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Abstract

Facial expression recognition(FER) is a hot topic in computer vision, especially as deep

learning based methods are gaining traction in this field. However, traditional convolutional

neural networks (CNN) ignore the relative position relationship of key facial features (mouth,

eyebrows, eyes, etc.) due to changes of facial expressions in real-world environments such

as rotation, displacement or partial occlusion. In addition, most of the works in the literature

do not take visual tempos into account when recognizing facial expressions that possess

higher similarities. To address these issues, we propose a visual tempos 3D-CapsNet

framework(VT-3DCapsNet). First, we propose 3D-CapsNet model for emotion recognition,

in which we introduced improved 3D-ResNet architecture that integrated with AU-perceived

attention module to enhance the ability of feature representation of capsule network,

through expressing deeper hierarchical spatiotemporal features and extracting latent infor-

mation (position, size, orientation) in key facial areas. Furthermore, we propose the tempo-

ral pyramid network(TPN)-based expression recognition module(TPN-ERM), which can

learn high-level facial motion features from video frames to model differences in visual tem-

pos, further improving the recognition accuracy of 3D-CapsNet. Extensive experiments are

conducted on extended Kohn-Kanada (CK+) database and Acted Facial Expression in Wild

(AFEW) database. The results demonstrate competitive performance of our approach com-

pared with other state-of-the-art methods.

1 Introduction

Facial expression recognition has been widely used in the fields of mental health, virtual reality,

synthetic animation, intelligent monitoring, and intelligent robots. A FER system [1] is mainly

composed of three stages: face detection, facial feature extraction, and expression recognition.

Generally, Face detection detects whether there is a face in the given image area based on

unique facial characteristics and then locates the facial coordinate and segments the face from

the image. Facial feature extraction is only performed on the facial area, which is the most
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important stage of FER. After the facial expression features are obtained, the facial expressions

are classified through using the neural network based method. The robustness and complete-

ness of the extracted features will decisively influence the final recognition result.

With the development of convolutional neural network in many fields [2–5], substantial

breakthroughs have been made in facial expression recognition. Zhang et al. [6]. proposed a

Part-based Hierarchical Bidirectional Recurrent Neural Network (PHRNN) to analyze the

facial expression information of temporal sequences, which employed a multi-signal convolu-

tional neural network (MSCNN) to extract spatial features from still frames to complement

the still appearance information. Fan et al. [7] proposed MRE-CNN framework for FER,

which aimed to enhance the learning power of CNN models by capturing both the global and

local features. Li et al. [8] put forward a new DLP-CNN method that enhanced the discrimina-

tive power of deep features by preserving the locality closeness while maximizing the inter-

class scatter. However, these methods for FER only focus on local or global feature representa-

tion, and they neglect relationship (relative position relationship, scale, feature direction, etc.)

among local facial features [9]. There are several important studies as follows:

The proposal of the capsule network [10] can well tackle the above problems. The capsule

network uses neuron vectors to learn the pose information for targets and uses dynamic rout-

ing mechanism to transfer the capsule information between layers. This network has achieved

the higher accuracy rate and strong robustness in digital recognition. However, the traditional

capsule network only uses one layer of convolution for spatial feature extraction, which limits

its performance [11]. Therefore, in the 3D-CapsNet model proposed in this paper, the 3D con-

volutional architecture is used in the feature extraction stage to extract spatiotemporal features,

and then extraxted features are further encoded by dynamic routing mechanism. In addition,

the visual tempos of facial expressions [12] can be employed to improve the recognition effect.

Specifically, different facial expressions usually hold different visual tempos. However, In some

cases there are larger similarities in visual appearance of different expressions(e.g. Fear and

Surprise) and the key to distinguish them is their visual tempos.

To this end, we utilize improved deep 3-dimensional convolutional neural network model

(3D-ResNet) to replace the traditional convolutional layer of capsule networks, and we named

the improved capsule network that applyed improved 3D-ResNet architecture 3D-CapsNet.

Specifically, the improved 3D-ResNet architecture employs 3D convolution kernels to learn

spatiotemporal features in the residual block part. Meanwhile, we incorporate AU-perceived

attention module into the 3D residual block to better focus on the key facial area. Then a non-

local attention block is used to capture long-range dependencies on spatial and temporal

dimension. Next we exploit dynamic routing algorithms of CapsNet to calculate the weight

allocation between different capsules to capture the hierarchical structure of features and better

handle complex feature relationships.

Given that 3D-CapsNet focuses on improving the ability of feature representation, the abil-

ity of modeling the dynamic visual tempos of facial expressions is insufficient. Therefore, we

propose TPN-based expression recognition module (TPN-ERM) to further improve our

3D-CapsNet model and we named the improved 3D-CapsNet architecture that integrated

with TPN-ERM VT-3DCapsNet. Overall, our main contributions can be summarized as

follows:

1. First, we propose 3D-CapsNet model for emotion recognition, in which we introduced

improved 3D-ResNet architecture that integrated with AU-perceived attention module to

enhance the ability of feature representation of capsule network through extracting deeper

hierarchical spatiotemporal features and extracting latent information (position, size, orien-

tation) in key facial areas.
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2. Second, we propose the temporal pyramid network(TPN)-based expression recognition

module(TPN-ERM), which can learn high-level facial motion features from video frames to

model differences in visual tempos, further improving the recognition accuracy of

3D-CapsNet.

3. Finally, extensive experiments are conducted on the CK+ and AFEW datasets, the results

demonstrate that our method significantly outperforms other state-of-the-art methods.

The remaining of this article is organized as follows. The related work is presented in Sec-

tion 2, while the 3D-CapsNet model and TPN-based expression recognition module are dis-

cussed in Section 3. Experimental results and discussion are shown in section 4, and

conclusion is drawn in Section 5.

2 Related work

2.1 Traditional hand-crafted feature extraction for FER

Most of the traditional facial expression feature extraction algorithms used artificially designed

features or shallow learning methods. Local Binary Pattern (LBP) is one of the finest manual

feature extraction techniques. Niu et al. [13] offered an approach based on a combination of

LBP features and an enhanced ORB, which effectively solved the problem of overlapping and

redundant feature points in the feature extraction process and produced decent results on

multiple experimental controlled datasets. Xiang et al. [14] proposes a novel illumination

insensitive feature descriptor by integrating the center-symmetric local binary pattern

(CS-LBP) into a common feature description framework. However, these approaches, due to

their low semantic intensity, fail to perform accurate recognition in more complex real-world

scenarios. To tackle this problem, Liao et al. [15] introduced RCL-Net that is based on ResNet-

CBAM residual attention branch and the local binary feature (LBP) extraction branch

(RCL-Net), which aimed to emphasize the local detail feature information of facial expressions

and extract texture feature information. However, these manual feature extraction approaches

have a high workload, lengthy stages and significant restrictions in terms of practical applica-

tions, and these methods depend heavily on researcher’s experience and their performance is

strongly affected by image quality variations.

2.2 Deep learning based methods for FER

Recently, the methods based on deep learning have been widely used for FER and achieve

state-of-the-art performance. But most CNN-based models fail to learn long-range inductive

biases between different facial regions in most neural layers, which limits the performance of

the models. To address this problem, Huang et al. [16] introduced a novel FER framework

with two attention mechanisms for CNN-based models. In particular, a visual transformer

attention mechanism is used to learn high-level semantic representation. Wu et al. [17] pro-

posed a novel cross-hierarchy contrast (CHC) framework FER-CHC to utilize these crucial

features in improving the performance of CNN-based models for FER through employing a

contrastive learning mechanism. Specifically, the CHC captures common and differential fea-

tures from different facial expressions with a cross-hierarchy contrast mechanism, which can

regularize the feature learning of the backbone network and enhance global representations of

facial expressions. Recent methods based on Vision Transformer (ViT) [16, 18] have been

introduced to improve the performance of CNN-based models. However, ViT-based

approaches are vulnerable to facial regions unrelated to expressions and may learn redundant

correlation representations due to their self-attention mechanism. To address these issues, Fan

et al. [19] proposed a novel graph-based model called Face2Nodes, which can flexibly learn the
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graph representations of facial expressions without requiring additional auxiliary facial infor-

mation such as landmarks. In addition, Zhou et al. [20] realized that existing models failed to

capture the crucial complementary gains between face and context information in video clips.

And they presented a novel cross-attention and hybrid feature weighting network to achieve

accurate emotion recognition from large-scale video clips through fully exploiting the comple-

mentary information between face and context features.

Kensho et al. [21] proposed a 3D CNNs based on ResNets toward a better action represen-

tation and described the training procedure of 3D ResNets in details. Teng et al. [22] proposed

a new network called Typical Facial Expression Network (TFEN) to extract temporal features

and the spatial structure of facial expressions in an integrated manner, which uses two deep

two-dimensional (2D) convolutional neural networks (CNNs) to extract facial and expression

features from input video. A facial feature decoupler decouples facial features from expression

features to minimize the influence from inter-subject face variations. These networks combine

with a 3D CNN and form a spatial-temporal learning network to jointly explore the spatial-

temporal features in a video. But 3D convolutions usually employ structures with fixed tempo-

ral depth that decreases the potential to extract discriminative representations. Based on these,

Melo et al. [23] proposed a novel deep learning architecture called the Maximization and Dif-

ferentiation Network (MDN) to effectively represent facial expression variations that are rele-

vant for depression assessment. Khanna et al. [24] combines two commonly used deep

3-dimensional Convolutional Neural Networks (3D CNN) models with slight modifications.

Initially, the 3D ResNet model extracted feature vectors from video frame sequences, then

these feature vectors are fed to the 3D DenseNet model’s blocks, which are then used to classify

the predicted emotion.

The convolution neural network does not consider the spatial and interlayer features of the

target. The use of dynamic routing in capsule networks [10] can well address the above prob-

lems. However, the traditional capsule neural network does not extract features sufficiently

before the dynamic routing between the capsules. To achieve better feature representation,

Shu et al. [25] presented RES-CapsNet to investigate the recognition of micro-expression,

which proposed an improved capsule network that used Res2Net as the backbone to extract

multi-level and multi-scale characteristics. low-quality 3D face recognition(FR) with missing

facial features still suffers from insufficient discriminative feature extraction for visible face

regions. Zhao et al. [26] proposed a dual-stream multi-scale fusion network (DSNet) for low-

quality 3D FR. Which introduced a capsule network as the second stream to enhance the

expression of 3D facial spatial position information, thereby further improving the perfor-

mance of low-quality 3D FR with missing facial features. Ye et al. [27] designed SCapsNet for

FER, which used a shallow small convolution kernel to reduce the network parameters of the

capsule network and optimize the quantity and quality of capsule of the capsule network to

improve the calculation efficiency.

Feature pyramid is a widely-used method to learn multi-scale feature representation for

detecting objects of various scales. FPN [28] exploited the inherent multi-scale pyramidal hier-

archy of deep convolutional networks to construct feature pyramids with marginal extra cost.

Liu et al. [29] proposed PANet which added a bottom-up path to enhance the entire feature

hierarchy with accurate localization signals in lower layers. However, FPN and PANet cannot

handle the information about temporal series well, and they are designed in complex and

multi branch manner. On the other hands, visual tempo characterizes the dynamics and the

temporal scale of an action. Therefore, modeling such visual tempos of different actions will

facilitate their recognition. Yang et al. [12] proposed a temporal pyramid network (TPN) for

modeling the visual tempo. The extraction of features and fusion of features form feature hier-

archy structure for the backbone so that they can capture action instances at various tempos.
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Yang et al. [30] proposed a CNN-based framework called Pyramidal Spatio-Temporal Net-

work (PSTNet), which employed Spatial encoding for spatial representation of external factors,

while prior pyramid enhances feature dependence of spatial scale distances and temporal

spans, then post pyramid is proposed to fuse the heterogeneous spatio-temporal features of

multiple scales. To enrich temporal information of the inputs, a Multiple Frame Rate Module

(MFM) is proposed to mix different frame rates at a fine-grained pixel-wise level. Chen et al.

[31] introduced a Multiple Frame Rate Module (MFM) which mixed different frame rates at a

fine-grained pixel-wise level to enrich temporal information of the inputs. But these methods

remain computationally expensive when dealing with the dynamic visual tempos of action

instances at the input frame level. In this work, we improve the ways of feature fusion and

introduce adaptive weighted fusion to better learn parameters in the feature fusion stage to

tackle this problem.

To sum up, the performance of FER system can still be greatly improved. In the existing

works, failing to make full use of spatiotemporal features limits the performance of the model,

and visual tempos of facial expressions are rarely used in FER. As a result, we propose a fine-

grained method that uses 3D-CapsNet to fully utilize and encode the feature presentation in

the input video. We also propose TPN-ERM, which employs visual tempos of different facial

expressions to further improve the performance of 3D-CapsNet.

3 Our methods

An overview of the proposed approach is depicted in Fig 1. The input of the 3D-CapsNet is

limited to a small number of contiguous video frames owing to the increased trainable param-

eters as the size of input window (the time dimension of the convolution) increases. On the

other hand, many facial actions of expressions are extended in various frames, it is necessary

to encode facial motion information in the 3D-CapsNet model. Toward this end, we propose

to use improved TPN-ERM to calculate facial motion features representing expressions from a

considerable number of video frames and use these features as auxiliary outputs to regularize

3D-CapsNet model as shown in Fig 1. Particularly, we generate a feature vector encoding

long-term facial motion information beyond the information contained in the input frames to

the 3D-CapsNet for each trained expression. 3D-CapsNet is made to learn a feature vector

close to this feature, which is accomplished via connecting many auxiliary output units to the

Fig 1. An illustration of our visual tempos 3D-capsule network framework(VT-3DCapsNet). 3D-CapsNet is made

to learn a feature vector close to high-level motion feature via connecting auxiliary outputs to the PrimaryCaps layer

for feature encoding.

https://doi.org/10.1371/journal.pone.0307446.g001
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PrimaryCaps layer in 3D-CapsNet. This will enable 3D-CapsNet to learn high-level expression

features.

In the following, we describe our proposed 3D-CapsNet model which is used to better learn

spatiotemporal feature. Then, we describe TPN-based expression recognition module

(TPN-ERM) that models the variances in visual tempos to further optimize the performance

of 3D-CapsNet model.

3.1 The 3D-CapsNet model

The overall architecture of 3D-CapsNet is shown in Fig 2. The improved 3D-ResNet extracts

deep spatiotemporal features from video tracks (which can be regarded as a video clip). And

the encoding and decoding abilities of the dynamic routing mechanism in the capsule network

can obtain features represented by vectors, thus improving the accuracy of facial expression

recognition. Each module of 3D-CapsNet will be described in detail in the following sections.

3.1.1 Spatiotemporal features extraction. The whole system could be divided into two

important parts: extracting spatiotemporal features from video tracks through improved 3D

ResNet, integrating spatiotemporal features by the non-local blocks, and learning the features

in key facial areas through the AU perception enhancement module. The video clip is first

divided into continuous non-overlapping small segments, and each small segment contains N
frames. Assuming that each fragment is represented as:

ck ¼ fxt j xt 2 RH�Wg
N
t¼1

ð1Þ

where N is the length, H and W are the height and width of the image respectively. Specifically,

our network structure is shown in Fig 3, in which (a) is the overall improved 3D ResNet struc-

ture, (b) is the residual block structure of the 3D-RseNet we used, and (c) shows the bottleneck

block after average pooling to speed up training and improve performance.

We adopt 3D convolution kernels of 3D ResNet-50 architecture to extract spatiotemporal

features. However, 3D-ConvNet is hard to optimize because of the large number of parame-

ters. To tackle this problem, we added an extra time dimension to all 2D ResNet-50 convolu-

tion filters. For example, a 2D k × k kernel can be exaggerated to a 3D t × k × k kernel that

spans t frames. Specifically, we use a 1D convolution layer which is purely to learn temporal

sequence features and a 2D convolution layer to learn the spatial features in the residual block.

As shown in the blue dashed box in Fig 3(b). Meanwhile, we have also incorporated AU-per-

ceived enhancement module into the 3D residual block to better focus on the key parts of the

Fig 2. The overall architecture of 3D-CapsNet. (1) The improved 3D-ResNet servers as a feature extractor to better

learn spatiotemporal features, and the AU-perceived attention mechanism is introduced to perceive the specific AU

changes related to facial expression and focus on effective feature information of key facial areas. Thus enhancing

model’s ability of feature representation. (2) The capsule network module encodes the enhanced feature mapping

through dynamic routing mechanism, decodes it through three fully connected layers, and implements the final

expression classification through the squeeze function.

https://doi.org/10.1371/journal.pone.0307446.g002
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facial area. Finally, our network also contains a non-local attention block [32] to capture long-

range dependencies on spatial and temporal dimension.

3.1.2 The AU-perceived attention module. Since the face in video is an image containing

structured targets(facial organs), the contribution of facial active areas will be more prominent.

Facial expression recognition needs to pay more attention to the facial key areas. We refer to

method proposed by Wei Li [33] and show specific implementation algorithm of attention

mapping in Table 1.

First, 68 landmarks based on the key area of the face are obtained, and then the AU center

is gained by moving the zoom distance or using the existing landmarks. The rules for defining

AU centers also refer to Wei Li [33]. Finally, we build the attention map for AUs based on key

facial landmarks.

After that, we adjust the attention map to the 100 x 100 pixels to ensure that the attention

map of each image is uniform. For each AU center, 7 pixels near the center are regarded as AU

area, so the size of each AU area is 15 x 15 pixels. Higher weight is assigned to the closer points

to the AU center. The relationship follows the equation:

wa ¼ 1 � 0:095dm; dm ¼ jx1 � x2j þ jy1 � y2j ð2Þ

where dm is the Manhattan distance to the AU center. Suppose the coordinates of the two

Fig 3. The overall structure of improved 3D-ResNet.

https://doi.org/10.1371/journal.pone.0307446.g003

Table 1. The algorithm of attention map generation.

Algorithm 1 Attention map generation algorithm.

Input: The path of face image(path); Key area of the face(keyArea);

Output: Coordinates of the bounding box(bbc); the attention map(am).

1: image Image.open(path)

2: img_array np.array(image)

3: landmark_point ObtainLandmark(keyArea, img_array)

4: au_point ComputeAuCenter(landmark_point, img_array)

5: dm ManhattanDistance(au_point)

6: wa 1 − 0.095 * dm

7: bbc, am GetBoundingBox(wa, au_point, img_array)

8: return bbc, am

https://doi.org/10.1371/journal.pone.0307446.t001
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points are (x1, y1) and (x2, y2) respectively. The Manhattan distance represents the sum of the

absolute axis distances of the two points on the standard coordinate system. We use a relatively

large local area to cover the key areas of AU so that the generation method of attention map-

ping can have a certain degree of fault tolerance to landmark shift.

However, applying the attention layer directly will discard a lot of information which are

not included in the attention layer. We use the skipping layer of the residual network to com-

bine the attention enhancement area with other areas so as to address the problem of losing

information in non-critical areas. Fig 4 shows the skipping layer connection in residual net-

work and attention mapping in our model. The skipping layer structure combines the lower

level spatial features in the convolution layer with the higher-level semantic features to form

richer feature representation of the input image.

As shown in Fig 3, the specific operation is to embed the generated attention map in the

convolution operation of the first 3D residual block, and set the attention map as a parallel

stream separately. After relevant feature map is generated through the foregoing maximum

pooling, we will multiply the feature map by the attention map. After the convolution in the

3D residual block is completed, the parallel attention feature generation map and the convolu-

tion result will be added element by element for fusion to input the pooling layer of next stage.

3.1.3 Feature encoding and decoding. The capsule network (CapsNet) uses neuron vec-

tors instead of traditional neuron nodes. These neuron vectors can characterize in an image,

such as the position, size, and orientation of an object. Therefore, the features of the image can

be comprehensively learned. We use the length of the output vector to express the probability

of the existence of the entity, and the direction of the vector represents the instantiation

Fig 4. Skipping layer connection in ResNet and application of attention map in our model.

https://doi.org/10.1371/journal.pone.0307446.g004
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parameter. A nonlinear squeeze function called squash is used to compress the capsule vector

length to a value between 0 and 1. The longer the length is, the higher probability of the entity

appearing in the input. To prevent the loss function from failing to converge when the length

of the vector is 0, a minimal value ε(10−7) is added to kbk to ensure that training proceeds nor-

mally, as shown in Eq 4. The formula of the “squashing” function is as follows:

nj ¼
kbjk

2

1þ kbjk
2
þ

bj
kbjk

ð3Þ

kbk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

b2

i þ ε
r

;

bj ¼
X

i

cijwijai;

â jji ¼ wijai;

cij ¼
expðxijÞ
P

kexpðxikÞ

ð4Þ

here νj is the output vector of the output layer, and bj is the input vector of the output layer,

which is a weighted sum of the prediction vectors â jji. These prediction vectors are obtained by

multiplying the output αi of the fully connected capsule layer and a pose matrix wik, as shown

in Eq 4. cij is the coupling coefficient determined by the iterative dynamic routing process.

This variable is used to measure the consistency between the fully connected layer capsules

and the output layer capsules. The initial value of xij is set to 0, thereby ensuring that the prior

probabilities of the information transmitted by the low-level capsules to the high-level capsules

are equal. The coupling coefficients are iteratively determined from the initial values, and the

dynamic routing process is shown in Fig 5.

The capsule network architecture and specific network parameters are shown in Fig 2. The

512 x 7 x 7 feature map obtained through the AU attention-constrained dual enhancement

network are sent to the PrimaryCaps layer, and a 2 x 2 convolution kernel with a step length of

1 is used to obtain a 256 x 6 x 6 feature map, which is adjusted to 32 8-dimensional feature vec-

tors, the feature map size is 6 x 6. Between the PrimaryCaps layer and the DigitCaps layer, each

capsule receives input from all capsules in the previous layer, and the network executes a

dynamic routing consensus algorithm. The output of the DigitCaps layer is a 16 x 7

Fig 5. Dynamic routing process.

https://doi.org/10.1371/journal.pone.0307446.g005
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dimensional vector, where 16 represents the vector dimension and 7 represents the number of

expression category.

For the capsules in PrimaryCaps layer, the activated capsules encode position information.

After passing through the DigitCaps layer, the activated capsule transfers the spatial position

information of the image to the predicted probability output of the vector. The transition from

position information encoding to probability encoding indicates that as the level of the cap-

sules increases, the dimensionality of the capsules should increase. From the perspective of the

proposed architecture, the dimension of capsules in the PrimaryCaps layer is an 8-dimensional

vector, while the dimension of capsule in the DigitCaps layer is 16 dimensions. The high-level

capsules possess more degrees of freedom and can represent more complex entities.

We have three fully connected layers for image reconstruction after the DigitCaps layer,

which is the decoding stage of capsule network. The real label is used as the reconstruction tar-

get in the training process. The loss function of image reconstruction is constructed by calcu-

lating the Euclidean distance between the output pixels of the Sigmoid layer and the pixels of

the original image. The coupling coefficient cij is updated through dynamic routing, while the

update operation of other convolution parameters and the weight matrix in the capsule is com-

pleted through the loss function. Our loss function contains margin loss Lc and reconstruction

loss Lr, and we add a scaling factor ρ to reconstruction the loss to make the margin loss domi-

nate the training process and not be dominated by the reconstruction loss Lr. The formula of

each loss function is as follows.

Lc ¼ Tcmaxð0;mþ � knckÞ
2
þ lð1 � TcÞmaxð0; kvck � m� Þ2 ð5Þ

Lr ¼ ðxr � xÞ2; L ¼ Lc þ 6 ∗ 10� 4Lr ð6Þ

where c represents the classification category, and Tc represents the indicator function of the

classification. If there is a facial expression of the category c, then Tc = 1. m+ represents the

upper limit and m− represents the lower limit. x and xr denote original image and recon-

structed image respectively.

3.2 TPN-based expression recognition module (TPN-ERM)

Generally, various facial expressions usually hold different visual tempos. However, there are

always higher similarities in some expressions(Fear and Surprise), and the key to distinguish

them is their visual tempos. To this end, we propose to use TPN-based expression recognition

module (TPN-ERM) to model the variances in visual tempos of different facial expressions

precisely to further optimize the performance of expressions recognition system.

3.2.1 Collection of hierarchical features. TPN is built upon a set of M hierarchical fea-

tures that have increasing temporal receptive fields from bottom to top, and we employ multi-

depth pyramid to collect these features from a backbone network, which is defined as:

F ¼ fF1; F2; . . . ; FMg ð7Þ

Where Fi represents i-th feature, F is a set of M hierarchical features, and the size of each fea-

ture Fi is:

sizes ¼ fC1 � T1 �W1 � H1; . . . ;CM � TM �WM �HMg ð8Þ

Where H, W, and C represent height, width and numbers of channels of each frame,
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repectively. T is the number of frames. The size usually satisfies the following formula:

fCi1 � Ci2;Wi1 �Wi2;Hi1 � Hi2; ii1 � ii2g ð9Þ

3.2.2 Spatial and temporal semantic modulation. Multi-depth pyramids can well inte-

grate features of different scales, but there is the problem of unaligned spatial semantics. To

solve this problem, spatial semantic modulation is applied to TPN. For each feature (top-level

features are not included), a series of convolutions with a specific stride are applied, so that the

spatial shape and receptive field of these features match the top-level feature. Therefore, the

overall loss function of backbone network of TPN is:

Ltotal ¼ LCE;o þ
XM� 1

i¼1

liLCE;i ð10Þ

where LCE,o is the cross entropy loss, LCE,i is the loss of the i-th auxiliary classifier. {λi} is the

balance factor. After spatial semantic modulation, features have aligned shapes and consistent

semantics in spatial dimensions.

Meanwhile, we also use temporal rate modulation to calibrate in time dimension. In order

to improve the flexibility of TPN, we use a set of hyper-parameters faig
M
i¼1

for temporal rate

modulation. Specifically, α means that the parameter subnet will be used after performing spa-

tial semantic modulation, and the updated feature will be temporarily down-sampled at the i-

level using αi as a factor. The use of such hyper-parameters allows us to better control the dif-

ferences of features on the temporal scale, so that we can perform feature aggregation more

effectively. In the following section, we will call Fi whose size is Ci × Ti ×Wi ×Hi the i-feature

after performing spatial semantic modulation and temporal rate modulation.

3.2.3 Adaptive weighted fusion. After the hierarchical features are collected and prepro-

cessed, the next step is to aggregate these features effectively. Assuming that the aggregated fea-

ture at i-th level are F0i , there are three basic ways:

IsolationFlow : F0i ¼ Fi ð11Þ

Bottom � upFlow : F0i ¼ F0i � gðFi;Ti=Ti� 1Þ ð12Þ

Top � downFlow : F0i ¼ F0i � gðFi;Ti=Tiþ1Þ ð13Þ

Where�means element-wise addition. g(F, δ) is applied along the temporal dimension,

where F represents the feature.

Besides the top-down flow and bottom-up flow, we could also combine them to achieve

two other ways, namely Cascade Flow and Parallel Flow. While applying a bottom-up flow

after a top-down flow will form the cascade flow, applying them simultaneously will lead to the

parallel flow.

However, TPN does not employ the correlation of features at different levels. Specifically,

when these features are aggregated, each of them made a different contribution to the aggre-

gated features. Therefore, based on the FPN [28] and PANet [29], we introduce an adaptive

weighted fusion method which can learn parameters to improve the ways of feature aggrega-

tion. The top-down and bottom-up flow are integrated and added behind each convolution

layer, which can enhance the information fusion. The specific structure is shown in the Fig 6.

Regarding the computational process of feature fusion, the previous pyramid attention net-

work used global self-attention mechanism, but it dose not employ the contribution of input
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features to the output features is different. Therefore, we apply a weight to each input feature

so that the network can learn the importance of each input feature. Two weighted fusion meth-

ods are considered:

Softmax � based � fusion : O ¼
P

i
ewi
P

je
wj
∗ Ii ð14Þ

where wi is a learnable weight that can be updated during network training, and Ii represents

the input weight of i-th layer. The softmax function normalizes the weights to a probability

with a range of 0 to 1, which indicates the importance of each input feature. But it will result in

more hardware consumption, to minimize additional computational costs, we further propose

an efficient fusion method.

Fast � standardized � fusion : O ¼
P

i
wi

ε
P

je
wj
∗Ii ð15Þ

Applying the ReLU function behind each wi can ensure wi> 0. Fast standardized fusion

also makes the value of each weight range between 0 and 1, but it is more efficient than the

softmax-based fusion. We take the fourth layer P4 in Fig 6 as an example to describe our adap-

tive weighted fusion method that uses fast standardized fusion:

Ptd
4
¼ Conv

w1 ∗Pin
4
þ w2 ∗ResizeðPin

5
Þ

w1 þ w2 þ ε

� �

ð16Þ

Pout
4
¼ Conv

w0
1
∗Pin

4
þ w0

2
∗ Ptd

4
þ w0

3
∗ResizeðPout

3
Þ

w0
1
þ w0

2
þ w0

3
þ ε

� �

ð17Þ

Fig 6. Adaptive weighted fusion. Similar to PANet, but it deletes the nodes with only one in-degree in PANet to

eliminate some redundant calculations. Secondly, we added some new connections called cross-node connections

shown as the three purple connection curves. The first feature node of the same layer (the white node) in these

connections is connected to the output node without top-down feature fusion, while the output nodes participate in

bottom-up feature fusion. Finally, inspired by the idea of recursive networks, we integrate top-down with bottom-up

flow and add some cross-node connections to enhance fusion of features.

https://doi.org/10.1371/journal.pone.0307446.g006
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among them Ptd
4

is the intermediate feature in the top-down path, and Pout
4

is the output feature

in the bottom-up path. All other features are constructed in the similar way.

4 Experiments

In this section, we first describe two public datasets, and then illustrate the specific experimen-

tal details and evaluation metrics. The experiment results demonstrate the effectiveness of our

3D-CapsNet and TPN-ERM. Moreover, we compare our integrated model to current effective

models on public datasets. Finally, the ablation studies show the effectiveness of each module

in our proposed model.

4.1 Datasets

4.1.1 CK+. The Extended Cohn-Kanade (CK+) database [34] collects facial expressions of

123 subjects by videos, and a total of 593 facial expression video sequences. The subjects are

young people between ages of 18 and 30. The data sequence vary in duration from 10 to 60

frames. Seven basic emotion classes (anger, contempt, disgust, fear, happiness, sadness, and

surprise) are marked in these videos, and the annotation work is based on the Facial Action

Coding System (FACS). Since CK+ is not clearly divided into the training set, validation set

and test set, the algorithms evaluated on this database are not same. Each image sequence

changes from the onset (the neutral frame) to the peak (the expressive frame). Moreover, the

X-Y coordinates of 68 facial landmark points were given for each image in the database. The

landmark points of key frames within each video sequence were manually labeled, while the

remaining frames were automatically aligned using the Active Appearance Model(AAM) fit-

ting algorithm [35].

4.1.2 AFEW. The AFEW database [36] has been used as the official database in the Emo-

tiW since 2013. The AFEW database contains facial expressions collected from different TV

and film works which are believed to be closed to real world conditions. The database is com-

prised of training set, validation set and test set. There are 578 video clips in the training set.

The validation and test sets have 383 video clips and 407 video clips, respectively. The video

clips are marked with seven expression labels: anger, disgust, fear, happiness, sadness, surprise

and neutral. Besides, this database provides original video clips and aligned face sequences.

Different from the CK+ database, facial expressions in AFEW are more natural and spontane-

ous. The variations in illumination, pose and background in image sequences expand the com-

plexity of facial expression analysis.

4.2 Experimental settings

4.2.1 Implementation details. We used tensorflow and pytorch frameworks to conduct

experiments, and trained the model with a total of 500 iterations. We adopted the ADAM algo-

rithm as the model trainer in the training process, which can utilize hyper-parameters to

greatly accelerate the speed of network convergence. In addition, our training parameters on

different data sets are slightly different. On the CK+ and AFEW data sets, we set the trainer

parameter such as β1, β2 and ε as 0.9, 0.999 and 10–8. The batch size of each epoch is 16. The

value of scaling factor ρ is 0.0006 to reconstruction loss in the feature decoding stage.

We used improved TPN for expression auxiliary recognition, which can be integrated into

our 3D-CapsNet. We use the inflated 3D-ResNet as the backbone network to ensure good per-

formance on various datasets, and the original ResNet serves as the 2D backbone for contrast.

M-level TPN network processes the i-th level features through a series of convolutions with a

stride of Mi in spatial semantic modulation and the feature dimension is fixed to 1024. The

time rate modulation is realized through the convolution layer and the maximum pooling

PLOS ONE VT-3DCapsNet

PLOS ONE | https://doi.org/10.1371/journal.pone.0307446 August 23, 2024 13 / 26

https://doi.org/10.1371/journal.pone.0307446


layer. Finally, the five kinds of information flow mentioned in section 3 aggregate features sep-

arately to make a comparison. All aggregated features in TPN will be rescaled by max pooling

operation, and their cascade will be fed into the fully connected layer for final prediction.

4.2.2 Evaluation metrics. Multiple performance and evaluation criteria are used to evalu-

ate the performance of proposed model. Following prior work, we adapt Accuracy, Precision

(P), Recall(R) and F1 score. The formulas are as follows.

Acc ¼
TP þ TN

TP þ TN þ FPþ FN
ð18Þ

F1 ¼
2� P � R
P þ R

ð19Þ

P ¼
TP

TP þ FP
;R ¼

TP
TP þ TN

ð20Þ

where TP represents the number of samples correctly predicted as positive class, FP represents

the number of samples incorrectly predicted as positive class, TN is the number of samples

correctly predicted as negative class, and FN is the number of samples incorrectly predicted as

negative class. The same is true for multiple classifications, as long as all other categories that

do not belong to the current category are considered as negative cases. Higher values denote

better performance for all metrics.

4.3 Results of 3D-CapsNet

First, we drew the confusion matrix for emotion prediction on the CK+ and AFEW data sets,

and the results are shown in Fig 7. Through the confusion matrix, we can find that the highest

recognition accuracy rate on CK+ is happy, which can reach 70.54%, followed by anger, and

the lowest recognition rate is disgust, which only reached 23.08%, because most of disgust

expressions are recognized as angry and sad. The expression with higher recognition accuracy

rate on AFEW is also happy and angry, reaching 50.54% and 47.3% respectively. The lowest

recognition rate is surprise, whose recognition accuracy rate is 27.99%, and quite a few surprise

expressions are recognized as happy. To sum up, we can see that the recognition effect of facial

expressions with obvious characteristics like happy and angry is far greater than that of con-

tempt and other expressions whose facial features are not obvious, which can also illustrate the

necessity of paying attention to the key areas of facial expression during the recognition

process.

Fig 7. The confusion matrix on CK+(left) and AFEW(right).

https://doi.org/10.1371/journal.pone.0307446.g007

PLOS ONE VT-3DCapsNet

PLOS ONE | https://doi.org/10.1371/journal.pone.0307446 August 23, 2024 14 / 26

https://doi.org/10.1371/journal.pone.0307446.g007
https://doi.org/10.1371/journal.pone.0307446


We compare our model with other effective methods. These methods mainly enhance their

learning ability by capturing global and local features on the corresponding dataset. Consider-

ing that the face possesses specific structure, we use dynamic routing between capsules to

obtain the relationship between AUs. The capsule network encodes spatial information when

calculating the possibility of existence of an object. So it is very suitable for FER. In addition,

our network can focus on the facial activity area enhanced by the attention map. In general,

the benefits of our model are attributed to two enhancement modules, namely 3D-CNN with

AU-perceived attention mechanism and the CapsNet with multiple convolution layers. The

performance of the proposed method is compared with both video-based and landmark-based

state-of-the-art methods on AFEW and CK+ datasets in Table 2. The visualization representa-

tion of the experimental results is shown in Fig 8. Some methods such as [45, 50] use videos or

image sequences as the main data stream for training the model while some methods such as

[37, 48] utilize local facial landmark data to highlight the most important parts of the facial

images and improve the performance. the accuracy of our proposed method on CK+ and

AFEW reached 96.26% and 52.63%, respectively, which is better than most methods.

Then we further analyzed time complexity, space complexity and recognition accuracy of

proposed 3D-CapsNet module and other state-ofthe-art modules in terms of the number

Table 2. The performance (%) comparison of 3D-CapsNet with state-of-the-art methods on CK+ and AFEW.

CK+ AFEW

Methods Data type Acc(%) Methods Data type Acc(%)

LOMo [37] Landmark 95.10 SSE-HoloNet [38] Video 46.47

ST-GCN [39] Landmark 93.64 FAN [40] Video 51.18

DGNN [41] Landmark 96.02 AGCN [42] Landmark 24.21

CTSLSTM [43] Landmark 93.90 CAER-Net [44] Video 51.68

AGCN [42] Landmark 94.18 uGMM-IMK [45] Video 49.50

DAM [46] Video 95.88 uGMM-SVK [45] Video 47.50

HCIA [47] Video 96 PST-BLN w/MCD [48] Landmark 33.33

ST-BLN w/MCD [48] Landmark 95.47 PST-BLN wo/MCD [48] Landmark 30.15

ST-BLN wo/MCD [48] Landmark 93.19 IFERCV [49] Video 51.62

EFE [50] Video 94.44 MIC-MI [51] Video 52.62

EFE+EMR+Encoder(FC) [50] Video 95.63 MLCNNs+3DCNN [52] Video 49.3

3D-CapsNet Video 96.26 3D-CapsNet Video 52.63

https://doi.org/10.1371/journal.pone.0307446.t002

Fig 8. The visualization representation of the experimental results.

https://doi.org/10.1371/journal.pone.0307446.g008
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floating point of operations(FLOPs), the number of model parameters (Params) and accuracy

(Acc) in Table 3. It is obvious from Table 3 that our method outperforms others on recogni-

tion accuracy. FcaNet utilized a frequency attention method that rethinked channel attention

using frequency analysis. Spectral and Spatial Attention (SSA) module integrates spectral

semantics with spatial locations to address the problems of interaction between spatial action

units and the inadequacy of semantic information about spectral expressions. SA-Net sepa-

rated channels into two equal portions for channel and spatial attention to address the problem

of high computational overhead when fusing spatial attention and channel attention together.

Compared to these methods, our model uses fewer parameter quantities and achieves better

recognition effect. But the parameter quantity and FLOPs of our model is slightly higher than

that of CapsNet. This is because the iteration of dynamic routing in the capsule network results

in longer computation time and improved 3D-ResNet introduced extra parameters. But exper-

iment results in Table 3 have shown that the performance of our model is far better than tradi-

tional capsule networks and other three models although the importation of extra parameters.

Through training and experiments with the above methods in section 3, the loss functions

of 3D convolution network and our 3D-CapsNet are shown in Fig 9. As can be seen from the

figures, the loss of our 3D-CapsNet model is lower than that of single 3D convolution network,

and the difference between the predicted value and the true value of the facial expression rec-

ognition result gets smaller, which means our model can better optimize the previous facial

expression classification model and have better recognition performance.

4.4 Impact of TPN-ERM on 3D-CapsNet

In this section, we show the visualization results after applying the improved TPN and com-

pare 3D-CapsNet+TPN-ERM(VT-3DCapsNet) with 3D-CapsNet and other state-of-the-art

methods to analyze the impact of TPN-ERM on 3D-CapsNet.

Table 3. The FLOPs, Params and accuracy comparison of 3D-CapsNet with state-of-the-art methods.

Accuracy(%)

Methods FLOPs/G Params/M CK+ AFEW

SSA [53] - 23.52 93.56 51.33

SA-Net [54] - 23.58 92.12 49.80

FcaNet [55] - 26.04 91.50 48.75

CapsNet [56] 325.37 5.37 76.12 32.30

Ours 445.38 6.40 96.26 52.63

https://doi.org/10.1371/journal.pone.0307446.t003

Fig 9. The loss functions of 3D convolution network and 3D-CapsNet.

https://doi.org/10.1371/journal.pone.0307446.g009
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We compared the proposed integrated model with other facial expression recognition

methods. The results of the comparison experiments are shown in Table 4. The visualization

representation of the experimental results is shown in Fig 10.

It can be known from the in Table 4 that our method has achieved better and more accurate

results on the CK+ and AFEW data sets. Especially, our method can achieve the highest accu-

racy rate of 98.57% on the CK+, which improves the accuracy by 8.77% compared with DRL

in Table 4. The effect on the AFEW data set is also better than most other methods, which can

reach an accuracy of 55.01%.

Table 5 shows the precision(P), recall(R), and F1 obtained by our model for recognizing

various expressions. From the above table, it can be seen that proposed integrated model(VT-

3DCapsNet)has the highest recall rate in terms of happy and surprise, which can achieve

99.68% and 99.34% on the CK+ dataset. The lower recall rates are sad and fear, which only

reached 92.82% and 93.74% on CK+, respectively. From the perspective of precision, the preci-

sion of happy is the highest, reaching 100% on CK+, while the precision of fear is low, which

only achieved 92% on CK+ and 30% on AFEW. F1 represents the model’s ability to recognize

various facial expressions. The most prominent F1 values in Table 5 are happy and surprise,

which reached 99.8% and 99.1% on CK+, and they also reached optimal values of 66% and

Table 4. The performance (%) comparison of 3D-CapsNet with state-of-the-art methods on CK+ and AFEW.

CK+ AFEW

Methods Data type Acc(%) Methods Data type Acc(%)

(N+M)-tuplet [57] Landmark 93.90 SSE-HoloNet [38] Landmark 28.17

DAM [46] Video 95.88 E-ConvLSTM [58] Video 45.29

NSVT [59] Video 96.5 DGNN [41] Landmark 32.64

CUDL [60] Video 96.6 C3D-GRU [61] Video 49.87

PST-BLN wo/MCD [48] Landmark 93.10 MRAN [62] Video 49.01

PST-BLN w/MCD [48] Landmark 93.34 IFERCV+Adv [49] Video 52.01

Proposed Method w/o Attention [63] Video 93.84 Emotion-BEEU [64] Video 52.49

EFE+EMR+Encoder [50] Video 97.17 IFERCV+Tt [49] Video 51.86

EFE+EMR+EPMG [50] Video 98.06 ST-BLN w/MCD [48] Landmark 36.11

DRL [65] Video 89.8 ST-BLN wo/MCD [48] Landmark 34.13

CEFLNet [66] Video 53.98

VT-3DCapsNet Video 96.5 VT-3DCapsNet Video 55.01

https://doi.org/10.1371/journal.pone.0307446.t004

Fig 10. The visualization representation of the experimental results.

https://doi.org/10.1371/journal.pone.0307446.g010
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71% on AFEW. The experiment results indicate that our model has the strongest recognition

ability for happy and surprise.

4.5 Ablation experiment

Both 3D-CapsNet for feature representations learning and TPN-ERM for optimizing the per-

formance of expressions recognition system gain improvements on FER. We conducted a

quantitative evaluation of these two models in order to better understand our method. For a

more detailed analysis of the FER results, we also explored how different network components

affect the performance of 3D-CapsNet and TPN-ERM.

4.5.1 Evaluation of 3D-CapsNet on AFEW and CK+. In order to prove the effectiveness

of the 3D-CapsNet with AU-perceived attention mechanism, we conducted ablation experi-

ments on the AFEW dataset. We compare our model with VGG16 used as basic backbone net-

work for feature extraction. The experimental results are shown in Table 6. It can be seen from

the Table 6 that using 3D convolution is better than using VGG16 in processing video tasks.

When 3D convolution with AU-perceived attention is used for feature extraction, the model

improves the accuracy by 2.1% compared with using VGG16 singly and is also better than the

accuracy of the 3D convolution without the attention mechanism. When adding the capsule

network, our 3D-CapsNet improves the accuracy by 7% compared to the VGG16 and is

slightly better than the model that uses 3D convolution and attention mechanism but does not

integrate with the capsule network.

After that, we used different models as contrasts on CK+ to evaluate the influence of the

components of 3D-CapsNet and the results are shown in the following Table 7. It can be seen

from the table that when the capsule network does not contain multi-layer convolution and

attention mechanism is also not used, the recognition accuracy is 76.12% and is relatively low.

VGG16 has a deep convolution structure and does not have the dynamic routing mechanism

of the capsule network and attention mechanism, which achieves an accuracy of 78.14%. The

Table 5. The precision, recall, and F1 obtained by our model for recognizing various expressions.

AFEW CK+

Label P(%) R(%) F1(%) P(%) R(%) F1(%)

anger 37.13 41.92 39.15 95.17 94.32 95.82

disgust 49.43 44.76 47.07 94.57 96.14 95.17

fear 30.00 31.33 31.85 92.00 93.74 93.22

happy 63.21 70.16 66.00 100 99.68 99.80

contempt 46.72 56.25 50.17 97.43 95.61 96.68

sad 33.18 39.34 36.27 95.81 92.82 94.41

surprise 56.29 99.34 71.00 99.70 99.34 99.10

https://doi.org/10.1371/journal.pone.0307446.t005

Table 6. The ablation study result on AFEW.

3D convolution capsule neural network AU perceptual attention Acc

× × × 45.6
p

× × 46.8
p

×
p

47.7

×
p

× 32.3
p p

× 48.2
p p p

52.6

https://doi.org/10.1371/journal.pone.0307446.t006
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AVGGNet network contains both deep convolution and attention mechanism and further

improve the accuracy to 79.29%. RCCnet contains deep convolution and capsule, and the

accuracy rate is increased to 81.12%. Our model contains the attention mechanism of capsule,

deep convolution and attention with AU perception and can achieve the highest accuracy rate

of 96.26%, thus proving the effectiveness of our method.

To illustrate the superiority of our 3D-CapsNet more intuitively, we provide the accuracy

curves of our method and other methods on the CK+ data set. As can be seen from the Fig 11,

the accuracy of our model in the training process has always been higher than other traditional

methods.

4.5.2 Evaluation of TPN-ERM on AFEW and CK+. To prove the effectiveness and flexi-

bility of the TPN-ERM we used, we conduct ablation experiments on the CK+ and AFEW

datasets. The experimental results are shown in the following Fig 12.

Among them, the purple histogram is the result of only using the 3D-CapsNet model, and

the yellow histogram is the result of 3D-CapsNet integrated with improved TPN. It can be

seen from the figure that the using the improved TPN can improve the recognition accuracy of

the model, which improves the accuracy of 2.31% and 2.38% on the CK+ dataset and AFEW

dataset, respectively. These prove that using TPN module is feasible and effective for improv-

ing the accuracy of facial expression recognition.

Table 7. The ablation study result on CK+.

Method capsule dynamic routing deep convolution attention mechanism Acc

VGG16 ×
p

× 78.14

CapsNet
p

× × 76.12

AVGGNet ×
p p

79.29

RCCnet
p p

× 81.12

Ours
p p p

96.26

https://doi.org/10.1371/journal.pone.0307446.t007

Fig 11. Comparison of the training process of each model.

https://doi.org/10.1371/journal.pone.0307446.g011
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There are four methods of information fusion in the original TPN structure, but we use a

novel feature fusion method, namely adaptive weighted fusion. In order to prove that our

improvement to TPN are effective, we give the detailed graphs of the accuracy of the first 50

rounds of training on the two data sets in Fig 13.

As can be seen from the Fig 14, our improved TPN with adaptive weighted fusion is more

accurate than other information flow fusion methods in the first 50 rounds of training, which

proves that using TPN with adaptive weighted fusion is effective.

There are two main calculation methods in our adaptive weighted fusion, namely softmax-

based fusion and fast standardized fusion. But the additional softmax will cause more hard-

ware consumption. Therefore, to prove that our fast standardized fusion can process faster, we

select a piece of video on the CK+ and compare the processing speed of two calculation

methods.

The processing speed of faster standardized fusion is significantly faster than that of soft-

max-based fusion in Fig 15. When the average velocity of processing video is equal, the fast

standardized fusion is 2 seconds faster than softmax-based fusion and obtains a better level.

Fig 12. The result of using and not using improved TPN on CK+ and AFEW.

https://doi.org/10.1371/journal.pone.0307446.g012

Fig 13. The results of using different information flow methods for TPN training on CK+.

https://doi.org/10.1371/journal.pone.0307446.g013
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4.6 Discussion

In the experimental section of 3D-CapsNet, we aimed to prove that the improved capsule net-

work that applyed improved 3D-ResNet architecture achieved the goal of expressing deeper

hierarchical spatiotemporal features and handle complex feature relationships. Furthermore,

the confusion matrices on the CK+ and AFEW datasets, when contrasting expressions with

obvious features against those with less obvious features, demonstrate a significant impact of

facial key regions on the recognition effectiveness. Comparative evaluations with other state-

of-the-art models further underscored the outstanding performance of our proposed model in

recognition accuracy.

TPN-ERM calculates facial motion features representing expressions from a considerable

number of video frames and uses these features as auxiliary outputs to further enhance the per-

formance of 3D-CapsNet. To analysis of TPN-ERM’s impact on 3D-CapsNet, we conducted

relevant experiments for performance comparison and complexity analysis, and the results

revealed that revealed that TPN-ERM excelled in restore the detailed information of the origi-

nal images, capturing variations in video, and significantly improving recognition perfor-

mance of 3D-CapsNet.

Fig 14. The results of using different information flow methods for TPN training on AFEW.

https://doi.org/10.1371/journal.pone.0307446.g014

Fig 15. The processing speed result of softmax-based fusion and fast standardized fusion.

https://doi.org/10.1371/journal.pone.0307446.g015

PLOS ONE VT-3DCapsNet

PLOS ONE | https://doi.org/10.1371/journal.pone.0307446 August 23, 2024 21 / 26

https://doi.org/10.1371/journal.pone.0307446.g014
https://doi.org/10.1371/journal.pone.0307446.g015
https://doi.org/10.1371/journal.pone.0307446


To gain a comprehensive understanding of proposed model, we conducted a series of abla-

tion experiments to show the influence of different model components on recognition perfor-

mance. Specifically, we combined different components of 3D-CapsNet for ablation

experiments and validated significant impact of 3D convolution, AU-perceived attention mod-

ule and capsule neural network on recognition accuracy. Furthermore, we conducted other

ablation experiments to prove the impact of TPN-ERM on 3D-CapsNet, and the results estab-

lished the feasibility and effectiveness of TPN-ERM, which can significantly elevate recogni-

tion accuracy of 3D-CapsNet.

Although our model has demonstrated excellent performance in facial expression recogni-

tion, there are still some limitations we need to overcome in the future:

1. The proposed 3D-CapsNet model introduces additional parameters compared to the origi-

nal capsule network, which increases training time and additional hardware memory costs.

2. There are a large number of “ambiguous phenomenon” in more complex real-world sce-

narios such as low image resolution, occlusion and ambiguous expressions, which can

result in low recognition accuracy. So our model can be further improved and discussed in

this respect.

5 Conclusion

In this paper, we propose a visual tempos 3D-CapsNet to better learn spatiotemporal feature.

We also propose a TPN-based expression recognition module (TPN-ERM) that models the

variances in visual tempos of facial expressions actions precisely to further optimize the perfor-

mance of 3D-CapsNet. Extensive experiments demonstrate that 3D-CapsNet outperforms

most state-of-the-art models in terms of the accuracy after adding improved 3D-ResNet archi-

tecture that integrated with AU-perceived attention module. It also proves that the feature

representation of 3D-CapsNet are more informative after integrating with the TPN-ERM. In

the future, we will consider optimizing the routing algorithm of CapsNet to reduce the net-

work parameters. Furthermore, the datasets more complex real-world scenarios(low image

resolution, occlusion and ambiguous expressions) we used in the experiments are not suffi-

cient, so the performance of expression recognition in complex scenes may not be satisfactory.

The next step is to test the performance of our model on relevant datasets for further

improvement.

Author Contributions

Conceptualization: Zhuan Li, Jin Liu, Hengyang Wang.

Data curation: Zhuan Li.

Formal analysis: Zhuan Li.

Funding acquisition: Jin Liu.

Investigation: Zhuan Li, Hengyang Wang.

Methodology: Zhuan Li, Jin Liu, Hengyang Wang.

Project administration: Zhuan Li, Jin Liu, Hengyang Wang.

Resources: Zhuan Li.

Software: Zhuan Li.

PLOS ONE VT-3DCapsNet

PLOS ONE | https://doi.org/10.1371/journal.pone.0307446 August 23, 2024 22 / 26

https://doi.org/10.1371/journal.pone.0307446


Supervision: Zhuan Li, Jin Liu.

Validation: Zhuan Li.

Visualization: Zhuan Li.

Writing – original draft: Zhuan Li, Xiliang Zhang, Zhongdai Wu, Bing Han.

Writing – review & editing: Zhuan Li, Jin Liu.

References
1. Shan L, Deng W. Deep Facial Expression Recognition: A Survey. IEEE Transactions on Affective Com-

puting. 2018; PP(99).

2. Yang Y, Xu C, Dong F, Wang X. A new multi-scale convolutional model based on multiple attention for

image classification. Applied Sciences. 2019; 10(1):101. https://doi.org/10.3390/app10010101

3. Liu J, Yang Y, Lv S, Wang J, Chen H. Attention-based BiGRU-CNN for Chinese question classification.

Journal of Ambient Intelligence and Humanized Computing. 2019; p. 1–12.

4. Shang S, Liu J, Yang Y. Multi-layer transformer aggregation encoder for answer generation. IEEE

Access. 2020; 8:90410–90419. https://doi.org/10.1109/ACCESS.2020.2993875

5. Han S, Liu J, Zhang J, Gong P, Zhang X, He H. Lightweight dense video captioning with cross-modal

attention and knowledge-enhanced unbiased scene graph. Complex & Intelligent Systems. 2023; 9

(5):4995–5012. https://doi.org/10.1007/s40747-023-00998-5 PMID: 36855683

6. Zhang K, Huang Y, Du Y, Wang L. Facial expression recognition based on deep evolutional spatial-tem-

poral networks. IEEE Transactions on Image Processing. 2017; 26(9):4193–4203. https://doi.org/10.

1109/TIP.2017.2689999 PMID: 28371777

7. Fan Y, Lam JC, Li VO. Multi-region ensemble convolutional neural network for facial expression recog-

nition. In: International Conference on Artificial Neural Networks. Springer; 2018. p. 84–94.

8. Li S, Deng W, Du J. Reliable crowdsourcing and deep locality-preserving learning for expression recog-

nition in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition;

2017. p. 2852–2861.

9. Liu J, Yang Y, He H. Multi-level semantic representation enhancement network for relationship extrac-

tion. Neurocomputing. 2020; 403:282–293. https://doi.org/10.1016/j.neucom.2020.04.056

10. Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. Advances in neural information

processing systems. 2017; 30.

11. Chang S, Liu J. Multi-lane capsule network for classifying images with complex background. IEEE

Access. 2020; 8:79876–79886. https://doi.org/10.1109/ACCESS.2020.2990700

12. Yang C, Xu Y, Shi J, Dai B, Zhou B. Temporal pyramid network for action recognition. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 591–600.

13. Niu B, Gao Z, Guo B. Facial expression recognition with LBP and ORB features. Computational Intelli-

gence and Neuroscience. 2021; 2021:1–10. https://doi.org/10.1155/2021/8828245 PMID: 33505453

14. Xiang Z, Yang R, Deng C, Teng M, She M, Teng D. An illumination insensitive descriptor combining the

CSLBP features for street view images in augmented reality: experimental studies. ISPRS International

Journal of Geo-Information. 2020; 9(6):362. https://doi.org/10.3390/ijgi9060362

15. Liao J, Lin Y, Ma T, He S, Liu X, He G. Facial expression recognition methods in the wild based on

fusion feature of attention mechanism and LBP. Sensors. 2023; 23(9):4204. https://doi.org/10.3390/

s23094204 PMID: 37177408

16. Huang Q, Huang C, Wang X, Jiang F. Facial expression recognition with grid-wise attention and visual

transformer. Information Sciences. 2021; 580:35–54. https://doi.org/10.1016/j.ins.2021.08.043

17. Wu X, He J, Huang Q, Huang C, Zhu J, Huang X, et al. FER-CHC: Facial expression recognition with

cross-hierarchy contrast. Applied Soft Computing. 2023; 145:110530. https://doi.org/10.1016/j.asoc.

2023.110530

18. Zakieldin K, Khattab R, Ibrahim E, Arafat E, Ahmed N, Hemayed E. ViTCN: Hybrid Vision Transformer

with Temporal Convolution for Multi-Emotion Recognition. International Journal of Computational Intelli-

gence Systems. 2024; 17(1):64. https://doi.org/10.1007/s44196-024-00436-5

19. Jiang F, Huang Q, Mei X, Guan Q, Tu Y, Luo W, et al. Face2nodes: learning facial expression represen-

tations with relation-aware dynamic graph convolution networks. Information Sciences. 2023;

649:119640. https://doi.org/10.1016/j.ins.2023.119640

PLOS ONE VT-3DCapsNet

PLOS ONE | https://doi.org/10.1371/journal.pone.0307446 August 23, 2024 23 / 26

https://doi.org/10.3390/app10010101
https://doi.org/10.1109/ACCESS.2020.2993875
https://doi.org/10.1007/s40747-023-00998-5
http://www.ncbi.nlm.nih.gov/pubmed/36855683
https://doi.org/10.1109/TIP.2017.2689999
https://doi.org/10.1109/TIP.2017.2689999
http://www.ncbi.nlm.nih.gov/pubmed/28371777
https://doi.org/10.1016/j.neucom.2020.04.056
https://doi.org/10.1109/ACCESS.2020.2990700
https://doi.org/10.1155/2021/8828245
http://www.ncbi.nlm.nih.gov/pubmed/33505453
https://doi.org/10.3390/ijgi9060362
https://doi.org/10.3390/s23094204
https://doi.org/10.3390/s23094204
http://www.ncbi.nlm.nih.gov/pubmed/37177408
https://doi.org/10.1016/j.ins.2021.08.043
https://doi.org/10.1016/j.asoc.2023.110530
https://doi.org/10.1016/j.asoc.2023.110530
https://doi.org/10.1007/s44196-024-00436-5
https://doi.org/10.1016/j.ins.2023.119640
https://doi.org/10.1371/journal.pone.0307446


20. Zhou S, Wu X, Jiang F, Huang Q, Huang C. Emotion recognition from large-scale video clips with cross-

attention and hybrid feature weighting neural networks. International Journal of Environmental

Research and Public Health. 2023; 20(2):1400. https://doi.org/10.3390/ijerph20021400 PMID:

36674161

21. Hara K, Kataoka H, Satoh Y. Learning spatio-temporal features with 3d residual networks for action rec-

ognition. In: Proceedings of the IEEE international conference on computer vision workshops; 2017.

p. 3154–3160.

22. Teng J, Zhang D, Zou W, Li M, Lee DJ. Typical facial expression network using a facial feature decou-

pler and spatial-temporal learning. IEEE Transactions on Affective Computing. 2021;.

23. de Melo WC, Granger E, Lopez MB. MDN: A deep maximization-differentiation network for spatio-tem-

poral depression detection. IEEE transactions on affective computing. 2021;.

24. Khanna D, Jindal N, Rana PS, Singh H. Enhanced spatio-temporal 3D CNN for facial expression classi-

fication in videos. Multimedia Tools and Applications. 2023; p. 1–18.

25. Shu X, Li J, Shi L, Huang S. RES-CapsNet: an improved capsule network for micro-expression recogni-

tion. Multimedia Systems. 2023; 29(3):1593–1601. https://doi.org/10.1007/s00530-023-01068-z

26. Zhao P, Ming Y, Hu N, Lyu B, Zhou J. DSNet: Dual-stream multi-scale fusion network for low-quality 3D

face recognition. AIP Advances. 2023; 13(8). https://doi.org/10.1063/5.0153077

27. Ye M, Liu G. Facial expression recognition method based on shallow small convolution kernel capsule

network. Journal of Circuits, Systems and Computers. 2021; 30(10):2150177. https://doi.org/10.1142/

S0218126621501772

28. Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detec-

tion. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017.

p. 2117–2125.

29. Liu S, Qi L, Qin H, Shi J, Jia J. Path aggregation network for instance segmentation. In: Proceedings of

the IEEE conference on computer vision and pattern recognition; 2018. p. 8759–8768.

30. Yang E, Liu S, Liu Y, Fang K. PSTNet: Crowd Flow Prediction by Pyramidal Spatio-Temporal Network.

IEICE TRANSACTIONS on Information and Systems. 2021; 104(10):1780–1783. https://doi.org/10.

1587/transinf.2020EDL8111

31. Chen Y, Ge H, Liu Y, Cai X, Sun L. Agpn: Action granularity pyramid network for video action recogni-

tion. IEEE Transactions on Circuits and Systems for Video Technology. 2023;.

32. Wang X, Girshick R, Gupta A, He K. Non-local neural networks. In: Proceedings of the IEEE conference

on computer vision and pattern recognition; 2018. p. 7794–7803.

33. Li W, Abtahi F, Zhu Z, Yin L. EAC-Net: A Region-based Deep Enhancing and Cropping Approach for

Facial Action Unit Detection. IEEE transactions on pattern analysis and machine intelligence. 2018; 40

(11):2583–2596. https://doi.org/10.1109/TPAMI.2018.2791608 PMID: 29994168

34. Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I. The Extended Cohn-Kanade

Dataset (CK+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition—Workshops; 2010.

p. 94–101.

35. Tzimiropoulos G, Pantic M. Optimization problems for fast aam fitting in-the-wild. In: Proceedings of the

IEEE international conference on computer vision; 2013. p. 593–600.

36. Dhall A, Goecke R, Lucey S, Gedeon T. Acted facial expressions in the wild database. Australian

National University, Canberra, Australia, Technical Report TR-CS-11. 2011; 2:1.

37. Sikka K, Sharma G, Bartlett M. Lomo: Latent ordinal model for facial analysis in videos. In: Proceedings

of the IEEE conference on computer vision and pattern recognition; 2016. p. 5580–5589.

38. Hu P, Cai D, Wang S, Yao A, Chen Y. Learning supervised scoring ensemble for emotion recognition in

the wild. In: Proceedings of the 19th ACM international conference on multimodal interaction; 2017.

p. 553–560.

39. Yan S, Xiong Y, Lin D. Spatial temporal graph convolutional networks for skeleton-based action recogni-

tion. In: Thirty-second AAAI conference on artificial intelligence; 2018.

40. Meng D, Peng X, Wang K, Qiao Y. Frame attention networks for facial expression recognition in videos.

In: 2019 IEEE international conference on image processing (ICIP). IEEE; 2019. p. 3866–3870.

41. Shi L, Zhang Y, Cheng J, Lu H. Skeleton-based action recognition with directed graph neural networks.

In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2019.

p. 7912–7921.

42. Shi L, Zhang Y, Cheng J, Lu H. Two-stream adaptive graph convolutional networks for skeleton-based

action recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recog-

nition; 2019. p. 12026–12035.

PLOS ONE VT-3DCapsNet

PLOS ONE | https://doi.org/10.1371/journal.pone.0307446 August 23, 2024 24 / 26

https://doi.org/10.3390/ijerph20021400
http://www.ncbi.nlm.nih.gov/pubmed/36674161
https://doi.org/10.1007/s00530-023-01068-z
https://doi.org/10.1063/5.0153077
https://doi.org/10.1142/S0218126621501772
https://doi.org/10.1142/S0218126621501772
https://doi.org/10.1587/transinf.2020EDL8111
https://doi.org/10.1587/transinf.2020EDL8111
https://doi.org/10.1109/TPAMI.2018.2791608
http://www.ncbi.nlm.nih.gov/pubmed/29994168
https://doi.org/10.1371/journal.pone.0307446


43. Hu M, Wang H, Wang X, Yang J, Wang R. Video facial emotion recognition based on local enhanced

motion history image and CNN-CTSLSTM networks. Journal of Visual Communication and Image

Representation. 2019; 59:176–185. https://doi.org/10.1016/j.jvcir.2018.12.039

44. Lee J, Kim S, Kim S, Park J, Sohn K. Context-aware emotion recognition networks. In: Proceedings of

the IEEE/CVF international conference on computer vision; 2019. p. 10143–10152.

45. Perveen N, Roy D, M Chalavadi K. Facial expression recognition in videos using dynamic kernels. IEEE

Transactions on Image Processing. 2020; 29:8316–8325. https://doi.org/10.1109/TIP.2020.3011846

PMID: 32746249

46. Xie S, Hu H, Wu Y. Deep multi-path convolutional neural network joint with salient region attention for

facial expression recognition. Pattern recognition. 2019; 92:177–191. https://doi.org/10.1016/j.patcog.

2019.03.019

47. Chowdary MK, Nguyen TN, Hemanth DJ. Deep learning-based facial emotion recognition for human–

computer interaction applications. Neural Computing and Applications. 2021; p. 1–18.

48. Heidari N, Iosifidis A. Progressive spatio-temporal bilinear network with Monte Carlo dropout for land-

mark-based facial expression recognition with uncertainty estimation. In: 2021 IEEE 23rd International

Workshop on Multimedia Signal Processing (MMSP). IEEE; 2021. p. 1–6.

49. Liu X, Jin L, Han X, Lu J, You J, Kong L. Identity-aware facial expression recognition in compressed

video. In: 2020 25th International Conference on Pattern Recognition (ICPR). IEEE; 2021. p. 7508–

7514.

50. Zhang J, Yu H. Improving the facial expression recognition and its interpretability via generating expres-

sion pattern-map. Pattern Recognition. 2022; 129:108737. https://doi.org/10.1016/j.patcog.2022.

108737

51. Liu X, Jin L, Han X, You J. Mutual information regularized identity-aware facial expression recognition in

compressed video. Pattern Recognition. 2021; 119:108105. https://doi.org/10.1016/j.patcog.2021.

108105

52. Nguyen HD, Kim SH, Lee GS, Yang HJ, Na IS, Kim SH. Facial expression recognition using a temporal

ensemble of multi-level convolutional neural networks. IEEE Transactions on Affective Computing.

2019; 13(1):226–237. https://doi.org/10.1109/TAFFC.2019.2946540

53. Gao H, Wu M, Chen Z, Li Y, Wang X, An S, et al. SSA-ICL: Multi-domain adaptive attention with intra-

dataset continual learning for Facial expression recognition. Neural Networks. 2023; 158:228–238.

https://doi.org/10.1016/j.neunet.2022.11.025 PMID: 36473290

54. Zhang QL, Yang YB. Sa-net: Shuffle attention for deep convolutional neural networks. In: ICASSP

2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE; 2021. p. 2235–2239.

55. Qin Z, Zhang P, Wu F, Li X. Fcanet: Frequency channel attention networks. In: Proceedings of the

IEEE/CVF international conference on computer vision; 2021. p. 783–792.

56. Madhu G, Govardhan A, Srinivas BS, Sahoo KS, Jhanjhi N, Vardhan K, et al. Imperative dynamic rout-

ing between capsules network for malaria classification. CMC-Computers Materials & Continua. 2021;

68(1):903–919. https://doi.org/10.32604/cmc.2021.016114

57. Liu X, Ge Y, Yang C, Jia P. Adaptive metric learning with deep neural networks for video-based facial

expression recognition. Journal of Electronic Imaging. 2018; 27(1):013022–013022. https://doi.org/10.

1117/1.JEI.27.1.013022

58. Miyoshi R, Nagata N, Hashimoto M. Facial-expression recognition from video using enhanced convolu-

tional lstm. In: 2019 Digital Image Computing: Techniques and Applications (DICTA). IEEE; 2019. p. 1–

6.

59. Shehu HA, Browne W, Eisenbarth H. Emotion categorization from video-frame images using a novel

sequential voting technique. In: Advances in Visual Computing: 15th International Symposium, ISVC

2020, San Diego, CA, USA, October 5–7, 2020, Proceedings, Part II 15. Springer; 2020. p. 618–632.

60. Muhammad G, Hossain MS. Emotion recognition for cognitive edge computing using deep learning.

IEEE Internet of Things Journal. 2021; 8(23):16894–16901. https://doi.org/10.1109/JIOT.2021.

3058587

61. Lee MK, Choi DY, Kim DH, Song BC. Visual scene-aware hybrid neural network architecture for video-

based facial expression recognition. In: 2019 14th IEEE International Conference on Automatic Face &

Gesture Recognition (FG 2019). IEEE; 2019. p. 1–8.

62. Lee J, Kim S, Kim S, Sohn K. Multi-modal recurrent attention networks for facial expression recognition.

IEEE Transactions on Image Processing. 2020; 29:6977–6991. https://doi.org/10.3390/s20185184

PMID: 32932939

63. Zhu X, Ye S, Zhao L, Dai Z. Hybrid attention cascade network for facial expression recognition. Sen-

sors. 2021; 21(6):2003. https://doi.org/10.3390/s21062003 PMID: 33809038

PLOS ONE VT-3DCapsNet

PLOS ONE | https://doi.org/10.1371/journal.pone.0307446 August 23, 2024 25 / 26

https://doi.org/10.1016/j.jvcir.2018.12.039
https://doi.org/10.1109/TIP.2020.3011846
http://www.ncbi.nlm.nih.gov/pubmed/32746249
https://doi.org/10.1016/j.patcog.2019.03.019
https://doi.org/10.1016/j.patcog.2019.03.019
https://doi.org/10.1016/j.patcog.2022.108737
https://doi.org/10.1016/j.patcog.2022.108737
https://doi.org/10.1016/j.patcog.2021.108105
https://doi.org/10.1016/j.patcog.2021.108105
https://doi.org/10.1109/TAFFC.2019.2946540
https://doi.org/10.1016/j.neunet.2022.11.025
http://www.ncbi.nlm.nih.gov/pubmed/36473290
https://doi.org/10.32604/cmc.2021.016114
https://doi.org/10.1117/1.JEI.27.1.013022
https://doi.org/10.1117/1.JEI.27.1.013022
https://doi.org/10.1109/JIOT.2021.3058587
https://doi.org/10.1109/JIOT.2021.3058587
https://doi.org/10.3390/s20185184
http://www.ncbi.nlm.nih.gov/pubmed/32932939
https://doi.org/10.3390/s21062003
http://www.ncbi.nlm.nih.gov/pubmed/33809038
https://doi.org/10.1371/journal.pone.0307446


64. Kumar V, Rao S, Yu L. Noisy student training using body language dataset improves facial expression

recognition. In: Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Pro-

ceedings, Part I 16. Springer; 2020. p. 756–773.

65. Mishra S, Joshi B, Paudyal R, Chaulagain D, Shakya S. Deep residual learning for facial emotion recog-

nition. In: Mobile Computing and Sustainable Informatics: Proceedings of ICMCSI 2021. Springer;

2022. p. 301–313.

66. Liu Y, Feng C, Yuan X, Zhou L, Wang W, Qin J, et al. Clip-aware expressive feature learning for video-

based facial expression recognition. Information Sciences. 2022; 598:182–195. https://doi.org/10.1016/

j.ins.2022.03.062

PLOS ONE VT-3DCapsNet

PLOS ONE | https://doi.org/10.1371/journal.pone.0307446 August 23, 2024 26 / 26

https://doi.org/10.1016/j.ins.2022.03.062
https://doi.org/10.1016/j.ins.2022.03.062
https://doi.org/10.1371/journal.pone.0307446

