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Abstract

To cope with the well-known peaking phenomenon and noise sensitivity in the application of

the High-Gain observer, a parameter tuning method based on the LPV/LMI approach for a

2nd-order cascade observer structure is proposed in this paper. Compared to other high-

gain observer methods, this method can significantly reduce the infimum of gain in the

observer, thereby reducing the peak phenomenon of state estimation and the influence of

measurement output noise. By transforming the observer structure into a Luenberger-like

structure, the parameters of the observer can be solved by one linear matrix inequality (LMI)

with a high-gain effect or a 2n of LMI sets (LMIs) without a high-gain effect. Then by decom-

posing the nonlinear part of the system dynamics into high-dimensional and low-dimen-

sional parts, we could solve the adjustable number 2js of LMIs can be solved to obtain the

result with limited high-gain effect. Stability analysis based on the Lyapunov method proves

the convergence of this method, and the effectiveness of this method is verified through

applications to one single-link mechanical arm model and a vehicle trajectory estimation

application.

1 Introduction

Since the proposal of high-gain observers, due to the convenience of adjusting a single parame-

ter, it has been widely used in the control of nonlinear systems [1–4]. Its convenience is

reflected in its design steps. Compared to directly designing the observer parameter vector K
for the Luenberger observer, a gain matrix T(θ) = diag(θ, � � �, θn) is introduced in the measure-

ment output feedback terms in the high-gain observer dynamics, making the linear part of the

error dynamics a multiple of θn to the nonlinear part. Therefore, after the stability of the linear

part of the observer, the stability of its nonlinear part can be achieved by adjusting the gain

coefficient θ alone, and increasing this parameter can improve the convergence rate of the

error [5]. However, to ensure the robustness of the error steady state, the gain coefficient θ and

its related feedback gain are often too large, leading to the peaking phenomenon of measure-

ment and high sensitivity to measurement noise, which would reduce the robustness of the

observer [6].

In the past few decades, improvements for high-gain observers can be mainly classified into

three categories:
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1) Feedback term processing

Most improvement methods usually directly handle the excessive feedback terms caused by

the gain matrix T(θ). In the feedback term processing of the observer dynamics, existing meth-

ods often improve the performance of the observer by introducing filtering, dead zone, satura-

tion, and other processes. Treangle et al. [7] filtered the measurement output to reduce the

impact of high-frequency noise. Cocetti et al. [8] achieved the same effect by introducing a

dead zone into the feedback terms. Astolfi et al. [9] introduced a saturation element into the

feedback terms to suppress the peak phenomenon. A similar improvement of the standard

high-gain observer was proposed by Farza et al. [6]. Although adjusting the feedback items has

become a convention, the information loss caused by dead zones is unacceptable in some cases

[8]. While the saturated application can eliminate peak phenomena, it cannot handle the mea-

surement sensitivity issues brought by high gain. The grid filtering technique is quite an effi-

cient way to overcome the measurement noise, but it would cause high-frequency phase-shift

that causes distortions of the estimate [10].

2) Cascade observer structure

Astolfi et al. [5] proposed a Marconi/Astolfi high-gain observer structure, observing an n-

dimensional system through the cascade of n-1 second-order high-gain observers, limiting the

order of gain to 2 while enhancing the ability to suppress high-frequency noise [11]. Mean-

while, based on this method, Khalil [12] proposed a cascade method for (n-1)th 1-dimensional

sub-observers and introduced saturation in the sub-observers to reduce the peak phenome-

non. Boizot et al. [13] introduced the high-gain method into the Kalman filter, under the

smallest high-gain action possible to ensure the robustness of the state estimation results and

the convergence of the high-gain observer. The cascade structures proposed above do have the

ability to cope with the measurement noise, but the actual gain to measurement noise in the

higher dimensional is the same as the standard high-gain observer.

3) Optimization of the gain coefficient

Alessandri et al. [14] proposed a standard high-gain observer structure with increasing gain

θ over time to deal with the peaking phenomenon at the start of the convergence of state esti-

mation. Zemouche et al. [15] combined a method called LPV/LMI [16] with the design of

high-gain observers to propose a new low-gain observer design method, which can reduce the

dependence of the stability of the nonlinear part on the gain coefficient by optimizing the

observer’s linear part, i.e., the value of the observer coefficient K, thereby reducing the overall

gain of the observer while stabilizing the system. The utilization of the gain optimization tech-

nique is a convenient way to balance the performance of the high-gain effect and the robust-

ness of the observer. Thus, the time-varying gain or gain with a lower limit bound could also

be utilized on the other observer structures, which is mentioned in [15].

Based on the above research, this paper proposes a parameter design method based on

LPV/LMI technology for Marconi/Astolfi type observer structures. Compared to directly

designing parameters for the standard high-gain observer in [15], this method can reduce sen-

sitivity to measurement noise and, compared to [5], maintains low gain characteristics. First,

the observer structure needs to be transformed into a canonical Luenberger form, and then the

single LMI solution method corresponding to the pole configuration is obtained. Then, the

LPV/LMI form of the multiple LMIs solution method is obtained through the gradient decom-

position of the nonlinear characteristics. Finally, the parameter solution algorithm is given,

and the simulation effect is compared through two examples of a single-link mechanical arm

and a vehicle trajectory estimation.

The innovations of this work are as follows:
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• By converting the error dynamic into the Luenberger-like form, we develop a parameter

design method for the 2nd-order cascade observer structure [5] based on the LMI and LPV/

LMI method and prove the stability (Section 3.1 and Section 3.2).

• Based on the LPV/LMI methods, the nonlinear part could be decomposed in the low dimen-

sional and high dimensional parts by grid decomposition and processed separately with high

gain effect and LPV/LMI methods, and finally obtain the main theorem. Then we propose

an algorithm to calculate the parameter(Section 3.3).

• Two examples are used to verify the practicality of the proposed method in this paper. By

comparing our method with the original pole assign method [5], the standard High-gain

observer method [1], and a new filtered High-gain observer [7], the effectiveness of our

method has been proved.

Notations:

• (Ai, Bi, Ci) present the observable canonical triplets of dimension i,

Ai ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1

0 0 0 � � � 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

i�i

; Bi ¼

0

..

.

0

1

2
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6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

i�1

;

Ci ¼ ½ 1 0 � � � 0 �
1�i:

• Ii denotes the identity

• Lf hðxÞ ¼ @h
@x � f is the Lie derivative of h(x) under vector field f.

• Ti(θ) = diag(θ, θ2, � � �, θi).

• D1 ¼
� 1 0

� 1 0

" #

, D2 ¼
0 1

0 1

" #

.

• HeðQÞ ¼ Qþ Q>.

2 Problem description

2.1 System description

We consider a class of nonlinear single input single output (SISO) systems of the form

_z ¼ f ðzÞ þ �gðzÞuþ �d

y ¼ hðzÞ þ v

8
<

:
ð1Þ

where z 2 Rm
is the state variable, y 2 R is the measured output, u 2 R is the input, f(�), g(�)
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and h(�) are C1 functions. �d 2 Rm and v 2 R represent the system disturbance and measure-

ment disturbance, respectively. Both disturbances are bounded.

Let Zu(z0, t) be the solution of (1) going through z0 at time 0 with input u. The definition of

observability of nonlinear system (1) that will be crucial for the following analysis is reviewed.

Definition 1 (Differential Observability). [17] System (1) is differentially observable of order
N on an open subset S 2 Rm, if mapping HNðzÞ ¼ hðzÞ Lf hðzÞ � � � LN� 1

f hðzÞ �>
�

is injective
on S. Furthermore, it is regarded as strongly differentially observable on S if the mapping is also
an immersion.

Definition 2 (Uniform Observability). [17] System (1) is uniformly observable on an open
subset S 2 Rm, if for any pairs ðxa; xbÞ 2 S2 with xa 6¼ xb, any T> 0, and any C1 input u defined
on [0, T), there exists a time t< T such that h(Xu(xa, t)) 6¼ h(Xu(xb, t)) and
ðXuðxa; sÞ;Xuðxb; sÞÞ 2 S2 for all s� t.

Lemma 1. [18] If system (1) is uniformly observable and strongly differentially observable of
order N = m on an open set S containing the compact set Z, it can be transformed on Z into a
full Lipschitz triangular canonical form of dimension n = m.

In general, if system (1) is uniformly observable and 2-order strongly differentially observ-

able, as stated in Lemma 1, by selecting x = Hn(z), we can obtain

_x ¼ Anxþ BnφðxÞ þ gðxÞuþ d

y ¼ Cnx

(

ð2Þ

which is the actual observed system, where x 2 X 2 Rn
, φ(x) can be chosen satisfying

φðxÞ ¼ Ln
f hðzÞ, and gðxÞ ¼ L�gHnðxÞ ¼ ½g1ðhðzÞÞ � � � gnðhðzÞ; � � � ; Ln� 1

f hðzÞÞ�>, both φ(�) and

g(�) can be locally lipschitz on X as a result of Lemma 1.

Remark 1. Lemma 1 ensure the existence of the canonical observability form and the Lipschitz
property of nonlinear dynamics, which is a necessary condition in the designing of high-gain
observers [19].

2.2 Observer form

To estimate the states of (2), we use a kind of 2-order cascade high-gain observer form pro-

posed in [5] as below

_z1 ¼ A2z1 þ B2B>2 z2 þ K1T2ðyÞðy � C2z1Þ

_z i ¼ A2zi þ B2B>2 ziþ1 þ KiT2ðyÞðB>2 zi� 1 � C2ziÞ i ¼ 2; � � � ; n � 2

_zn� 1 ¼ A2zn� 1 þ B2φsðx̂Þ þ Kn� 1T2ðyÞðB>2 zn� 2 � C2zn� 1Þ

ð3Þ

with

x̂ ¼ �Cz
�C ¼ diagðC2; � � � ;C2; I2Þ 2 R

ð2n� 2Þ�n

In (3), zi ¼ ½x̂i; x̂ 0iþ1
�
>

is the state of ith sub-observer for i = 1, � � �, n − 2, zn� 1 ¼ ½x̂n� 1; x̂n� is

the state of (n − 1)th sub-observer, x̂i is the ith state estimation of system (2) and x̂ 0iþ1
presents

the auxiliary estimation of (i + 1)th state, Ki = [ki1, ki2]> is denoted as the design parameter of

ith sub-observer. φs(�) is equivalent to φ(�) in X . In this context, we assume that φs(�) agrees

with the global Lipschitz condition as below. This structure can be conceptualized as being

composed of (n − 1) second-order high-gain sub-observers shown in Fig 1.
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Assumption 1 (Globally Lipschitz condition)

jφsðx
1Þ � φsðx

2Þj � Lφs
kx1 � x2k; 8x1; x2 2 Rn

ð4Þ

where Lφs
is the Lipschitz constant.

Define xi = [xi, xi+1]> (where xi is the i-th state of the system (2), then the object system (2)

can be extended into following form

_x1 ¼ A2x1 þ B2B>2 x2

_x i ¼ A2xi þ B2B>2 xiþ1; i ¼ 2; � � � ; n � 2

_xn� 1 ¼ A2xn� 1 þ B2φðxÞ

8
>>><

>>>:

Thus we can obtain error dynamic by defining estimation error ei ¼ x̂i � xi and auxiliary

error �i ¼ x̂ 0i � xi. For convenience, define state error e = (e1, � � �, en−1)>, where ei = (ei, �i+1)>.

Then the error dynamic is also equivalent to

_e ¼ Meþ B2n� 2Dφðx̂; xÞ ð5Þ

Fig 1. Low peaking cascade high-gain observer strucutre.

https://doi.org/10.1371/journal.pone.0307637.g001
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where Dφðx̂; xÞ ¼ φsðx̂Þ � φðxÞ, and system matrix is in form of

M ¼

E1 N 0 0 � � � 0

Q2 E2 N 0 � � � 0

0 Q3 E3 N 0

..

. . .
. . .

. . .
. ..

.

0 � � � � � � Qn� 2 En� 2 N

0 � � � � � � 0 Qn� 1 En� 1

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

with Ei = Ai − T2(θ)KiC2, Qi ¼ T2ðyÞKiB>2 and N ¼ B2B>2 . Astolfi et.al. developed a pole assign

method to make M Hurwitz in [5], as the following Lemma.

Lemma 2. [5] Let PðlÞ ¼ l
2n� 2
þm1l

2n� 3
þ � � � þm2n� 2 be an arbitrary Hurwitz polyno-

mial. There exists a choice of (ki1, ki2), i = 1, � � �, n − 1 such that the characteristic polynomial of
M coincides with PðlÞ.

Although estimation error can asymptotically converge by setting the gain parameter θ to a

sufficiently large value in [5], the peaking phenomena are still present in the observation

results due to the large observer gain.

In this paper, we adopt the observer form proposed in [5]. However, unlike the pole design

method described in Lemma 2, observer parameter Ki can be optimized via multiple linear

matrix inequations (LMIs) after transformation to the error dynamics, resulting in a signifi-

cant reduction on the gain parameter θ.

3 Main result

First, rewrite the error dynamics (6) as below

_e ¼ ðH þ �TðyÞLSÞeþ B2n� 2Dφðx̂; xÞ ð6Þ

where

H ¼

A2 B2B>2 O � � � O
O A2 B2B>2 � � � O
..
. ..

. . .
. . .

. ..
.

O O � � � A2 B2B>2
O O � � � O A2

2

6
6
6
6
6
4

3

7
7
7
7
7
5

S ¼

D1 O � � � � � � O
D2 D1 � � � � � � O
..
. . .

. . .
. ..

.

..

.
D2 D1 O

O � � � O D2 D1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

�TðyÞ ¼ diagðT2ðyÞ; � � � ;T2ðyÞÞ

L ¼ diagðL1; L2; � � � ; Ln� 1Þ

PLOS ONE Low peaking-phenomenon cascade high-gain observer design with LPV/LMI method

PLOS ONE | https://doi.org/10.1371/journal.pone.0307637 September 24, 2024 6 / 20

https://doi.org/10.1371/journal.pone.0307637


with Li ¼
l11 l12

l21 l22

" #

being the parameter matrix that needs to be solved. The observer param-

eter matrix can be calculated as Ki = Li12×1.

Then, transform the error variable in (6) with e ¼ y� 1
ðTn� 1ðyÞ � T2ðyÞÞ~e (which is equive-

lent to ~e i ¼ y
� iei y

� ðiþ1Þ
�iþ1
�
>

�
). And we have the following transformed error dynamic.

_~e ¼ yðH þ LSÞ~e þ y� nB2n� 2Dφðx̂; xÞ ð7Þ

Remark 2. Since we are using the transformed error dynamics ~e, the nonlinear part of the
error dynamics here is y� nB2n� 2DφðTn~eÞ. By the mean value theorem, its linearized result is
y
� nB2n� 2Tnr~e, wherer is the gradiant of φs. From the definition of the high-gain matrix Tn, it

can be seen that higher-dimensional nonlinear gradients are less affected by high gains, which
ultimately leads to our main result.

Under the new form of error dynamics in (7), the value of Ki can be determined using an
LMI-based method rather than relying solely on pole assignment, which corresponds to Theorem
1. The high-gain matrix Tn is used to handle the nonlinear components. Then by decomposing
the nonlinear error Dφðx̂; xÞ into gradients, the nonlinear constraints are transformed into a set
of 2n linear constraints. This allows us to use multiple LMIs to address both the nonlinear compo-
nents and the pole assignment for the observer, which is proved in Theorem 2.

Finally, we decompose the nonlinear constraint into two linear constraint sets based on
dimensionality. The low-dimensional component is handled using the approach from Theorem 1
with high gains, while the high-dimensional component is tackled using the LPV/LMI method
outlined in Theorem 2. Ultimately, this process leads to the formulation of the theorem and algo-
rithm presented in Theorem 2.

Under the new form of error dynamics in (7), the value of Ki can be determined using an

LMI-based solver method rather than relying on pole assignment.

3.1 1-LMI optimization with the largest infimum of gain

This approach is presented and supported by the following theorem.

Theorem 1. Consider the error dynamics (6). The state estimation error e will be asymptoti-
cally stable if there exist scalar μ 2 (0, 1), and matrices Ri 2 R

2�2 for i = 1, � � �, n − 1, and sym-
metric positive definite matrices Pi 2 R

2�2 for i = 1, � � �, n − 1, such that the following LMI is
feasible:

H>P þ PH þ S>R> þ RSþ mI2n� 2 < 0 ð8Þ

where

P ¼ diagðP1; � � � ; Pn� 1Þ

R ¼ diagðR1; � � � ;Rn� 1Þ

Once the LMIs are solved, L = P−1R, K = L 1(2n−2)×1, and
y 2 fyjy � y0; y0 ¼ min ð3Lφs

kPk=m; 2Þg.
Proof. Choose Lyapunov function as Vð~eÞ ¼ ~e>P~e, then

_V ¼ _~e>P~e þ ~e>P _~e

¼ HeððyðH þ RSÞeþ y� nB2n� 2Dφðx̂; xÞÞ
>P~eÞ

ð9Þ
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Notice that nonlinear error Dφðx̂; xÞ can be transformed into time-variable gradient form

Dφs
ðx̂; xÞ ¼ φsðx̂Þ � φsðxÞ

¼ rBðx̂ � xÞ

¼ rBTnðyÞCe

ð10Þ

whererB ¼
@φs

@x1

jB � � �
@φs

@xn
jB

� �

denotes the gradient of φs(x) at x = B. B refers to a point

between x and x̂, and �C ¼ diagðC2; � � � ;C2; I2Þ.

For simplicity, we will replace the expression
@φs
@xi
jB with

@φs
@xi

, and utilizer instead ofrB.

By substituting (8) and (10) in (9), following inequality is obtained

_V ¼ He ðyðH þ RSÞeþ y� nB2n� 2rTnðyÞCeÞ
>P~e

� �

� y~e He �
1

2
mI2n� 2 þ y

� 1� nPB2n� 2rTnðyÞ
�C

� �� �

~e
ð11Þ

Let ϑ = kPk−1θ, then if kPk � 1, there is

_V � y~eHe �
m

2
I2n� 2 þ y

� 1� nPB2n� 2rTnðyÞ
�C

n o
~e>

� ~eHe �
m

2
I2n� 2 þ W

� 1� n
kPk� 1PB2n� 2rTnðWÞ

�C
n o

~e>

� ~eHe �
m

2
I2n� 2 þ W

� 1� nB2n� 2rTnðWÞ
�C

n o
~e>

ð12Þ

According to Assumption 1, the gradient of φs(x) is bounded, specifically satisfying

krxφsðxÞk1 � Lφs
. This implies that the absolute value of each partial derivative

@φsðxÞ
@xi

is also

bounded, ensuring j
@φsðxÞ
@xi
j � Lφ for all i = 1, � � �, n. Thus we can obtain the following inequal-

ity:

He �
m

2
I2n� 2 þ W

� 1� n
rTnðWÞ

�C
n o

�

� m 0 � � � 0 W
� nLφ

0 � m � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � � m W
� 2Lφ

W
� nLφ 0 � � � W

� 2Lφ � mþ 2W
� 1Lφ

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

ð13Þ

If W >
3Lφ
m

, then

� mþ 2W
� 1Lφ � � W

� 1Lφ

Meanwhile, since θ> 2, it follows that

j � mþ 2W
� 1Lφj > jW

� 1Lφj >
Xn

i¼2

jW
� iLφj
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and

m > W
� iLφ

which means that Hef� m

2
I2n� 2 þ W

� 1� n
rTnðWÞ

�Cg exhibits diagonal dominance, which, as per

Gershgorin’s circle Theorem [20], implies it is negative definite. Thus we have

_V < 0

Consequently, Vð~eÞ asymptotically decreases towards zero, indicating the asymptotic sta-

bility of the transformed estimation error ~e.

Furthermore, since the actual estimation error e is linearly related to ~e, the asymptotic sta-

bility of estimation error e is obtained.

In other cases where kPk � 1, the same result can be obtained by selecting ϑ = θ directly.

Thus the proof is finished.

Theorem 1 presents a method for optimizing the observer parameter matrix K. However,

similar to the pole assign method, the gain of the observer can become significantly large, lead-

ing to a pronounced peaking phenomenon in the estimation results. In contrast, by employing

the LMI technique, we can tune the observer parameter by solving multiple LMIs in the fol-

lowing context. This allows us to mitigate or even eliminate the high-gain effect, resulting in

improved estimation performance.

3.2 2n-LMIs optimization with minimum infimum of gain

Assumption 1 implies that the gradientr is bounded within a compact set F, given by:

F ¼ f½�1; � � � ; �n�j�i 2 ½� Lφs
; Lφs
�g

where ϕi represents the partial derivative @φs/@xi. It’s a compact set with its vertices contained

in the set:

VF ¼ ½�1; � � � ; �n�
>
j�i 2 f� Lφs

; Lφs
g 8i ¼ 1; � � � ; n

n o

Consequently, the nonlinear error Dφs
ðx̂; xÞ belongs to the set ðFTnðyÞ

�CeÞ, and the Lyapu-

nov derivative (9) can also be contained within a set related to F as below:

_V 2 y~e>fHeðPH þ RSþ y� 1� nPB2n� 2FTnðyÞ
�CÞg~e

¼ y~e>fHeðPðH þ y� 1� nB2n� 2FTnðyÞ
�CÞ þ RSÞg~e

¼ y~e>fHeðPHðFÞ þ RSÞg~e

ð14Þ

where HðFÞ ¼ H þ y� 1� nB2n� 2FTnðyÞ
�C.

By treating the Lipschitz nonlinear dynamic as a Linear Parameter-Variable (LPV) part, it

is possible to utilize multiple Linear Matrix Inequalities (LMIs) techniques to solve the

observer parameter matrix K without resorting to the high-gain method (And the gain param-

eter θ = 1 in this situation). This approach allows for achieving stability in the presence of the

dominant linear component while considering the Lipschitz nonlinearity separately. Thus we

have the following Theorem:

Theorem 2. Consider the error dynamic (6). Let θ0 represent the infimum of the gain. The
state estimation error e will be asymptotically stable if there exists scalar μ 2 (0, 1) and, matrices
Ri 2 R

2�2 for i = 1, � � �, n − 1, and symmetric positive definite matrices Pi 2 R
2�2 for i = 1, � � �,
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n − 1, such that the following 2n Linear Matrix Inequalities (LMIs) are feasible:

HðniÞ
>P þ PHðniÞ þ S>R> þ RS < � mI2n� 2; 8ni 2 VF

ð15Þ

where

HðniÞ ¼ H þ y� 1� nB2n� 2niTnðyÞ
�C

P ¼ diagðP1; � � � ; Pn� 1Þ

R ¼ diagðR1; � � � ;Rn� 1Þ

Once the LMIs are solved, L = P−1R, K = L 12n−2×1, and θ 2 {θ|θ� θ0, θ0 = 1}.

Proof. Given that F is a compact set with vertices ni 2 VF, it follows that for everyr2 F,

the following feature is satisfies:

r �
X2n

i¼1

pini;
X2n

i¼1

pi ¼ 1; pi � 0

thus

HðrÞ ¼ H þ y� 1� nB2n� 2rTnðyÞ
�C

�
X2n

i¼1

piðH þ y
� 1� nB2n� 2niTnðyÞ

�CÞ

¼
X2n

i¼1

piHðniÞ

Let θ = 1, then the following inequality is satisfied for (9)

_V ðrÞ � ~e> He
X2n

i¼1

piPHðniÞ þ RS

 !( )

~e

¼
X2n

i¼1

pi~e
>fHeðPHðniÞ þ RSÞg~e

substituting (15) into it, then we have

_V ðrÞ < 0

Finally, following the proof outlined in Theorem 1, we could establish the asymptotic stabil-

ity of the state estimation error e.
Theorem 2 presents an alternative approach to determining the observer parameter, K, that

eliminates the need for considering the gain effect. However, it may encounter challenges

when applying this method, particularly in cases where the Lipschitz constant is large. The

optimization process requires solving a significant number of LMIs, resulting in constraints

that vary significantly. This burdens the LMI solver considerably and may even render the task

infeasible due to computational limitations.

Thus in the next section, by combining Theorem 1 and Theorem 2, the main result is

achieved through the solution of a variable number of multiple LMIs, enabling the determina-

tion of the observer parameter K. Moreover, this approach ensures that the infimum of gain

required is sufficiently modest.
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3.3 2js-LMIs optimization with limited infimum of gain

According to (13), it can be observed that the impact of the gain θ on the nonlinear component

diminishes as the state order increases. This implies that the high-gain effect is more pro-

nounced in lower-order states compared to higher-order ones.

It is natural to decompose the nonlinear error Dφs
ðx̂; xÞ into lower-order and higher-order

components:

Dφðx; x̂Þ ¼
@φs

@x1

� � �
@φs

@xn

� �

e

¼ ðrHG þrLMIÞe

¼ rHGe½1;n� js � þ rLMIe½n� jsþ1;n�

ð16Þ

where e[a,b] = [0, � � �, 0, ea, � � �, eb, 0, � � �, 0]> for b> a,rHG ¼
@φs

@x1

� � �
@φs

@xn� js
0 � � � 0

� �

represents the lower-order components for high-gain effect, and

rLMI ¼ 0 � � � 0
@φs

@xn� jsþ1

� � �
@φs

@xn

� �

denotes the higher-order components associated

with the LMIs effect, thusr =rHG +rLMI.

This allows us to independently apply the high-gain effect and the LMIs effect to each com-

ponent. By doing so, we can reduce both the number of required LMIs and the infimum of

gain θ.

Take I½js � 1;n� ¼ diagðIn� js ;Ojs
Þ. Additionally, we define a set

Fjs ¼ f½0; � � � ; 0; �n� jsþ1; � � � ; �n�j�i 2 ½� Lφ; Lφ�g, and consider the vertices of this set denoted

by

V js
F
¼ f½0; � � � ; 0; �n� jsþ1; � � � ; �n�j�i 2 f� Lφ; Lφgg

then we have the following main Theorem.

Theorem 3. Consider the error dynamic (6). Let θ0 represent the infimum of the gain. The
state estimation error e will be asymptotically stable if there exists scalar μ 2 (0, 1), integer
js 2 {1, 2, � � �, n}, and matrices Ri 2 R

2�2 for i = 1, � � �, n − 1, and symmetric positive definite
matrices Pi 2 R

2�2 for i = 1, � � �, n − 1, such that the following 2js Linear Matrix Inequalities
(LMIs) are feasible:

HðniÞ
>P þ PHðniÞ þ S>R> þ RS < � mI2n� 2; 8ni 2 V js

F
ð17Þ

where

HðniÞ ¼ H þ y� 1� nB2n� 2niTnðyÞ
�C

P ¼ diagðP1; � � � ; Pn� 1Þ

R ¼ diagðR1; � � � ;Rn� 1Þ

Once the LMIs are solved, L = P−1R, K = L 12n−2×1, and
y 2 fyjy � y0; y0 ¼ min ðð2Lφs

kPk=mÞ1=ðjsþ1Þ
; 2Þg.
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Proof. Following the step in Theorem 2, estimation error dynamic (7) can be contained in

set associated to Fjs

_~e ¼ yðH þ LSÞ~e þ y� nB2n� 2Dφðx̂; xÞ

¼ yðH þrLMITnðyÞ
�C þ LSÞ~e

þ y
� nB2n� 2rHGTnðyÞC~e

2 yðHðFjsÞ þ LSÞ~e þ y� nB2n� 2rHGTnðyÞC~e

ð18Þ

For everyrLMI 2 F
js , there exists inequality

rLMI �
X2js

i¼1

pini;
X2js

i¼1

pi ¼ 1; pi � 0 ð19Þ

then by substituting (17) and (19) into (18), we can express the derivative of the Lyapunov

function as

_V ¼ y~e>fHeðPHðrLMIÞ þ RSy� 1� nPB2n� 2rHGTnðyÞ
�CÞge

� y~e> He
X2js

i¼1

piPHðniÞ þ RSy� 1� nPB2n� 2rHGTnðy

 !

�CÞ

( )

e

� y~e> He �
m

2
I2n� 2 þ y

� 1� nPB2n� 2rHGTnðyÞ
�C

� �n o
~e

ð20Þ

Similar to Theorem 1, if kPk> 1, defining W ¼ kPk� 1=ðjsþ1Þ
y, we have

He �
m

2
I2n� 2 þ y

� 1� n
kPk� 1PB2n� 2rHGTnðWÞ

�C
� �n o

� He �
m

2
I2n� 2 þ y

� 1� nB2n� 2rHGTnðWÞ
�C

� �n o

¼

� m � � � 0 0 � � � 0 W
� nLφ

..

. . .
. ..

. ..
. ..

. ..
.

0 � � � � m 0 � � � 0 W
� 1� jsLφ

0 � � � 0 � m � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 � � � 0 0 � � � � m 0

W
� nLφ � � � W

� 1� jsLφ 0 � � � 0 � m

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð21Þ

When W >
2Lφ
m

� �1=ð1þjsÞ
and θ> 2, it follows that

m > 2W
� 1� jsLφ >

Xn

i¼jsþ1

W
� iLφ

and

m > W
� jLφ; 8j 2 fjs þ 1; � � � ; ng
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Consequently, the diagonal dominance of He � m

2
I2n� 2 þ y

� 1� nPB2n� 2rHGTnðyÞ
�C

� �
is achieved,

leading to

_V < 0

thus asymptotic stability of both ~e and e can be established. In the case where kPk< 1, the

asymptotic stability can be directly obtained, thereby concluding the proof.

Remark 3. The proposed method offers a significant improvement over Theorem 1 by reduc-
ing the gain to its 1/(1 + js)th power, where js is an adjustable integer ranging from 1 to n. Fur-
thermore, in comparison to Theorem 2, it effectively reduces the number of LMIs from 2n to 2js .

This advancement allows for a desirable balance between the number of LMIs that need to be
solved and the desired gain magnitude, achieved through the tunable parameter js. Notably,
when js = n, Theorem 3 simplifies to Theorem 2, while for js = 0, it further simplifies to Theorem
1. These observations highlight the flexibility and versatility of the proposed method.

We can observe from Theorem 3 that the component for HðFjsÞ exhibits a direct relation-

ship with the selected gain parameter θ. Specifically, as the gain increases, the scale of Vjs

decreases, thereby leading to the more relaxed constraints of the LMIs. To overcome this chal-

lenge, we could formulate an algorithm that employs an iterative approach to solve the LMIs

and subsequently solve the infimum of the gain, ensuring a stable solution. Thus we present

the optimization algorithm for the Lower Power Cascade High-gain observer (LPCHGO) (3)

below:

Algorithm 1: Parameter Optimization for Observer Matrix K and Gain θ
1 Choose the value of js within the range of 1 to n, initial infimum
for gain y

ð0Þ

0
, the stopping change rate of gain dθ, and the maximum

number of tolerable infeasible solutions nf;
2 Solve the Linear Matrix Inequalities (LMIs) (17) with y ¼ y

ð0Þ

0
, obtain-

ing K(1) and y
ð1Þ

0
¼ y0, regardless of the feasibility of the solution;

3 while jyðiÞ
0
� y

ði� 1Þ

0
j > dy do

4 Solve the LMIs (17) with y ¼ y
ðiÞ
0
, obtaining K(i+1) and y

ðiþ1Þ

0
¼ y0,

regardless of the feasibility of the solution
5 if Encounter nf consecutive infeasible solutions; then
6 Go back to step 1 and reduce the value of js;
7 end
8 i = i + 1
9 end
10 Set the observer parameter matrix as K = K(i + 1) and the infimum for

gain as y0 ¼ y
ðiþ1Þ

0
, choose a proper gain parameter θ > θ0 depending on

the demand of convergence speed

Remark 4. In the initial iterations of the algorithm, when solving step 2 with a small initial
value of yð0Þ

0
, the LMIs associated with the HðFjsÞmay become infeasible to solve due to the large

scale of the set. However, after one or two iterations, the value of yð0Þ
0

is optimized and adjusted to
a reasonable magnitude, thereby improving the feasibility of the LMIs.

To compare the effectiveness of this method, especially to the high-order systems, we con-

trasted it with the pol assignment method of the cascade high-gain observer structure

(LPCHGO) [5] and standard high gain method (STDHGO) [1] across various dimensions

under the same lipschitz constant (Lφ = 1), and the final results are presented in Table 1:

4 Application to two physical applications

In this section we will use two physical models to prove our method’s applicability and

performance.
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4.1 Single-link robot system

The first model is a common single-link robot system introduced in [21].

Following the parameter used in [7], the following equations describe the model of the sin-

gle-link robot system:

_z1 ¼ z2

_z2 ¼
�K
J2N

z3 �
F2

J2
z2 �

K
J2
z1 �

mgd
J2

cos ðz1Þ

_z3 ¼ z4

_z4 ¼
1

J1
uþ

�K
J1N

z1 �
K
J2N

z3 �
F1

J1
z4

y ¼ x1

ð22Þ

The control input is given by:

u ¼
mgdJ1
J2N

� J1J2N �K

(

L4c1x1 þ L3c2x2:

þ L2c3

K
J2N

x3 �
mgd
J2

� �

þ Lc4

K
J2N

x4

)

parameters of the controller are listed in Table 2. Additionally, the controller parameters are

given as

c1 ¼ 4; c2 ¼ 7:91; c3 ¼ 6:026; c4 ¼ 1:716; L ¼ 3:

Table 1. Gain comparison between three HGO methods.

Dimensions Observer Gain (θ) Observer Parameter Matrix(K)

3 LPCHGO/LMI 5.7169 5:5117 8:1187

21:4204 4:8113

#>"

LPCHGO/POL [5] 9023.7 0:4000 0:4000

0:0700 0:0171

#>"

STDHGO [1] 96.3091 1:6056 3:3547 1:0688 �
>

�

5 LPCHGO/LMI 8.8660 20:6306 68:5591 25:9634 10:8859

156:1187 99:5251 20:8537 4:2119

#>"

LPCHGO/POL [5] 7.5004 × 106
0:6000 0:6000 0:6000 0:6000

0:3000 0:1110 0:0485 0:0178

#>"

STDHGO [1] 256.9582 5:7483 15:5407 18:1133 12:6005 4:2844 �
>

�

7 LPCHGO/LMI 20.4353 0:0836 0:8644 0:3433 0:1207 0:0353 0:0265

1:4185 2:4005 0:4939 0:0892 0:0146 0:0054

#>

� 103

"

LPCHGO/LMI [5] 2.5293 × 109
0:8000 0:8000 0:8000 0:8000 0:8000 0:8000

0:7700 0:3173 0:1671 0:0926 0:0485 0:0198

#>"

STDHGO [1] 2.1588 × 103
6:4008 22:2823 35:7186 39:8284 29:2688 13:6470 3:1483 �

>
�

https://doi.org/10.1371/journal.pone.0307637.t001
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Considering the 4th-order differential observability and uniform observability of (22) on

the set fZ ¼ fzjz1 2 f�
p

2
; p

2
gg, we can employ the following coordinate transformation to

obtain a new system representation:

x1 ¼ z1

x2 ¼ z2

x3 ¼
�K
J2N

z3 �
F2

J2
z2 �

K
J2
z1 �

mgd
J2

cos ðz1Þ

x4 ¼
�K
J2N

z4 �
F2

J2

�K
J2N

z3 �
F2

J2
z2 �

K
J2
z1 �

mgd
J2

cos ðz1Þ

� �

�
K
J2
z2 þ

mgd
J2

z2 sin ðz1Þ:

ð23Þ

By applying this diffeomorphism transformation, the resulting system is in the observable

canonical form:

_xi ¼ xiþ1; i ¼ 1; 2; 3

_x4 ¼
20 u

3
�

2 x1

3
�

25 x2

12
�

7 x3

2
�

17 x4

12

þ 23:544½� cos ðx1Þ þ x2
2 cos ðx1Þ þ x3 sin ðx1Þ�

þ 15:696 x2 sin ðx1Þ

ð24Þ

which is suitable for designing a High-Gain observer.

To demonstrate the effectiveness and superiority of the method proposed in this paper

(LPCHGO/LMI), we conducted a comparative analysis with the original pole-assign method

presented in [5] (LPCHGO/POL), an additional High-Gain Observer methods introduced in

[7] (FILHGO), as well as the standard high-gain observer firstly introduced in [1].

The Lipschitz constant can be calculated as Lφ = 2, choosing js = 2. The parameters of the

above four methods are listed in Table 3. Note that the poles used in the pole-assign method

are determined as (−0.1, −0.2, −0.2, −0.3, −0.3, −0.4, −0.4, −0.5).

The initial conditions for system (22) is x(0) = [0.5, 0, 0, 0]T and zeros for all observers,

respectively. The responses of system (22) and observers with no external disturbance (v = 0)

are shown in Fig 2. The estimated state, in particular, can track the real state accurately and

quickly.

Table 2. Parameters of single-link robot system.

Symbol Description Value

J1 Inertia constant of actuator shaft 0.15

F1 Viscous friction constant of actuator shaft 0.15

J2 Inertia constant of the link 0.2

F2 Viscous friction constant of the link 0.15

�K Elasticity constant of the spring -0.4

N Transmission gear ratio 2

m Mass of the link 0.8

d Position of the center of gravity of the link 0.6

g Gravity acceleration 9.81

https://doi.org/10.1371/journal.pone.0307637.t002
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On the other hand, in Fig 3 the measurement noise is chosen as (25).

v ¼

0; 0 < t � 2

0:05; 1 < t � 5

0; 5 < t � 7

rð� 1; 1Þ; t > 7

;

8
>>>><

>>>>:

where ρ(−1, 1)present a random noise signal bounding in the range (−1, 1).

Table 3. Design parameters of three high-gain observer methods.

Observer Gain Value Obsrever Parameter Matrix

LPCHGO/LMI 10.3105

K ¼

11:8691 71:0539

16:0232 18:9177

16:9167 10:2755

2

6
6
4

3

7
7
5

LPCHGO/POL [5] 181.1170

K ¼

0:5 0:16

0:5 0:0525

0:5 0:0171

2

6
6
4

3

7
7
5

FILHGO [7] 120 K = diag([0.6451, 0.1604, 0.0263, 0.0016])

D = diag([1.2515, 1.3444, 1.9926, 2.0114])

STDHGO [1] 181.9861 K = [6.5138, 14.8364, 12.9554, 5.6972]>

https://doi.org/10.1371/journal.pone.0307637.t003

Fig 2. State estimation result with v = 0.

https://doi.org/10.1371/journal.pone.0307637.g002
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According to the gain reduction, it can be seen clearly that the impact of measurement

noise is significantly cut down.

4.2 Vehicle trajectory estimation

In the second example we use the vehicle trajectory estimation [22]. And the comparison

between our method with the method proposed in [22] has been taken. The two-dimensional

motion dynamic of the vehicle is expressed as follows:

_z ¼

_X
_Y
_V
_A

�

b

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

¼

Vcosð�þ bÞ

Vsinð�þ bÞ

A

0

VsinðbÞ
lr
0

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

ð25Þ

where X and Y denote the two-dimensional coordinates of the vehicle’s tracking point, V rep-

resents the value of the tracking point’s velocity, A denotes the value of acceleration, ϕ stands

for yaw angle, β represents the slip angle, and lr signifies the distance from the front wheels to

the tracking point. It is assumed that the vehicle’s acceleration and the rate of change of slip

angle are nearly zero. And the canonical observable form of (25) after coordinate transforming

could be expressed as below.

X⃛ ¼ � 3Y⃛
Y⃛ €X � X⃛ €Y
€X2 þ €Y 2

þ 2€X
Y⃛ €X � X⃛ €Y
€X2 þ €Y 2

� �

Y⃛ ¼ 3X⃛
Y⃛ €X � X⃛ €Y
€X2 þ €Y 2

þ 2€Y
Y⃛ €X � X⃛ €Y
€X2 þ €Y 2

� �

8
>>>><

>>>>:

ð26Þ

Following the approach in [22], we set the yaw angle rate _φ ¼ c < 1 as a fixed value, resulting

Fig 3. State estimation result with noise in Eq (25).

https://doi.org/10.1371/journal.pone.0307637.g003
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in the system parameters taking the following form:

X⃛ ¼ � 3cY⃛ þ 2c2 €X

Y⃛ ¼ 3cX⃛ þ 2c2 €Y
ð27Þ

Where the lipschitz constant is Lφ = 1.25. And the parameters of two LPCHGOs is

K ¼
5:5117 21:4204

8:1187 4:8113

" #

and θ = 6.1220. Choose the initial value as X = −30m; Y = 2m;

A = −1m/s2; V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 þ 22
p

m=s; φ = −0.5rad; lr = 1m; _� ¼ 10�. The estimation result is

shown in Fig 4.

The comparison with the original method will be carried out in the presence of measure-

ment noise, and the noise v = 0.5ρ(−0.5, 0.5) + 0.05sin(100t) is added to the positioning mea-

surement output of the X and Y axes. The result is shown in Fig 5.

5 Conclusions

In this paper, we proposed an LMI/LPV method for tuning the parameters of a 2nd-order cas-

cade HGO structure, which is proved to have a better low-pass feature than the standard struc-

ture. We could significantly reduce its gain by applying the LMI/LPV technique. The stability

analysis and the simulation results could imply this fact. In the future, we could utilize the

time-varying gain to improve its convergence speed.

Fig 4. The vehicle trajectory estimation result.

https://doi.org/10.1371/journal.pone.0307637.g004
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