form. The maximum swimming time was set to 70 s. In cases where the escape latency

was< 70 s, rats were allowed to stay on the platform for 10 s. If the platform was not found

within 70 s, rats were guided to the platform and stayed on it for 10 s, with the escape latency

taken as 70 s. All experiments were recorded using a computerized tracking analyzer system

(Shanghai Mobiledatum Ltd, Shanghai, China) [27].

PLOS ONE Protective role of Ginkgo biloba extract in an AD rat model

PLOS ONE | https://doi.org/10.1371/journal.pone.0307735 August 6, 2024 3 / 17

https://doi.org/10.1371/journal.pone.0307735


2.5 Tissue preparation

Following the behavior tests, all animals were anesthetized with 1% pentobarbital sodium (50

mg/kg). Three rats of each group were transcardially perfused with PBS, followed by 4% formal-

dehyde in PBS. The hippocampus was post-fixed for 24 h and cryoprotected in phosphate-buff-

ered 30% sucrose. Hippocampal tissue was systematically sliced using a freezing microtome

into 20 μm thick sections for histological and immunofluorescence analyses. The remaining

rats of each group were decapitated and hippocampi isolated from brain sections on an ice-cold

glass plate. Hippocampal tissues were stored at -80˚C for use in biochemical assays.

2.6 Preparation of hippocampal mitochondria

The hippocampus was removed to a 1.5 mL EP tube and homogenized in ten volumes of

reagents from a Mitochondria Isolation Kit (C3606; Beyotime Biotechnology, Shanghai,

China) containing phenylmethyl sulfonyl fluoride on ice. Homogenates were centrifuged (600

×g) for 5 min at 4˚C, followed by re-centrifugation of the supernatant fraction (11000 ×g) for

10 min at 4˚C. Mitochondrial deposits were resuspended in nine volumes of saline solution,

re-homogenized and centrifuged (10000 ×g) for 10 min. The supernatant fraction was used for

measurement of H2O2 and enzymatic activity.

2.7 Determination of oxidative stress biomarker levels and enzyme

activities

Measurements of H2O2 production and activities of H2O2-generating monoamine oxidase

(MAO) and antioxidant enzymes, specifically, catalase (CAT), superoxide dismutase (SOD)

and glutathione peroxidase (GSH-Px), in mitochondria were performed with the appropriate

assay kits (H2O2, A064; MAO, A034; CAT, A007-1; SOD, A001-3; GSH-Px, A005) from Jian-

cheng Bioengineering Institute (Nanjing, China).

2.8 Western blot

Using the methods developed for preparation of hippocampal mitochondria, proteins of cyto-

plasm and mitochondria were isolated for evaluation of cytochrome C (Cyto C) and other pro-

teins. Protein concentrations were analyzed with a BCA kit (Weiao Lab, Shanghai, China).

Equal amounts of protein (20 μg) were separated via 12% SDS-PAGE and transferred to PVDF

membrane (Millipore, Bedford, MA). Next, membranes were blocked with 5% skimmed milk

in PBS containing 0.01% Tween-20 for 1 h at room temperature and incubated with the appro-

priate antibodies in dilution buffer at 4˚C overnight (Table 1). β-Actin was used as the internal

Table 1. Antibodies used for western blot.

Primary AB Name Producer Cat. No. Dilution

Anti-β-actin CST #4970 1:500

Anti-Caspase-3 CST #9662 1:500

Anti-Bax CST #2772 1:500

Anti-Bcl-2 CST #2870 1:750

Anti-Cyto C CST #4272 1:500

Anti-CAD SANTA CRUZ sc-8342 1:200

Secondary AB Name Producer Cat. No. Dilution

Gt-α-rb-HRP ICL GGHL-15P 1:5000

https://doi.org/10.1371/journal.pone.0307735.t001
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reference. Films were digitized and the densitometry of each protein band analyzed with the

Tanon 4500SF system (Tanon, Shanghai, China).

2.9 Immunofluorescence detection

Sections (20 μm) were incubated in PBS for 15 min, treated with 0.1% Triton X-100 in PBS for

15 min at room temperature and blocked in 10% donkey serum for 1 h at 37˚C. Sections were

incubated with goat anti-8-OHdG antibody (ab10802, 1:100, Abcam) at 4˚C overnight, fol-

lowed by Alexa488-conjugated donkey anti-goat (705-547-003, 1:200, Jackson) as the second-

ary antibody for 1 h at 37˚C. Nuclei were stained with DAPI (1 μg/mL, Sigma) for 10 min in

the dark. The coverslips were mounted with mounting medium (Weiao Lab, Shanghai,

China). The results of immunostaining were examined using a fluorescence microscope

(BX60, Olympus, Japan).

2.10 Statistical analysis

All data are expressed as mean ± standard deviation (SD). Statistical analyses were performed

using SPSS 16.0 (IBM, USA). One-way ANOVA, followed by Student-Newman–Keuls

(S-N-K) multiple comparison test, was applied to assess the statistical significance of results. P
values< 0.05 were considered statistically significant.

3. Results

3.1 Effects of GBE50 on Aβ25–35 -induced memory impairment

In the Morris water maze experiment, the escape latency of the model group was prolonged

from test day 2 and obviously shorter compared to the sham group on day 5, as shown in Fig 1.

Fig 1. Escape latency of each group in the behavior test. Escape latency detected using the Morris water maze was used to examine spatial memory of animals

following drug administration. (S: Sham, n = 11. M: Model, n = 10. CMC: Carboxylmethylcellulose, n = 11. VE: Vitamin E, n = 12. G1: 75 mg/kg GBE50,

n = 11. G2: 150 mg/kg GBE50, n = 10). Values are expressed as means ± SD, # P< 0.05 vs sham, * P< 0.05 vs model.

https://doi.org/10.1371/journal.pone.0307735.g001
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No differences were observed between the model and CMC groups. Latencies of both VE and

G1 groups were shorter than those of the model group from day 2, but the differences were not

statistically significant. The latency of the G2 group was markedly reduced from day 2 in rela-

tion to the model group although no significant difference was observed on day 4. Our findings

indicate that a high dose of GBE induces a decrease in the escape latency of AD-like rats.

3.2 Effects of GBE on H2O2 formation and enzymatic activity in the

hippocampus

H2O2 is a vital member of the ROS family involved in neurodegeneration. Mitochondria are

the primary production and action sites of ROS in cells (Fig 2A). Compared with the sham

group, H2O2 was significantly generated in the CMC group. Elevated H2O2 was detected in

mitochondria of the hippocampus, but this difference was not significant relative to the other

groups. Administration of both low and high doses of GBE reduced the H2O2 level to a non-

significant extent compared to the model, CMC and VE groups. In addition, no significant dif-

ferences in H2O2 levels were observed among the model, CMC and VE groups (Fig 2B).

The metabolic pathways involving H2O2 in mitochondria are catalyzed by several enzymes,

including monoamine oxidase (MAO) and superoxidase (SOD), which are responsible for

generation of H2O2, as well as glutathione peroxidase (GSH-Px) and catalase (CAT), which

catalyze the conversion of H2O2 to H2O (Fig 2A). The activity of SOD was markedly dimin-

ished in CMC relative to the sham group, and reduced in the model, VE and G1 groups, but

not to a significant extent. Elevated activity was detected in G2 compared to the model, CMC

and VE groups, but differences were not statistically significant (Fig 2C). MAO activity of the

model group was significantly higher compared with the sham group, and activities were

Fig 2. H2O2 formation and activities of SOD, MAO, GSH-PX, and CAT in mitochondria of hippocampus. (A) Mechanism of H2O2 production and

mediation of cytochrome C release from mitochondria into the cytoplasm. (B-F) Detection of H2O2, SOD, MAO, GSH-PX and CAT activities in all groups. S:

Sham, M: Model, CMC: Carboxylmethylcellulose, VE: Vitamin E, G1: 75 mg/kg GBE50, G2: 150 mg/kg GBE50, n = 3. Values are expressed as means ± SD. #

P< 0.05 vs sham, * P< 0.05 vs model.

https://doi.org/10.1371/journal.pone.0307735.g002
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elevated in CMC, VE and G1 groups, with no statistical differences among the groups. In the

G1 and G2 groups, MAO activity was markedly reduced relative to the model group, but no

significantly different to that of the VE group (Fig 2D). GSH-Px activity was diminished in the

model, CMC and VE groups compared to the sham group. Although its activity was elevated

in the G1 group and further in the G2 group, differences were not statistically significant

between each of these groups and the model group (Fig 2E). Moreover, differences in activities

of SOD and GSH-Px were not statistically significant among the model, CMC and VE groups

as well as between VE and GBE groups (Fig 2C and 2E). We observed no significant changes

in CAT activity among all the groups (Fig 2F). Our results suggest that GBE inhibits H2O2 pro-

duction by suppressing the activity of MAO and concomitantly enhancing those of SOD and

GSH-Px.

3.3 Effect of GBE on cytochrome C protein expression in hippocampus

Cyto C normally exists in the mitochondrial membrane space and is released into the cyto-

plasm by the outer membrane at the early stage of apoptosis, promoting the formation of cas-

pase-activated complex apoptotic bodies (Fig 2A) [3]. Western blot analysis showed that

relative to the sham group, cytoplasmic Cyto C protein levels were increased significantly and

the ratio of cytoplasmic to total intracellular protein was high in the model, CMC, VE and G1

groups, suggesting that high levels of Cyto C are released into the cytoplasm by mitochondria

(Fig 3A and 3B). In addition, no significant differences in cytoplasmic Cyto C protein levels

were observed among the model, CMC and VE groups. Within the GBE therapy groups, the

cytoplasmic protein levels and ratio of cytoplasmic to total intracellular protein were markedly

decreased in G2 compared to the model group, indicating that high-dose GBE inhibits release

of Cyto C into the cytoplasm from mitochondria.

3.4 Effects of GBE on Bcl-2 and Bax protein expression in hippocampus

Bcl-2 and Bax function as anti-apoptotic and pro-apoptotic proteins in the cytoplasm, respec-

tively. Their stabilities are conducive to stabilization of the mitochondrial membrane potential

and inhibition of the release of Cyto C by mitochondria (Fig 2A). Compared with the sham

group, Bcl-2 expression in the model group was significantly reduced, along with a subnormal

level of Bax, leading to an overall decrease in the Bcl-2 to Bax ratio (Fig 3A and 3C). Similarly,

low expression of both proteins was maintained in CMC and VE groups. In G1 and G2 treat-

ment groups, levels of the above proteins were higher than those in the model, CMC and VE

groups. In particular, Bcl-2 expression was markedly increased compared to the model group

and the Bcl-2 to Bax ratio was higher relative to the other groups. Based on the results, we pro-

pose that GBE induces Bcl-2 expression that exerts a protective effect on mitochondria and

inhibits Cyto C release into the cytoplasm.

3.5 Effects of GBE on caspase-3 and CAD protein expression in

hippocampus

Caspase-3, a major apoptotic protease in the cytoplasm, either directly participates in DNA

fragmentation or indirectly activates endonuclease caspase-activated DNase (CAD) to cleave

chromatin and initiate cell apoptosis [3].

Caspase-3, excluding cleaved caspase-3, was evaluated in all the groups. Compared with the

sham group, high levels of caspase-3 were observed in the model and CMC groups, but differ-

ences were not significant. However, levels of caspse-3 were significantly decreased in the VE,

G1 and G2 groups compared to the model group (Fig 3A and 3D). No marked differences in
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CAD were observed among the groups (Fig 3A and 3E). Our data suggest that GBE inhibits

the expression of caspase-3 while CAD is not influenced by Aβ, VE and GBE.

3.6 Effects of GBE on 8-OHdG proteins in CA1 of hippocampus

8-OHdG, one of the most common forms of free radical-induced oxidative lesions, is widely

used as a biomarker for oxidative stress and carcinogenesis [28]. Using immunofluorescence

Fig 3. Relative quantitative expression of intracellular proteins with antioxidant and anti-apoptotic activity in hippocampus. (A) WB detection of Cyto C

(14 kDa), Bax (20 kDa), Bcl-2 (28 kDa), caspase-3 (35 kDa) and CAD (40 kDa) proteins, with β-actin (45 kDa) as the loading control. (B) Relative expression of

total intracellular and cytoplasmic proteins of Cyto C, and ratio of cytosolic to total intracellular protein of Cyto C. (C) Relative expression of Bcl-2 and Bax

proteins, and ratio of Bcl-2 to Bax. (D) Relative expression of caspase-3 protein. (E) Relative expression of CAD protein. S: Sham, M: Model, CMC:

Carboxylmethylcellulose, VE: Vitamin E, G1: 75 mg/kg GBE50, G2: 150 mg/kg GBE50, n = 3. # P< 0.05 vs sham, * P< 0.05 vs model.

https://doi.org/10.1371/journal.pone.0307735.g003
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to monitor changes in the 8-OHdG content in CA1 of hippocampus, the degree of DNA dam-

age caused by oxidative stress was evaluated. Compared with the sham group, the 8-OHdG

content was significantly increased in the model, CMC and VE groups (Fig 4), and conversely,

remarkably decreased in both GBE50 dose groups. The data suggest that 8-OHdG induced by

the injection of Aβ is significantly reduced by GBE50 but not vitamin E.

Fig 4. Immunofluorescence analysis and positive labeling rate of 8-OHdG in hippocampus of each group. The blue marker represents

DAPI and the green marker represents 8-OHdG. (400 x). S: Sham, M: Model, CMC: Carboxylmethylcellulose, VE: Vitamin E, G1: 75 mg/

kg GBE50, and G2: 150 mg/kg GBE50, n = 3. ## P< 0.01 vs sham, ** P< 0.01 vs model.

https://doi.org/10.1371/journal.pone.0307735.g004
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Discussion

Alzheimer’s disease (AD) is a form of senile dementia characterized by a progressive intellec-

tual decline. Accumulation of Aβ plaques is a key pathological mechanism of AD [29], induc-

ing cytotoxicity that damages cells. An AD-like animal model generated via intracranial

injection of aggregated Aβ has been widely applied in AD research. Aβ aggregates induce tox-

icity and nerve tissue damage in animals, resulting in learning and cognitive impairment

[22,23]. In preclinical research, Ginkgo biloba extracts exerted multiple anti-AD effects.

EGb761 inhibits amyloid aggregation through induction of heat shock in aluminum-induced

neurotoxicity [30], improves learning and memory in spatial and nonspatial memory tasks,

and plays a neuroprotective role in a 5×FAD mouse model [31]. In the current study, escape

latencies of animals were prolonged in the model group and reduced in the two dosage groups

of GBE50, suggesting that diminished memory ability is induced by Aβ25–35 aggregates, which

is improved by GBE50.

While Aβ has been shown to induce cytotoxicity, the molecular mechanisms are yet to be

fully elucidated. Toxicity is believed to involve the formation of oxygen-free radicals and nitric

oxide as well as calcium imbalance [16]. Aβ25–35 and Aβ1–40 induce a 2-fold increase in intra-

cellular free radicals and 3.5- to 4-fold increase in free calcium [32]. Aβ1–42 promotes calcium

imbalance in cells mediated by H2O2 and PAF [33]. H2O2 in ROS is mainly produced in mito-

chondria. Mitochondrial breakdown plays a key role in ROS production, in turn, triggering

oxidative damage in cells [3,34]. Aβ1–42 and Aβ25–35 enhance ROS production in mitochondria

of rat brain and muscle tissue [35] while Aβ1–40 promotes H2O2 in mitochondria of rat brain

[36]. In this study, H2O2 was induced by Aβ25–35 in hippocampal mitochondria of AD rats,

which was attenuated by GBE50, supporting the theory that Ginkgo biloba extracts exert bene-

ficial effects on scavenging free radicals [37]. For example, Ginkgo biloba extracts regulate the

oxidative phosphorylation system of the respiratory chain in mitochondria to reduce produc-

tion of ROS and repair mitochondrial dysfunction induced by Aβ [15]. EGb761 inhibits genta-

micin-induced ototoxicity by reducing the production of ROS and NO in isolated rat cochlear

hair cells and inhibiting apoptosis of cochlear hair cells in vivo [38]. In addition, EGb761 inhib-

its zinc-induced tau phosphorylation at Ser262 through its anti-oxidative activity [39].

Aβ promotes H2O2 production, mainly through promoting an imbalance between ROS and

antioxidant levels in mitochondria. The H2O2 level in mitochondria depends on the activities

of H2O2-producing (Mn-SOD in the matrix and MAO in the outer membrane of mitochon-

dria) and H2O2-consuming enzymes (CAT and GSH-Px) [3]. Continuous lateral ventricle

injection of Aβ1–40 has been shown to enhance the activities of Cu-Zn SOD in the cytoplasm of

rat neocortex, promote MAO-B activity and reduce the activities of CAT and GSH-Px in mito-

chondria to a significant extent [40]. In our experiments, upon injection of Aβ25–35 into the

CA1 region of the hippocampus, MAO activity was enhanced and GSH-Px and SOD activities

diminished while CAT activity was not affected. The observed changes of the activities of SOD

and CAT were inconsistent with earlier findings, which could be attributed to different Aβ
preparations or models.

In our experiments, GBE50 suppressed MAO activity and enhanced the activities of SOD

and GSH-Px, while exerting no significant effects on CAT activity. The data clearly indicate

that GBE50 affects the activities of H2O2-producing and -consuming enzymes. GBE50 could

inhibit the production of H2O2 by suppressing the activity of MAO and enhance the activities

of SOD and GSH-Px to accelerate H2O2 generation and metabolism into H2O in a timely man-

ner, therefore eliminating ROS and inducing resistance of mitochondria to Aβ damage.

Numerous studies have focused on regulation of ROS-related enzyme activities by Ginkgo
biloba leaf extract. EGb761 stabilizes the redox state of cells by upregulating protein levels and
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antioxidant enzyme activity [41], increases the activities of SOD and CAT in hippocampus of

rats [42], enhances total superoxide dismutase (T-SOD), CAT, and GSH-Px activities in Neuro

2A cells overexpressing APPsw [43], and promotes the activities of glutathione reductase and

gamma-glutathione synthase, two key enzymes involved in glutathione (GSH) reduction and

synthesis [44]. However, EGb761 could reduce protein GSH and activity of GSH-Px in rats

exposed to an intermittent hypoxia environment consecutively for 21 days [45]. These differ-

ences may be caused by different animal models and other factors. In this study, GBE50 was

expected to regulate the activity of H2O2-producing enzymes in mitochondria and enhance

that of H2O2-consuming enzymes to exert anti-oxidative effects.

Expression of Bcl-2 in hippocampal tissues of the model group was significantly dimin-

ished, along with a low Bcl-2/Bax ratio and marked increase in expression of Cyto C in cyto-

plasm. The results suggest that Aβ induces H2O2 production in mitochondria of hippocampal

tissue, reduces expression of Bcl-2 protein, and accelerates the release of Cyto C from mito-

chondria, causing damage to tissue cells. Earlier studies have shown that Aβ induces cellular

mitochondrial dysfunction and stimulates release of Cyto C into the cytoplasm by mitochon-

dria. Under physiological conditions, Cyto C exists in the mitochondrial membrane gap and is

released into the cytoplasm by mitochondrial outer membrane at the early stage of apoptosis,

promoting the formation of caspase-activated complex apoptotic bodies [3]. Aβ induces acti-

vation of the caspase cascade and affects cell death pathways. For example, in vitro, Aβ25–35

and Aβ1–40 are reported to activate caspase-8 and caspase-3, interfere with nuclear and mito-

chondrial DNA integrity, and induce apoptosis of cerebral vascular endothelial cells in mouse

and bovine models [46]. Aβ25–35 induces cell body contraction of cerebellar granulosa cells,

neurite retraction, changes in mitochondrial activity, and enhancement of caspase-3 activity

[47]. Aβ isolated from early-onset familial AD patients inhibits the proliferation and differenti-

ation of cultured human and rodent neural progenitor cells by promoting apoptosis [48]. In

an in vivo study by Kaminsky et al. [3] involving injection of Aβ25–35 or Aβ1–40 into the lateral

ventricle of rats consecutively for 14 days, mitochondria of the cerebral cortex released Cyto C

to the cytoplasm, along with a 2- to 3-fold increase in activities of caspase-3 and caspase-9. Fur-

thermore, treatment with EGb761 led to a significant decrease in cell viability and apoptosis in

response to incubation with Aβ1–42 oligomer [49]. The effects of GBE50 on expression patterns

of the above proteins were explored in the current study. Expression of Bcl-2 and Bcl-2/Bax

ratio in both GBE50 dose groups were markedly increased while caspase-3 (excluding cleaved

caspase-3) and Cyto C levels were significantly diminished in the GBE50 high-dose group.

Based on these results, we propose that GBE50 inhibits Aβ-mediated induction of H2O2 in hip-

pocampal mitochondria and enhances Bcl-2 protein expression to inhibit release of Cyto C to

the cytoplasm, which protects hippocampal nerve tissue from oxidative stress injury. The anti-

apoptotic effect of EGb761 may be achieved through synergistic multiple intracellular signal-

ing pathways, including maintaining integrity of the mitochondrial membrane, preventing

mitochondria from releasing Cyto C to inhibit formation of the apoptotic complex and caspase

apoptotic proteases, enhancing transcription of anti-apoptotic Bcl-2-like protein, impairing

the transcription of pro-apoptotic caspase-12, and inhibiting the main apoptotic effector pro-

tease, caspase-3, to prevent execution of apoptosis and formation of nuclear DNA fragments

[50,51]. For example, EGb761 regulates expression of the apoptosis-related proteins Bcl-2 and

Bax to inhibit H2O2-induced neuronal death [52,53]. Furthermore, EGb761 inhibits the release

of Cyto C from mitochondria of cardiomyocytes induced by hypoxia and reoxygenation,

reduces caspase-3 activity and inhibits DNA fragmentation to suppress myocardial cell apo-

ptosis [54]. EGb761 inhibits ROS generation, activates SOD activity, maintains homeostasis of

Bcl-2 family proteins and stabilizes mitochondrial membrane potential to inhibit release of

Cyto C by mitochondria, which protects against oxidative stress in human umbilical vein
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endothelial cells [55]. The mechanisms underlying GBE50-mediated inhibition of Aβ damage

to hippocampus of AD-like animals uncovered in this study appear consistent with data from

the earlier research.

Caspase-activated DNase (CAD) is an endogenous enzyme that mediates DNA nucleosome

degeneration [56]. Caspase-3 can either participate in DNA fragmentation directly or indi-

rectly activate CAD and cleave chromatin to induce apoptosis [23]. In vivo experiments have

shown that following continuous injection of Aβ25–35 into rat lateral ventricles, CAD activity

in the cerebral cortex, cerebellum and hippocampus is enhanced significantly, accompanied

by nuclear DNA fragmentation [3]. In this study, no significant changes in the expression of

CAD were observed and cleaved caspase-3 was not detected in all groups, suggesting that Aβ
does not affect expression of CAD and activate caspase-3. These findings were inconsistent

with the above studies, which could be attributable to different animal models. The results

additionally suggest that the effects of GBE50 on DNA injury induced by oxidative stress in

hippocampal mitochondria are not directly dependent on activation of caspase-3 and stimula-

tion of CAD expression.

8-OHdG is a major form of free radical-induced oxidative lesions. A number of studies

have shown that Ginkgo biloba extract affects 8-OHdG levels in liver, serum and brain. For

example, pretreatment with n-acetylcysteine (NAC) and EGb761 has been shown to reduce

the formation of 8-OHdG and lipid peroxidation in liver tissue of rats [57]. Moreover, EGb761

could suppress the 8-OHdG level in serum and hippocampus of rats induced by intermittent

hypoxia [45]. In the current study, GBE50 suppressed the formation of 8-OHdG in the hippo-

campus of AD rats, which inhibited the effect of Aβ-induced oxidative stress on DNA injury.

The constituents in GBE50 were analyzed by UHPLC-Q-Exactive Orbitrap HRMS in a cur-

rent study. Altogether 38 compounds were analyzed in GBE50, including 23 flavonoids, 5

biflavonoids, 4 catechins, 5 terpene lactones, and 1 organic acid [58]. The active constituents

of GBE include flavonoids (e.g., quercetin, kaempferol, and isorhamnetin), biflavones (sciado-

pitysin and ginkgetin), terpene trilactones (ginkgolides and bilobalide), and ginkgolic acids

(alkylphenols) [59]. A variety of studies have shown that several active constituents of GBE

have significant antioxidant effects. In GBE, ginkgo flavonoids, proanthocyanidins, and

organic acids have a large number of reduced hydroxyl functional groups, which can play an

antioxidant role by scavenging oxygen free radicals and regulating the activity of superoxide

dismutase and catalase [60]. Kaempferol, one of the most important constituents of Ginkgo

biloba, reduces ROS generation by scavenging free radicals, upregulates Bcl-2 and glutathione

(GSH) to protect neuronal cells from oxidative injury [61], and inhibits mitochondrial mem-

brane transition (mPTP) opening and suppresses the release of Cyto C via glycogen synthase

kinase-3β inhibition [62]. Besides, kaempferol can inhibit Bax and caspase-3 to exert anti-apo-

ptotic effects [63]. Ginkgetin and bilobalide decrease levels of intracellular ROS, maintain

mitochondrial membrane potential, and inhibit cell apoptosis via caspase-3 and Bcl2/Bax path-

ways to exert antioxidant effects in the mouse model of Parkinson’s disease [64,65]. Isorham-

netin reduces activation of the extrinsic apoptotic pathway by decreasing caspase-3 and

caspase-8 in the cell model of ischemia-induced cerebral vascular degeneration [66]. In addi-

tion, Ginkgolide B improves antioxidant defense system (SOD, GSH and CAT) in hippocam-

pal tissue of rats treated with hypoxia exposure for six days [67].

Although the various chemical components of GBE are integrated, complementary and

synergistic interactions exist between several members. Zhang et al. reported that any two

members of four typical components of GBE can exhibit apparent synergistic antioxidant

effects, and the ginkgo flavone: procyanidins (1: 9) showed the best synergism in scavenging

DPPH (2,2-Di(4-tert-octylphenyl)-1-picrylhydrazyl) and ABTS (2’-Azinobis-(3-ethylbenzthia-

zoline-6-sulphonate) radicals [60].
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However, for GBE50, few studies focus on the antioxidant activity in the neurodegenerative

disease. Lu et al. observed that pre-treatment of GBE50 dose-dependently significantly

increased myocardium SOD, CAT, GSH-Px and GST activities to exert antioxidant effects in

ischemia reperfusion rats [19]. In our study, antioxidant and anti-apoptotic activities of

GBE50 were observed in rat model of AD. According to these reported studies, we suppose

that the antioxidant effect observed in this study would rely on the complementary and syner-

gistic interactions existed among active compounds of GBE50.

In conclusion, GBE50 inhibits hippocampal mitochondrial oxidative stress induced by Aβ
to exert protective effects on nerve tissue and improve the learning and memory abilities of

AD-like rats. The underlying mechanisms potentially involve regulation of the activities of

enzymes that play a role in H2O2 metabolism (MAO, SOD and GSH-Px) to reduce H2O2 gen-

eration in mitochondria, modulation of Bcl-2 and Bax proteins to inhibit release of Cyto C

from the mitochondria to cytoplasm, and reduction of 8-OHdG production to avoid neuronal

injury from oxidative stress. Our results clearly support a protective role of GBE50 against oxi-

dative stress. As a promising natural agent for AD [68], the therapeutic effects of Ginkgo biloba
extract may be achieved through synergism of multiple intracellular signaling pathways [69],

synergistic interactions existed among active compounds of GBE and promotion of hippocam-

pal neurogenesis in the context of brain aging [70]. Therefore, the mechanism uncovered in

this study may be only one of the contributory aspects to GBE50-mediated resistance to tissue

oxidative stress and cell damage, highlighting the necessity for further research to establish the

mechanistic network.
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