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Abstract

Enumeration of Campylobacter from environmental waters can be difficult due to its low

concentrations, which can still pose a significant health risk. Spectrophotometry is an

approach commonly used for fast detection of water-borne pollutants in water samples,

but it has not been used for pathogen detection, which is commonly done through a labori-

ous and time-consuming culture or qPCR Most Probable Number enumeration methods

(i.e., MPN-PCR approaches). In this study, we proposed a new method, MPN-Spectro-

ML, that can provide rapid evidence of Campylobacter detection and, hence, water con-

centrations. After an initial incubation, the samples were analysed using a spectropho-

tometer, and the spectrum data were used to train three machine learning (ML) models (i.

e., supported vector machine - SVM, logistic regression–LR, and random forest–RF). The

trained models were used to predict the presence of Campylobacter in the enriched water

samples and estimate the most probable number (MPN). Over 100 stormwater, river, and

creek samples (including both fresh and brackish water) from rural and urban catchments

were collected to test the accuracy of the MPN-Spectro-ML method under various scenar-

ios and compared to a previously standardised MPN-PCR method. Differences in the

spectrum were found between positive and negative control samples, with two distinctive

absorbance peaks between 540-542nm and 575-576nm for positive samples. Further,

the three ML models had similar performance irrespective of the scenario tested with

average prediction accuracy (ACC) and false negative rates at 0.763 and 13.8%, respec-

tively. However, the predicted MPN of Campylobacter from the new method varied from

the traditional MPN-PCR method, with a maximum Nash-Sutcliffe coefficient of 0.44 for

the urban catchment dataset. Nevertheless, the MPN values based on these two methods

were still comparable, considering the confidence intervals and large uncertainties asso-

ciated with MPN estimation. The study reveals the potential of this novel approach for pro-

viding interim evidence of the presence and levels of Campylobacter within
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environmental water bodies. This, in turn, decreases the time from risk detection to man-

agement for the benefit of public health.

1. Introduction

Campylobacteriosis is a zoonosis introduced that is transmitted through contact with faecal

material primarily derived from bovine and avian sources. Current WHO figures suggest that

Campylobacter is the leading cause of diarrheal disease in industrialized nations with annually

more than 60,000 and 17,000 confirmed cases reported respectively in the United Kingdom

(UK) and Australia alone [1, 2]. From these, it is estimated that between 10%-30% are due to

environmental exposure pathways [3, 4]. What makes Campylobacter so dangerous is that it

can cause explosive, unpredicted outbreaks with the potential to affect everyone within the

catchment [5, 6]. For example, in 2016, 5500 people (40% of the community) were infected

with Campylobacter after consuming contaminated drinking water in Havelock North (New

Zealand) [7]. Thus, testing the presence of Campylobacter is necessary for not only under-

standing transmission pathways, but its subsequent mitigation in the environment to the bene-

fit of public health.

Enumeration of Campylobacter from complex source samples can be difficult. Isolation

from water samples is particularly problematic, as they are usually present at low concentra-

tions within these microbially complex environments [8]. Culture-based methods for the enu-

meration and isolation of Campylobacter from waters have been optimised (Standardization

ISO, 2005). However, these procedures can be time-consuming and expensive, requiring filtra-

tion, selective enrichment, isolation, and biochemical confirmation (totaling up to ~9 days to

report). A modified Most-Probable Number (MPN)-PCR method is described in Henry,

Schang [9], evaluated by analysing 147 estuarine samples collected over a 2-year period, dem-

onstrated that the intra-laboratory performance of an MPN-PCR approach was superior to

that of the Australian/New Zealand Standard (AS/NZS) (σ = 0.7912, P< 0.001; κ = 0.701,

P< 0.001) with an overall diagnostic accuracy of ~94% [10]This method reduced the report-

ing time to 4 days instead of the standard 9 days. However, both the traditi

onal culture-based method and the modified MPN-PCR method remain expensive, requir-

ing specialised equipment and expertise. Therefore, cheaper and technically more accessible

methods are still required.

With the rapid development of sensor technologies, optical techniques are now commonly

used for the fast detection of waterborne pollutants. These include UV–Vis (ultraviolet–visi-

ble) spectrophotometry, or near-infrared spectroscopy NIR to characterise pollution levels in

drinking water and wastewater systems [11, 12]. Further, optical density, or absorbance, has

been widely applied for the estimation of bacterial concentrations in growth media and is

often used in water analysis standards around the world [13–15]. However, these protocols fre-

quently use a single wavelength to investigate mono-cultures within specific growth media.

Rapid techniques such as biosensors have also been developed for a range of organisms [16,

17]. However, to our knowledge, no studies have investigated comparable methods to detect

and predict the concentration of a waterborne pathogen in a complex matrix, such as those

represented within environmental waters (e.g., streams, rivers, estuaries).

Machine learning approaches have been used as efficient tools to establish the relationships

between spectral results and the continuous monitoring of water quality. For example, Car-

reres-Prieto, Garcı́a [12] developed different regression models, such as multivariate linear
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regressions and machine learning genetic algorithms to estimate sewage water quality from

UV-Vis spectrum data. Arnon, Ezra [18] proposed a new scheme for early detection of con-

taminant events in the water supply system through real-time UV-spectrophotometry, which

applied a machine learning method to set contamination alarms. They found that the models

required significant training with a defined dataset containing high variability (that can repre-

sent all water sources) to achieve significant detection rates while maintaining low levels of

false positives. These methods, however, are commonly applied in wastewater or drinking

water systems and focused on bulk parameters (e.g., biological oxidation demand, chemical

oxidation demand, total suspended solids, total phosphorous and nitrogen species [12], and

organic contaminants [18]). However, there is a dearth of relevant applications in environ-

mental waters despite increasing concerns about health risks associated with exposure to path-

ogens during recreational use (e.g., swimming and boating). Consequently, the potential of

using spectrophotometry coupled with machine learning models to predict the presence of

pathogens (e.g., Campylobacter) in these complex matrices remains unexplored.

This study proposed the application of a new method, named MPN-Spectro-ML, that can

provide a fast turnaround time when detecting and enumerating Campylobacter, as an alterna-

tive, or a precursor, to the traditional MPN-PCR method. The procedure applies a spectropho-

tometer to analyse the initially incubated sample with machine learning models to process the

spectrum data to predict Campylobacter presence within enriched water samples. These values

are then utilised to estimate the Most Probable Number (MPN) within the water samples. The

described study applied water from a range of urban and rural catchments in Melbourne, Aus-

tralia, with the specific objectives of:

• investigate the absorbance spectrum of enrichment cultures that are positive or negative for

Campylobacter, where those enrichment cultures are derived from a variety of water sources,

i.e., stormwater, river, and creek samples (including both fresh and brackish water),

• test and compare three machine learning approaches (logistic regression - LR, random forest

- RF, supported vector machine - SVM) in predicting the presence of Campylobacter by

using the spectrum data under various scenarios and

• evaluate the new MPN-Spectro-ML method’s capability in predicting the presence/absence

of Campylobacter and estimating the concentration of Campylobacter (MPN/L) within the

samples, compared to the traditional MPN-PCR method.

These results of this work demonstrate the potential of spectrophotometry for interim

reporting of the presence and concentration of Campylobacter in water systems. This could

potentially pave the way to reduce turnaround times and associated healthcare costs as a result

of delayed risk reporting. This will enable more timely and effective reporting of public health

risks associated with aquatic recreation at monitoring sites.

2. Methodology

Fig 1 presents the overall methodology of this study. Section 2.1 details the sample collection

process. Section 2.2 introduces the traditional Campylobacter analysis approach, i.e.,
MPN-PCR, which involved sample preparation, inoculation, PCR analysis and MPN estima-

tion. Section 2.3 presents the new MPN-Spectro-ML method which is based on spectropho-

tometry analysis and machine learning model.
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2.1. Sampling collection

Water samples were collected at three creeks with various catchment characteristics in Mel-

bourne, Australia (Table 1). Water was collected in 2 L polyethylene terephthalate containers

rinsed with a minimum of 1 L of source water prior to collection, as previously described in

Henry, Schang [9]. Samples were collected 3 m perpendicular to the nearest bank at an approx-

imate depth of 0.15 m. Sampling days were selected to incorporate variable climatic and hydro-

logical conditions with rain event samples collected using a flow-weighted strategy (McCarthy

et al., 2008). The permits for accessing all the sites were acquired from the asset owner Mel-

bourne Water.

Fig 1. Overview of the methodology from sample collection, culturing, molecular and spectrophotometric quantification.

https://doi.org/10.1371/journal.pone.0307572.g001

Table 1. Summary of the number of samples collected from the three different sites, the number of tubes analysed by PCR, and the number of positive and negative

observations out of the total number of samples tested using the PCR-MPN approach.

Type of dataset Sites characteristics No. of

samples

No. of PCR analysis

(tube)

Pos: negative obs. (based on PCR

analysis)

Controls (Call) n/a n/a 177 44 pos1, 133 negatives2

Water Samples

(Wall)

Rural catchment (WRural) 4 sites, fresh water 24 264 38 pos, 226 neg

Urban catchment (WUrban) 2 sites, fresh water 16 187 96 pos, 91 neg

Mixed rural and urban catchment

(WMix)

8 sites, fresh and brackish

water

99 1089 390 pos, 698 neg

Total 139 1717 568 pos, 1148 neg

1 Positive control sample = Campylobacter jejuni control.
2 Negative control samples include E. coli controls, no antibiotic control (NAB) and sterile water controls.

https://doi.org/10.1371/journal.pone.0307572.t001
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2.2. MPN-PCR method

Water samples were analysed for Campylobacter spp. using the MPN-PCR method described

in Henry, Schang [9], following two steps: sample pre-processing and initial incubation (Sec-

tion 2.2.1) and PCR analysis using the enriched culture (Section 2.2.2). PCR results were

applied to estimate the most probable number (MPN) (Section 2.2.3)

2.2.1. Sample pre-processing and initial incubation. Water sample aliquots were filtered

through a 0.45 μm cellulose membrane before being introduced into 25mL of Preston broth

(Nutrient Broth No. 2, Oxoid, United Kingdom) containing 0.05% Horse Blood (AEB)). Vol-

umes�1 mL were directly introduced into 10 mL of Preston broth. A total of 11 tubes per

sample were processed with three main filtrate regimes applied (as illustrated in Fig 1). These

were:

(A) 1 × 250 mL, 1 × 125 mL, 1 × 50 mL, 1 × 10 mL, 2 × 5 mL and 5 × 1 mL, (B) 1 × 250 mL,

2 × 125 mL, 2 × 50 mL, 2 × 10 mL, 2 × 5 mL and 2 × 1 mL, (C) 1 × 250 mL, 1 × 125 mL, 1 × 50

mL, 1 × 10 mL, 2 × 5 mL and 5 × 1 mL, (D) 1 × 250 mL, 2 × 125 mL, 2 × 50 mL, 2 × 10 mL, 2 × 5

mL, 3 × 1 mL, 2 × 0.1 mL. Post-filtration onto 0.45 μm cellulose nitrate filters, tubes were resusci-

tated for 2hrs at 37˚C before 100 μL (or 50 μL for the 10 mL tubes) of Campylobacter selective

supplement (Oxoid, United Kingdom) were added into each inoculum. Samples were then incu-

bated for 48 hrs at 42˚C in microaerophilic conditions (85% N2, 10% CO2, and 5% O2).

2.2.2. PCR analysis. After 48 hrs incubation, a total of 2 μL of the enriched culture was

diluted into 20 μL of UltraPure DNase RNase free distilled water (Invitrogen, USA) and stored

at -20˚C for a minimum of 16hrs. The samples were then tested by qPCR using the method

described in Henry et al. (2015). No antibiotic negative enrichment controls were included to

ensure no media contamination. Campylobacter jejuni, E. coli, no antibiotic and DNA-free

water contamination controls were conducted with each assay as outlined in AS/NZS [10].

Details for the primers, mastermix and qPCR cycling conditions are described in Henry et al.

(2005). Briefly, the qPCR analysis used Biorad SsoFast Evagreen (BIORAD) mastermix as per

manufacturer’s specified cycling conditions. Campylobacter spp. primers were obtained from

IDT, with qPCR conducted using a CFX96 thermocycler (BIORAD). Positive and negative

control samples were conducted in duplicate as described in Henry et al. 2015.

2.2.3. Most probable number (MPN) estimation. The PCR analysis results from all 11

tubes for each sample (i.e. positive or negative Campylobacter presence in each tube) were then

used to estimate the Most Probable Number (MPN) based on Briones and Reichardt [19] and

Garthright and Blodgett [20]. The MPN method permits the estimation of population density

without an actual count of single cells or colonies. MPN provides a quantitative estimate of

bacterial concentration, which is more informative for assessing contamination levels and

potential health risks. MPN estimation is based on a determination of the presence or absence

of microorganisms in several individual proportions of each of several dilutions of a sample

(as introduced in Fig 1, Section 2.2.1 and 2.2.2). Based on the number of positive and negative

tubes receiving a known quantity of inoculum, the MPN of microorganisms can be estimated

by applying probability theory [21]. This theory calculates the probability that a particular tube

among replicates will contain at least one bacterium (in this case, Campylobacter), indicated by

a positive response after incubation. We can determine the probability of each pattern by con-

sidering all possible combinations over a range of bacterial numbers (n). From the resulting

bar graph of these probabilities versus n, we can identify the Most Probable Number (MPN) -

the value of n for the highest bar divided by the total volume in the test setup - and its occur-

rence probability [22]. The 95% confidence interval was also estimated using Haldane’s

approximation [23].

PLOS ONE ML-Based Rapid Campylobacter Detection using Spectrophotometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0307572 September 6, 2024 5 / 18

https://doi.org/10.1371/journal.pone.0307572


2.3. MPN-Spectro-ML method

After 48 hrs of incubation (Section 2.2.1), a sub-sample was also collected for spectrophotome-

try analysis (Section 2.3.1). The collected spectral data was used to train three independent

machine learning models to predict the presence of Campylobacter spp. in each tube (Section

2.3.2). The prediction results were then used to estimate the predicted MPN (introduced in

Section 2.3.3).

2.3.1. Spectrophotometry analysis. After incubation, 100 μL of each Preston broth tube

for each of the samples was transferred into a tissue culture 96 wells microplate (Falcon) and

analyzed by a Multiskan Sky spectrophotometer (Thermo Fisher Scientific). The absorbance

spectrum of each well was scanned for wavelengths between 220nm and 850nm, correspond-

ing to the UV-vis spectrum. Using the SkanIt software (Thermofisher), the absorbance spec-

trum was corrected by applying the blank subtraction function. The plate used to measure the

absorbance did not pass the UV spectrum, and therefore wavelengths 220nm to 340nm were

removed from the analysis.

Pearson correlation analysis was performed by using IBM SPSS Statistics software to under-

stand the linear relationships between the absorbance data (full spectrum from 453 nm to 850

nm) and the presence/absence of Campylobacter based on PCR analysis results. Visual compari-

sons of the absorbance spectrum were then made for the positive control and negative control

samples, as well as the water samples (which were further separated into positive and negative

samples based on PCR results). The analysis of water samples was also conducted at the overall

level (all sites combined) and the site level. This was done to gain a visual indication as to

whether specific wavelengths could be linked to the presence of Campylobacter in the tubes.

2.3.2. Machine learning models and preliminary testings. 2.3.2.1. Machine learning
(ML) models. Three common ML classification approaches were applied in this study to pre-

dict the presence of Campylobacter in the incubated tubes (i.e. positive/negative or probability)

by using the absorbance spectrum data. The first ML method used was logistic regression (or

logit regression, LR), a statistical model that has been used for water quality simulations (e.g.,

[24]). In this study, we used LR to find the probability of Campylobacteria presence (p) in the

collected water samples. It learns a linear relationship between independent variables (i.e., in

this case, absorbance at different wavelengths) and the log-odds (the ratios of the probabilities

of the event happening to it not happening, i.e., log(p/(1-p))) from the given dataset [24, 25,

26]. The second approach was Support Vector Machines (SVM), which is a common machine

learning technique for classification [27, 28] and has been commonly applied to predict water

quality in freshwater bodies [29, 30]. Briefly, SVM employs a N-dimensional hyperplane to

separate the datasets into two categories using suitable kernel functions, such as linear, Gauss-

ian, polynomial, etc. It follows the principle of Structural Risk Minimization (SRM), minimis-

ing the expected error of a learning tool and thus reduces the problem of overfitting, making it

capable of dealing with a large number of input dimensions (e.g., in this study, wavelength

data) with a relatively low level of computational complexity. The third ML approach used was

random forest (RF), which is an ensemble method that trains many decision trees in parallel

with bootstrapping followed by aggregation [31]. In RF, each individual tree is constructed by

a random subset of training dataset based on different subsets of available variables (in this

case, the wavelengths). Each node in RF is split using the best among a subset of wavelengths

randomly chosen at the node, which is different from the decision tree method which uses all

the data and the best variable for splitting the data. By aggregating many decision trees in the

forest, RF can limit the overfitting, variance, and error caused due to bias.

2.3.2.2. Preliminary testing. The three ML models were applied using the relevant tools

within the open-source library Scikit-learn (Python 3), i.e., sklearn.linear_model.
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LogisticRegression, sklearn.svm.SVC, and sklearn.ensemble.RandomForestClassifier. To test

these models, a set of hyperparameters needed to be determined; therefore, preliminary

modeling exercises were conducted to determine these parameters. Briefly, 1,000 runs (train-

ing and testing of each model with 80–20 random split of all the data for training and testing)

were conducted firstly to gauge the range and sensitivity of the hyperparameters that were

thought to impact the model performance, followed by another 1,000 runs to determine the

impact of hyperparameters. Most of the hyperparameters were insensitive, and thus, the

default values were set. Supporting Information S1 File S1 Table summarises the ranges of

these hyperparameters tested and the final selected values for each hyperparameter.

2.3.3. Evaluation of the MPN-Spectro-ML method. 2.3.3.1. Testing scenarios for PCR
predictions. All the datasets shown in Table 1 were grouped into sub-datasets: all control sam-

ple dataset (Call), from which a subset of these data with an even number of positive and nega-

tive controls was created (Ceven); the dataset with all water samples (WAll) was further

separated into: a rural catchment subset (WRural), an urban catchment subset (WUrban) and a

mixed catchment subset (WMix). Based on these sub-datasets, a total of nine different testing

scenarios were designed (Table 2):

• Scenarios 1–2: Use Call (or Ceven) for model training and Wall for model testing. This was to

investigate whether pure control samples can be prepared and measured in the laboratory to

train the model and use it directly for the prediction of real water samples (Scenario 1:

Train_Call + Test_Wall), and to test whether an uneven number of control samples can have

an impact on the testing results (Scenario 2: Train_CEven + Test_ Wall),

Table 2. Design of scenarios for testing the MPN-Spectro-ML method.

Scenario Train and test dataset Objective

1 Call + Wall Train: all control samples Test if lab control samples can be used to train the model

and use directly for the real water samplesTest: all water samples

2 Ceven + Wall Train: even number of positive

and negative control samples

Test if uneven control sample numbers can have an impact

on the testing results as compared to Scenario 1
Test: all water sample

3 Wall,80 + Wall,20 Train: 80% all water samples Test if the model can be trained and tested just using all

different environmental water samples (i.e., without the

need for lab control samples)
Test: 20% all water samples

4 Call + WRural Train: all control samples Test specific catchments, using similar approaches as

Scenario 1 (usingTest: all rural catchment samples

5 WRural,80
+ WRural,20

Train: 80% Rural catchment

samples

controls for training), and Scenario 3 (only using water

samples for training

Test: 20% Rural catchment

samples

6 Call + WUrban Train: all control samples and testing)

Test: all urban catchment

samples

7 WUrban,80
+ WUrban,20

Train: 80% urban samples

Test: 20% urban samples

8 Call + WMix Train: all control samples

Test: all mix catchment samples

9 WMix,80
+ WMix,20

Train: 80% mix catchment

samples

Test: 20% mix catchment

samples

https://doi.org/10.1371/journal.pone.0307572.t002
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• Scenario 3: Used the Wall sub-dataset only for model training and testing, with an 80–20

split (i.e., randomly select 80% of the dataset for model training and use the rest for testing)

(Scenario 3: Train_W80 + Test_W20 Scenario). This was used as a comparison to the previ-

ous scenario, and

• Scenarios 4–9: Focused on catchment-specific datasets–to perform the previous two scenar-

ios for each catchment dataset separately. For example, using the rural catchment samples:

trained with Call and used WRural for testing (Scenario 4: Train_Call + Test_WRural); trained

and tested using WRural with 80–20 split (Scenario 5: Train_WRural_80 + Test_WRural_20 Sce-

nario). This was to understand whether there is a need to train the method to particular

catchment contexts.

In all these scenarios, the three ML models were run five repeated times to account for

model variation. The model performance was evaluated by Confusion Matrix, based on which

the Accuracy (ACC = (true positive + true negative) / total population) and False Negative Rate
(FNR, or called miss rate = false negative / the number of real positive cases in the population)

were calculated to evaluate and compare the performance of these models.

2.3.3.2. Testing for MPN predictions. The predicted binary results (i.e., positive or negative

Campylobacter presence) from the spectrum data of all 11 tubes for each sample and ML mod-

els were used to estimate the MPN according to the same methods in 2.2.3. Three ML

approaches provide probability estimations, from which binary output is generated using a

typical threshold of 0.5. Therefore, in addition to the MPN estimations based on binary predic-

tions, we also considered the probability estimates to assess their potential for improving MPN

estimation accuracy, i.e., the binary values were replaced with the probability estimates when

computing MPN.

Nash-Sutcliffe efficiency (NSE) coefficient (Nash and Sutcliffe, 1970), which is widely used

for the assessment of water quality models (e.g., [32–34]), was used in this study to evaluate the

ability of MPN-Spectro-ML method in predicting MPN. The NSE is calculated using the Eq (1).

NSE ¼ 1 �

Pn
i¼1

oi � Pið Þ
2

Pn
i¼1

oi � �oð Þ
2

ð1Þ

Oi is the MPN values estimated from the MPN-PCR method (considered as the observed

value); Pi is the MPN values estimated from the MPN-Spectro-ML method (considered as the

predicted value). �O is the mean of the observed values (i.e., all MPN values from the MPN-PCR

method). The NSE ranges from -1 to 1, with 1 indicating a perfect match between observed

and predicted values. When NSE equals zero, the predictive power is equivalent to simply using

the average of the observed values as the prediction for all time steps, while negative NSE values

indicate that the model predictions are worse than using the mean of the observed data. Zhang,

Randelovic [35] suggested that NSE values greater than 0.3 indicate moderate model perfor-

mance, while NSE values less than 0.3 indicate poor model performance.

3. Results and discussion

Visual observation of enrichment cultures after 48 hrs of incubation exhibited distinctive

changes in revealed media colouration, which appeared to be specific to certain samples and

sub-samples. It was therefore hypothesised that observed differences may be directly linked to

the growth of Campylobacter, rather than other enriched microorganisms. This intriguing

finding raised the possibility of using spectrophotometric methods to predict the presence or

absence of Campylobacter following the initial incubation period.
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3.1. Characteristics of spectrum data

Initial Pearson correlation analysis of absorbance spectrum data with PCR analysis results

indicated that the absorbance of 195 wavelengths had significant correlations to the presence

of Campylobacter (p<0.01) (refer to Supplementary Information–correlation results). The

absorbance of 56 wavelengths (all in the range of 531 nm to 586 nm) having R values over 0.40,

indicated a relatively strong correlation. The highest correlated wavelength included wave-

lengths between 573 and 578 nm, with R values of 0.53. Indeed, previous studies also identified

that for other pollutants, a range of different wavelengths relevant to their pollution levels, e.g.,

based on statistical models (i.e., genetic algorithms), Carreres-Prieto, Garcı́a [12] found that

eight different wavelengths were most relevant to COD (chemical oxidation demand) concen-

trations, while five other different wavelengths were most relevant to TSS (total suspended sol-

ids) concentrations in wastewater samples. This finding further supports the use of multiple

wavelengths across the whole spectrum to increase the accuracy of prediction associated with

the presence or absence of Campylobacter in Preston broth.

Visual differences in the spectral absorbance between 400nm and 850nm are illustrated in

Fig 2. Specifically, the results revealed the presence of two distinctive local peaks in the positive

control samples at 540-542nm and 575-576nm, which agreed with the correlation analysis

results. In contrast, most negative control samples had no observable absorbance peaks within

this range (i.e., 92% of the samples; refer to Supporting Information S1 File S2 Table for

details). However, two small local peaks at wavelengths of ~500 nm and 635 nm, respectively,

could be identified within these samples (Fig 2A and 2B). It is promising that under ideal con-

ditions (i.e., controls prepared in the lab free from other microbes or pollutants), the presence

of Campylobacter in Preston broth after incubation showed distinct characteristics of spectrum

absorbance between positive and negative control samples. For environmental water samples,

most of the positive samples using the MPN-PCR method displayed the two distinctive two

peaks observed within the positive control (average 95% of the samples across all sites; Fig 2C).

In contrast, negative water samples using the MPN-PCR method also displayed peaks compa-

rable to positive samples at 540-542nm and 575-576nm (average 42.4% of all negative samples,

Fig 2D). This was observed particularly within samples collected from the Rural catchment

(63.3% of the samples; Fig 2F), a high-quality drinking water catchment. These changes may

be directly associated with differences in nutrient usage by microbiota within the enriched

samples, which have been previously observed to be highly variable and not specific to Cam-
pylobacter spp. [36]. Therefore, it may be of interest to investigate this phenomenon further

within similar freshwater contexts to define the microbial source of this interference. These

results provided the impetus to explore the use of machine learning approaches to further ana-

lyse the spectrum data.

3.2. Performance of the MPN-Spectro-ML method in predicting

Campylobacter presence

The performance of the three ML models (SVM, logistic, and RF) had no significant differ-

ences (p<0.05) in predicting the presence of Campylobacter, with an overall accuracy (ACC)

of 0.728 ± 0.118 (Table 3). However, the false negative rates (FNR) of SVM and logistic models

(average 9.7%) were comparably lower than RF (average 23.3%). By comparing the prediction

results (presence of Campylobacter) of individual enrichment cultures, it was observed that

there was > 90% similarity for the binary predictions from SVM and logistic models, as shown

in the confusion matrix (Fig 3, Scenario 1 as an example). These results highlighted that all the

models could learn from the given data to provide early predictions, but with RF giving higher

FNR. These FNR results were also comparable to similar studies on early contamination
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detection in drinking water using UV-Spectrophotometry, e.g., based on various datasets,

Arnon, Ezra [18] used SVM to predict contamination events and found that the false negative

rates (actual contaminated water predicted to be potable water) varied from only 1.42% to

almost 28.8%. Thus, though it was noted that accuracies could be improved (i.e., to over 0.90),

these were considered sufficient in provisioning an early indicator of the potential risk of Cam-
pylobacter in water, which would then require secondary confirmations.

By comparing test Scenario 1 Call + Wall (44 positive and 133 negative controls) and Sce-

nario 2 Ceven +Wall (44 positive and negative controls), no significant difference was observed

Fig 2. Absorbance spectrum of positive and negative control (a-b), and PCR positive and negative samples from all

sites combined and the three study sites between wavelength 450 and 800 nm (c-j). The wavelength< 450 nm was not

shown as they have variations with no observable difference between all samples.

https://doi.org/10.1371/journal.pone.0307572.g002
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(p<0.01, Table 3). This was supported by the findings presented in Fig 4, where the percent-

ages of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) were

found to be identical between these two scenarios. This indicated that having an uneven num-

ber of positive and negative controls for training had a negligible impact on the overall model

testing results. Further, if only water samples were used for both training and testing (Scenario

3 Wall,80 +Wall,20), although the same level of accuracies could be achieved (0.712–0.749), the

levels of FNR were observed to be higher (average = 16.8%) in comparison to simulations

where control data where integrated as part of the training dataset in Scenario 1 and 2 (11.8%).

This highlighted that laboratory-prepared control samples were sufficient to train the ML

models before applying the trained models for predicting Campylobacter in environmental

water samples.

Table 3. Summary of the model performance (based on test) under different test scenarios. The accuracy and false negative values from the training phase are pre-

sented in the Supporting Information S1 File S3 Table.

Test scenario Accuracy False negative rate (FNR)

SVM Logistic RF SVM Logistic RF

1 Call + Wall 0.726 0.720 0.744 10.5% 10.3% 15.5%

2 Ceven + Wall 0.728 0.730 0.737 10.7% 10.5% 13.2%

3 Wall,80 + Wall,20 0.712 0.731 0.749 12.6% 13.6% 24.3%

(0.051)* (0.043) (0.053) (3.1%) (3.1%) (6.4%)

4 Call + WRural 0.466 0.451 0.519 7.9% 7.9% 13.2%

5 WRural,80 + WRural,20 0.482 0.636 0.814 0.0% 10.8% 78.3%

(0.159) (0.072) (0.049) (0.0%) (24.1%) (22.5%)

6 Call + WUrban 0.861 0.856 0.840 5.2% 6.3% 12.5%

7 WUrban,80 + WUrban,20 0.836 0.836 0.752 7.4% 11.0% 16.4%

(0.046) (0.041) (0.050) (2.0%) (3.8%) (6.1%)

8 Call + WMix 0.766 0.762 0.780 12.1% 11.5% 16.9%

9 WMix,80 + WMix,20 0.794 0.808 0.818 12.6% 13.0% 19.2%

(0.007) (0.008) (0.021) (2.8%) (3.8%) (5.0%)

Note * the numbers/percentages in the brackets represent the standard deviation from five repeated runs. This was only presented for the scenarios (3, 5, 7, and 9) that

had a random split of 80–20 in the dataset for training and testing, while for the other scenarios the five repeated runs led to almost identical results.

https://doi.org/10.1371/journal.pone.0307572.t003

Fig 3. Confusion matrix of the models testing results from Scenario 1 (Call + Wall, using all the control samples for training and all water samples for testing). ACC

= (TN+TP)/(TN+TP+FN+FP), and FNR = FN/(FN+TP).

https://doi.org/10.1371/journal.pone.0307572.g003
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It was noted that across scenarios, the percentage of false positive predictions (26.4±14.9%)

was significantly higher than those of false negative predictions (2.9±1.5%) (p<0.05, indepen-

dent-sample T-test) (Fig 4). This was in agreement with spectra results that indicated that a

considerable number of MPN-PCR negative samples (42.4%) also contained two distinctive

local peaks at round 540-542nm and 575-576nm (Fig 2); and were assigned a positive predic-

tion by the ML models. However, the overall level of false negatives suggested that the pre-

dicted results were conservative.

By applying the models based on spatial differences (e.g., Scenarios 4–9, Table 3) it was

observed that the poorest model performance was found for samples derived from the Rural

catchment. The results from this location indicated that the average ACC was<0.6 for all the

models when the controls were used to train the model (i.e., Scenario 4 Call + WRural, Table 3)

and when training and testing were conducted using the water samples (Scenario 5 WRural,80

+WRural,20, Table 3). In fact, the samples for this site were characterized as having a low prob-

ability of containing Campylobacter (38 positive vs 226 negative observations). Thus, the data-

set was substantially biased towards negative results, which may lead to the high instability of

the models. In Scenario 5, where the imbalanced samples of positive and negative observations

were used for both training and testing, the models had up to 78.3% FNR. Thus, it is suggested

that the pure water samples not to be used for model training and testing.

The best performance was observed for the urban catchment site, which had an almost

equal number of positive and negative observations (96 vs 91). It should be noted that, in con-

trast to the rural catchment, the highly urbanized catchment has inputs from local stormwater

infrastructure and is significantly impacted by surface run-off events. Therefore, microbiota

captured within enrichment cultures were expected to significantly differ from those observed

in more rural/agricultural locations. The average ACC was 0.830, and FNR was 9.8% across all

Fig 4. Results of predictions from SVM model under various scenarios; the ‘positive’ and ‘negative’ indicate correct

prediction by the model, while ‘false positive’ refers to observed negative predicted as positive, and ‘false negative’

indicates observed positive predicted as negative.

https://doi.org/10.1371/journal.pone.0307572.g004
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three models and two scenarios (Scenario 6 and 7). The models also demonstrated satisfactory

performance when fed with data from the mixed catchment, with an average ACC of 0.769

and FNR of 13.5% (Scenario 8 Call + WMix), which was better than Scenario 3 Wall,80 +Wall,20

which used the whole data set (ACC = 0.731 and FNR = 16.8%; Table 3). It should also be

noted that the mixed catchment had the largest number of data points (N = 1089). Thus, it is

likely that the model performance on the whole dataset was largely influenced by data derived

from this location. By using all the mixed catchment data for model training and testing (i.e.,
without controls, Scenario 9 WMix,80 + WMix,20), overall ACC can be slightly improved to

0.807 (when compared to Scenario 8 Call + WMix). However, the FNR also increased to 14.9%.

This further suggested that it was sufficient to apply laboratory-prepared controls to train the

model, which can then be used to predict environmental water samples.

3.3. Performance of the MPN-Spectro-ML method in predicting MPN

Using the predicted presence of Campylobacter in each enriched culture, the quantification of

the concentration (MPN/L) was found to be variable and dependent on the model applied

(Fig 5). The NSE values were, in general, below 0.20 (i.e., poor model performance) and, in

many cases, were negative. Overall, the worst performance was observed for Scenario 3, proba-

bly due to its slightly higher FNR (Table 3). The highest accuracy and lowest FNR were simu-

lated for the Urban catchment (Scenario 6 Call + WUrban, Table 3). Thus, it also had the best

predicted MPN values when compared to the observed MPN values (using the MPN-PCR

method), with an NSE of up to 0.44. However, equivalent results were not obtained for the

Mixed catchment (Scenario 8 Call + WMix). Overall, using probability estimates to compute

MPN values resulted in better model performance with positive NSE values across all the sce-

narios (with the exception of Scenario 3), and SVM and logistic regression often have rela-

tively better performance than RF.

From the perspective of NSE values, the estimations of MPN using predicted data were

poor. Nevertheless, it was noted that there are also large uncertainties within the computation

Fig 5. Performance of the modelling results based on the MPN-Spectro-ML method for estimating MPN values as compared to the

measured MPN based on the MPN-PCR method.

https://doi.org/10.1371/journal.pone.0307572.g005
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of MPN values. MPN estimates have been reported to be inaccurate for a small number of

tubes [37] and highly variable [38]. This can be observed in the comparisons between MPN

values estimated from the MPN-Spectro-ML and MPN-PCR method (Fig 6). As shown, the

confidence intervals of the observed MPN values (green error bars) generally match with the

confidence intervals of the predicated MPN values (orange error bars) based on ML methods.

Further, inherent uncertainties have been associated with the application of MPN-based quan-

tification methods. Many of these have been previously reviewed [39, 40] but can include the

use of non-exact MPN calculations, Type A and Type B uncertainty estimates. Consequently,

results are reported as a mean concentration with large associated confidence intervals.

3.4. Practical implications and future work

This study highlights the potential of utilizing spectrophotometry for interim reporting of the

presence and levels of Campylobacter spp. in water systems. When complementing traditional

and currently approved methods, this approach can provide regulators with a means to imple-

ment interim risk mitigation strategies, resulting in reduced turnaround times and associated

costs. Further, given the costs associated with molecular-based technologies, the use of cheaper

spectrophotometric methods increases the potential applications of the described technique to

resource-poor settings, where there is a large burden of disease associated with environmental

transmission of pathogens such as Campylobacter.
This study shows significant correlations (r> 0.40, p<0.01) between Campylobacter pres-

ence/levels and the absorbance of 56 wavelengths in the range of 531 nm to 586 nm), despite

the presence of other microorganisms in the environmental samples collected in this study.

Nevertheless, it is possible that other microorganisms present in the environmental samples

may produce similar spectral bands and be confused with Campylobacter. Thus, future studies

could investigate the potential for microbiota-specific effects.

The results suggest that the laboratory-prepared positive and negative controls could pro-

vide basic data for training the ML models, which showed relatively acceptable performance in

predicting Campylobacter presence in various environmental water samples from catchments

of different land uses. It is recommended that this new approach be tested considering a wider

range of environmental samples and catchments across different regions and climates. While

Fig 6. Comparison of estimated MPN values between MPN_PCR and MPN-Spectro-ML methods. Error bars indicate the low and high confidence interval of

the two methods (orange for MPN-PCR, and green for MPN-Spectro-ML method). Scenario 1 refers to Call + WAll and Scenario 6 refers to Call + WUrban.

https://doi.org/10.1371/journal.pone.0307572.g006
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this study tested three ML models, it could also expand to include more ML approaches that

can handle various types of data from different environmental conditions.

Given the growing evidence of environmental campylobacter’s impact on public health,

especially in low- and middle-income countries [41]. Thus, the affordability of spectrophotom-

etry emerges as a key strength, and the output of this study really offers the first steps to a

cheap public health response tool with broad applications.

4. Conclusions

This study proposed a rapid Campylobacter detection method (MPN-Spectro-ML) based on

spectrophotometry and machine learning, for application to diverse water matrices. Three

machine learning models, namely support vector machine (SVM), logistic regression (LR) and

random forest (RF) were used to link the spectrum data with the presence of Campylobacter,
which was consequently used to estimate the most probable numbers (MPN). This method

was then applied to estimate the concentration of Campylobacter within the test samples and

compared against the traditional MPN-PCR methods. Key results included:

• By analyzing the full spectrum absorbance data, two distinctive local peaks (at 540-542nm

and 575-576nm) were observed within >92% of culturally confirmed positive samples.

• Across all different model testing scenarios, similar performance was observed between the

three ML models, with an overall prediction accuracy (ACC) of 0.728 and a false negative

rate of 6.3%.

• Laboratory controls are recommended for training the models instead of using collected

water samples for both training and testing. The trained models could then be used to pre-

dict real water samples.

• The MPN of Campylobacter estimated based on the new MPN-Spectro-ML method was

aligned but not perfectly correlated with that calculated according to the MPN-PCR method

(max NSE = 0.44 for the dataset of urban catchment site). Nevertheless, the MPN values

based on these two methods were still comparable, considering the confidence intervals and

large uncertainties associated with MPN estimation.
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