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Abstract

The main characteristic of cervical cytopathy is reflected in the edge shape of nuclei. Exist-

ing computer-aided diagnostic techniques can clearly segment individual nuclei, but cannot

clearly segment the rough edges of adherent nucleus. Therefore, we propose an effective

method (ASATrans) to accurately segment rough cervical nuclei edges by exploring adap-

tive spatial aggregation methods. ASATrans creates a Multi-Receptive Embedding Layer

that samples patches using diverse-scale kernels. This approach provides cross-scale fea-

tures to each embedding, preventing semantic corruption that might arise from mapping dis-

parate patches to analogous underlying representations. Furthermore, we design Adaptive

Pixel Adjustment Block by introducing a long-range dependency and adaptive spatial aggre-

gation. This is achieved through the stratification of the spatial aggregation process into dis-

tinct groups. Each group is given an exclusive sampling volume and modulation scale,

fostering a collaborative learning paradigm that combines local features and global depen-

dencies. This collaborative approach to feature extraction achieves adaptability, mitigates

interference from unnecessary pixels, and allows for better segmentation of edges in the

nucleus. Extensive experiments on two cervical nuclei datasets (HRASPP Dataset, ISBI

Dataset), demonstrating that our proposed ASATrans outperforms other state-of-the-art

methods by a large margin.

Introduction

Cell nuclei, as a major factor in assessing cervical cytopathology [1, 2], are crucial due to their

significant manifestation in cervical cancer lesions [3]. Traditional cervical cancer pathology

diagnosis mainly relies on physicians observing the morphological features of nuclei through a

microscope [4, 5]. However, this method suffers from problems such as limited field of view

and visual fatigue, which can easily lead to misdiagnosis. Recognition of cell nuclei in real sce-

narios remains challenging for current computer-aided diagnostic techniques [6, 7].

Existing vision transformers have wider receptive fields [8, 9], can effectively model long-

distance relationships, and show excellent performance under large-scale training data and
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sufficient model parameters [10–12]. However, transformers lack some of the inductive biases

inherent in convolutional neural networks (CNNs), and they often require large amounts of

data to accurately model relationships, making them generally less performant than CNN

models. This is especially true in real-life scenarios, where cervical cells are numerous, distrib-

uted in clusters, and have a stacking phenomenon. There are almost no studies that have

applied transformer to the field of cervical cell nuclei segmentation. This is because directly

applying existing transformer models may lead to poor segmentation accuracy and blurred

nuclei edges [11, 13, 14]. The purpose of this paper is to improve the transformer model on

small-scale datasets by exploring adaptive spatial aggregation methods to effectively segment

rough cervical cancer cell nuclear edges [15, 16].

The primary distinction between vision transformers and Convolutional Neural Net-

works (CNNs) lies in their approach: vision transformers partition the image into patches

and present a sequence of linear embeddings derived from these patches as input to the

transformer block. Nevertheless, due to the varying scales of objects in different images

[17, 18], the use of fixed-size patches often encounters challenges in capturing comprehen-

sive local structures associated with objects. The rigidity of fixed patches introduces the risk

of compromising semantic information, consequently resulting in a decline in performance.

Existing segmentation methods pay little attention to this. To address this, We introduce a

novel module termed the Multi-Receptive Embedding Layer (MREL), positioned at the initi-

ation of each stage. MREL accepts the output (or input image) from the preceding stage and

employs diverse-scale kernels to sample patches. This methodology imparts cross-scale fea-

tures to each embedding, mitigating the potential semantic corruption arising from the

assignment of disparate patches to analogous underlying representations. Consequently,

MREL possesses the capability to reconfigure otherwise isolated patches into overlapping

patches with varied receptive field sizes. This capability compensates for the loss of image

information at the edges of patches due to simplistic patch segmentation and averts semantic

corruption resulting from the convergence of different patches into similar latent

representations.

Existing multi-attention mechanisms treat all pixels equally, which may lead to optimiza-

tion bias towards smoothing the inner regions while underestimating the boundary pixels.

This can unbalance foreground and background information, resulting in rougher predicted

mask boundaries that do not align well with the boundaries of real objects [19–25]. To address

this problem, we design Adaptive Pixel Adjustment Block(APAB) by introducing a long-range

dependency and adaptive spatial aggregation. This is achieved through the stratification of the

spatial aggregation process into distinct groups. Each group is given an exclusive sampling vol-

ume and modulation scale, fostering a collaborative learning paradigm that combines local fea-

tures and global dependencies. This collaborative feature extraction effort enables adaptivity,

mitigating interference from unnecessary pixels and allowing for better segmentation of edges

in nuclei.

In summary, the contributions of this paper are:

1. Aiming at the problem that existing methods cannot achieve good segmentation results on

small-scale data sets, we propose a novel transformer model—ASATrans, which generates

finer nuclei edge shapes by exploring adaptive spatial aggregation methods.

2. Specifically, Multi-Receptive Embedding Layer in ASATrans samples patches using

diverse-scale kernels. This approach provides cross-scale features to each embedding, pre-

venting semantic corruption that might arise from mapping disparate patches to analogous

underlying representations.

PLOS ONE Adaptive spatial aggregation transformer for cervical nuclei segmentation on rough edges

PLOS ONE | https://doi.org/10.1371/journal.pone.0307206 July 12, 2024 2 / 18

https://doi.org/10.1371/journal.pone.0307206


3. In addition, we design Adaptive Pixel Adjustment Block by introducing a long-range

dependency and adaptive spatial aggregation. This is achieved through the stratification of

the spatial aggregation process into distinct groups. Each group is given an exclusive sam-

pling volume and modulation scale, fostering a collaborative learning paradigm that com-

bines local features and global dependencies.

4. Extensive experiments on two cervical nuclei datasets (HRASPP Dataset, ISBI Dataset), dem-

onstrating that ASATrans outperforms other state-of-the-art methods by a large margin.

Literature review

In the past decade, Deep Convolutional Neural Networks (CNNs) have been extensively

employed for medical image segmentation, consistently exhibiting satisfactory performance.

The preference for CNN architectures in numerous medical tasks due to their rapidly converge

on modest datasets, yielding commendable accuracy and robustness. Building upon the suc-

cess of transformers developed for Natural Language Processing (NLP) [26–30], researchers

have tailored specific vision transformers for visual tasks, leveraging their potent attention

mechanisms. Notably, ViT [9] and DeiT [31] successfully adapted the original transformer to

vision domains, yielding impressive outcomes. Subsequent innovations, such as PVT [17],

Swin [10], and ViTAE [32], introduced the pyramid structure to vision transformers, substan-

tially reducing the number of patches in underlying layers. Furthermore, these advancements

extended the applicability of vision transformers to diverse visual tasks, including object detec-

tion and segmentation. In addition, these advances have successfully extended Transformer to

various other visual tasks [33], including detection, classification, segmentation, etc. Task sce-

narios include liver tumor segmentation [34], cell segmentation [35], etc.

While vision transformers (ViTs) [36, 37] have demonstrated exceptional performance on

large datasets, their efficacy tends to diminish when trained on smaller datasets, possibly attrib-

utable to the absence of localized inductive bias in their architecture. Recent investigations

[15] have addressed this limitation by introducing locality to the architecture, thereby enabling

ViTs to achieve performance comparable to CNNs in scenarios involving smaller datasets. To

address the challenge of indistinct edges, Wang et al. [38] proposed the Boundary-Aware

Transformer (BAT), incorporating boundary-aware gates in the transformer architecture to

leverage prior knowledge about boundaries. BAT was effectively trained with assisted supervi-

sion to enhance performance. Additionally, Pu et al. introduced the Transformer-Based Edge

Detector (EDTER) [39], employing two distinct phases to extract global context and local cues,

which are subsequently fused by a feature fusion module for precise edge prediction. Although

these methods exhibit success in diverse domains, the scarcity of foreground pixels in cervical

cell nuclei segmentation poses challenges in rapidly establishing a local vision structure. Con-

sequently, there is an urgent need for a transformer model tailored to excel on small-sized cer-

vical cell nuclei segmentation datasets.

Methodology

We proposed ASATrans to solve the problem of blurred edge segmentation of transformer on

small-scale datasets. The overall structure is shown in Fig 1. The input image first passes

through the Multi Receptive Embedding Layer, and then passed through the Swin Trans-

former Block in stages 1 and 2 and the Adaptive Pixel Adjustment Block and applied in stages

3 and 4. In the decoding part, we use UperNet Head as the decoding head, which mainly

includes FPN and PPM modules. Finally, we get the final prediction result through a classifier.
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Adaptive pixel adjustment block

Unlike CNN models, visual transformer has a larger receptive field and excels at modeling

long-distance relationships, which shows excellent performance on large datasets. However,

since transformer lacks some of the inductive biases that CNNs inherently have, causing it to

often require a large amount of data to model relationships, it tends to perform less well than

CNN models on undersized medical image datasets. In particular, in the field of cervical can-

cer cell nuclei segmentation, the small number of datasets and the disparity in the ratio of fore-

ground pixels to background pixels make it difficult for existing transformer models to achieve

satisfactory results.

So we designed the Adative Pixel Adjustment Block to replace the traditional transformer

block and use it to make up for the shortcomings of convolution and multi-head self-attention.

Compared with MHSA whose weights are dynamically adjusted by the input, the Adative Pixel

Module is an operator with static weights and strong inductive bias, so that APAB can fully

enjoy the advantages of both mechanisms. Due to their highly inductive nature, models com-

posed of regular convolutions may converge faster than VITS and require less training data.

The traditional multi-attention mechanism is shown below:

AttentionðQ;K;VÞ ¼ Softmax
QKT

ffiffiffiffiffiffiffiffiffi
dhead

p V

 !

ð1Þ

A direct approach to reconcile the disparity between convolutional operations and Multi-

Head Self-Attention (MHSA) is to imbue conventional convolution with the capacity for long-

range dependencies and adaptive spatial aggregation. Analogous to the DCNv2, this represents

a generalized form of traditional convolution. For a given input tensor wk 2 R
C�H�W

and the

present pixel p0, the formulation of DCNv2 can be expressed as:

yðp0Þ ¼
X

pn2R

WðpnÞ � xðp0 þ pnÞ ð2Þ

yðp0Þ ¼
X

pn2R

WðpnÞ � xðp0 þ pn þ4pnÞ ð3Þ

Fig 1. An illustration of the model architecture of ASATrans. The overview of our proposed ASATrans architecture, including the global overview of

backbone (above), details of the internal structure of our Adaptive Pixel Adjustment Block (below).

https://doi.org/10.1371/journal.pone.0307206.g001
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yðp0Þ ¼
XK

k¼1

wkmkxðp0 þ pk þ DpkÞ ð4Þ

Here, K signifies the overall count of sampling points, with k serving as the index for indi-

vidual sampling points. The notation wk 2 R
C�H�W designates the projection weights associ-

ated with the k-th sampling point, while mk 2 R denotes the modulation scalar corresponding

to the k-th sampling point. This modulation scalar is subject to normalization through a sig-

moid function. Additionally, pk represents the k-th location within the predefined grid sam-

pling, akin to conventional convolutional processes.

R ¼ fð� 1; � 1Þ; ð� 1; 0Þ; . . . ; ð0; 1Þ; ð1; 1Þg ð5Þ

The symbol Δpk denotes the displacement corresponding to the k-th grid sampling location.

It is discernible from the mathematical expression that, in the context of long-range dependen-

cies, the sampling offset Δpk exhibits a degree of flexibility, enabling its interaction with fea-

tures of both short and long-range characteristics. Moreover, for the purpose of adaptive

spatial aggregation, both the sampling offset Δpk and the modulation scalar mk are endowed

with learnable attributes and are conditioned by the input variable x. It is thereby evident that

DCNv2 shares analogous advantageous characteristics with Multi-Head Self-Attention

(MHSA), prompting our initiative to construct foundation models of large-scale Convolu-

tional Neural Networks (CNNs) grounded upon this operator.

In order to augment the efficacy of the convolutional structure embedded within the trans-

former block, we have operationalized the ensuing strategies:

Weight sharing among convolutional neurons. In convolution, different convolution

neurons have independent linear projection weights, so their parameters and complexity are

linearly related to the total number of sampling points. We use the idea of separable convolu-

tion to share the weights between neurons, which effectively reduces the auxiliary degree of

the model and makes it possible to apply it in large-scale models. We separate the weight wk in

normal convolution into a depth part and a point part. The original position-aware modula-

tion scalar mk is responsible for the depth part, and the shared projection weight w between

sample points represents the point part.

Introducing the multi-group mechanism. Second, weight sharing just for convolutions is

not enough. In MHSA, attention is often divided into multiple groups for calculation. Inspired

by this, we also divide the spatial aggregation process of APAB into G groups. The basic idea is

similar to the MHSA widely used in transformre, except that each group of ours has a separate

sampling offset Δpgk and modulation scale mgk. Therefore, different spatial aggregations exist

in different groups on a single convolutional layer, so they can better adapt to different down-

stream tasks and achieve better convergence speed and performance.

Normalization of the modulation scalar across sampling points. In order to control the

sampling offset in each group not to exceed a reasonable range, we need to normalize the sam-

pling points. Because the gradient in convolution is unstable when training with large-scale

parameters or data. The offset of all sample points in APAB may be outside the normal range.

In order to solve this problem, we use the improved sigmoid function to normalize the ele-

ments of the modulation parameter scalar, which can make the offset parameters more stable

during the training process. The original formula is as follows:

softmax xið Þ ¼
exi � c

Pd
j¼1

exj � c
¼

exi e� c

e� c
Pd

j¼1
exj ð6Þ
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We have made some changes to reduce the computational cost and increase the speed. The

specific implementation method is to take the log of the value, as follows:

softmax xið Þ ¼ log
exi � c

Pd
j¼1

exj � c
¼ xi � c � log

Xd

j¼1

exj � c ð7Þ

Compared with softmax, using Log-softmax has many advantages, including improved

numerical performance and gradient optimization. These advantages are very important for

implementation, especially when the computational cost of training the model is high, they

can bring very objective benefits. Moreover, the use of log probability has better information

theory interpretability.

In order to control the sampling offset in each group not to exceed a reasonable range, we

need to normalize the sampling points. Because when training with large-scale parameters or

data, the gradient in convolution is unstable. The offset of all sampling points in APAB may

exceed the normal range. In order to solve this problem, we use the sigmoid function to nor-

malize the elements of the modulated parameter scalars, so that the sum of all scalars is 1,

which can make the offset parameters during the training process more stable.

Combined with the above modifications, the extended DCNv2, can be formulated as:

yðp0Þ ¼
XG

g¼1

XK

k¼1

wgmgkxgðp0 þ pk þ DpgkÞ ð8Þ

Let G denote the total number of aggregated groups. In the context of the g-th group, wg 2

RC�C0
represents the position-independent projection weight, where C0 = C/G signifies the

dimension of the group. The term mgk 2 R pertains to the offset associated with the k-th sam-

pling point in the g-th group, which is normalized along the k-th dimension through the appli-

cation of the softmax function. The variable xg 2 R
C0�H�W denotes the sliced input feature map

within the g-th group. Furthermore, Δpgk represents the offset corresponding to the grid sam-

pling position pk within the g-th group.

The predefined scalar γ used to modulate the offset amplitude is empirically set to 0.1,

which we believe is unreasonable empirically. Because this limits the offset distance, if a large

range of edge distortion is encountered, the degree of deformation will not be enough to cope

with large changes. And if you encounter smaller deformations, it will be difficult to identify

the degree of distortion. We set γ as a variable variable, and its formula is

4pij ¼ g4 p̂ij � ðw; hÞ ð9Þ

where (w, h) are the width and height of the ROI, by element-wise product with the width and

height of the ROI. γ is limited between 0.01–0.5, with an initial value of 0.1, which is obtained

through adaptive learning. The parameters are continuously adjusted during the training pro-

cess through the back propagation algorithm to improve the accuracy and generalization abil-

ity of the model, and then transform the deformed The amplitude is controlled within a

reasonable range, thereby better segmenting the edges of distorted cervical cell nuclei and

helping doctors better judge the extent of cancer lesions.

In summary, the APAM operator serves to rectify the limitations of regular convolution

with respect to long-distance dependencies and adaptive spatial aggregation.
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Multi receptive embedding layer

The main difference between visual transformers and CNN models is how images are pro-

cessed. In visual transformers, images are divided into blocks, and these blocks are linearly

embedded and passed through transformer blocks. However, this simple patch-based segmen-

tation approach has two issues: (1) Loss of local structures: Regular patches (e.g., 16x16) strug-

gle to capture complete local object structures as object scales vary in different images. (2)

Semantic inconsistency: Objects in different images may have different geometric variations

(scaling, rotation, etc.), and fixed patch segmentation may capture inconsistent object infor-

mation, potentially degrading semantics and performance. As a result, some intrinsic induc-

tive bias is lost during image segmentation, leading to inferior performance on small-scale

datasets compared to CNN models.

In Fig 2(a), the current patch embedding method divides the image into small patches, line-

arizes them, and then flattens them before inputting them to the encoder. In contrast, Fig 2(b)

shows our approach, which embeds and concatenates multi-sized image patches into a linear

representation.

Multi-Resolution Embedded Layers (MRELs) are employed for the generation of input

embeddings at each stage of the process. The initial MREL, depicted in Fig 2 and positioned

prior to the first stage, accepts the image as its input. Subsequently, it samples patches using

four kernels characterized by varying sizes. The step size of these kernels is appropriately

adjusted to ensure uniform embedding counts. Notably, these four patches correspond to

identical central regions but vary in scales. Ultimately, these patches undergo projection and

consolidation into a unified embedding, a process typically executed through the utilization of

four convolutional layers.

Dealing with cross-scale embeddings poses the challenge of selecting the right projection

dimension for each scale. The computational cost of a convolutional layer scales with K2 × D2,

Fig 2. An illustration of consecutive pixel patch moudle. (a) shows current patches embedding methods. (b) shows

our multi-receptive embedding layer.

https://doi.org/10.1371/journal.pone.0307206.g002
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where K is the kernel size, and D represents the input/output dimensions when they are equal.

This means that larger kernels consume more computational resources compared to smaller

ones for the same dimension. To efficiently manage the computational budget of the Multi-

Resolution Embedding Layer (MREL), we assign lower dimensions to larger kernels and

higher dimensions to smaller kernels. Specific allocation rules, along with a 128-dimensional

example, are provided in sub-tables within Fig 2. Our approach significantly reduces computa-

tional overhead without significantly affecting the model’s performance, compared to the con-

ventional practice of evenly distributing dimensions. Similar processes are followed in the

cross-scale embedding layers in other stages. As shown in Fig 1, MRELs in stages 2/3/4 utilize

two different kernel sizes (2x2 and 4x4). Additionally, in stages 2/3/4, the MREL span is set to

2x2 to create a pyramid structure, effectively reducing the number of embeddings to one-

fourth.

Experiments

Dataset and metric

This article presents experimental investigations conducted on both HRASPP datasets [3] and

publicly available ISBI datasets [22]. Each dataset exhibits distinctive characteristics. The inter-

nally generated dataset is characterized by an abundance of cell clusters or stacks, posing chal-

lenges in the segmentation process. Notably, a mere 0.01% of pixels within each image

correspond to nuclei, as shown in Fig 3. In contrast, the ISBI dataset involves cervical cells

obtained through a Pap smear by a skilled medical professional, with subsequent presentation

of slide images under a microscope. While the ISBI dataset also exhibits cell adhesion, it is

observed to be of a milder degree. Furthermore, there is no substantial size difference in cell

nuclei when compared to our proprietary dataset.

In the evaluation of the performance of our ASATrans model, three commonly utilized

metrics were chosen: Intersection over Union (IoU), Dice coefficient, and Pixel Accuracy

(PA). IoU and Dice coefficient are frequently employed in the assessment of medical image

segmentation, as they provide direct quantification of pixel overlap between predicted out-

comes and ground truth labels. Furthermore, Pixel Accuracy (PA) denotes the proportion of

accurately classified pixels relative to the total pixel count.

These metrics are formally defined as follows:

IoU ¼
TP

TP þ FPþ FN
ð10Þ

Dice ¼
2TP

2TPþ FPþ FN
ð11Þ

PA ¼
TP þ TN

TP þ TN þ FT þ FN
ð12Þ

Training details

The experiments were implemented using the PyTorch framework and executed on an NVI-

DIA GeForce RTX 3080. All methodologies underwent training with a Batch Size of 2 and

employed SGD as the optimizer. The initial learning rate was established at 0.001, with a

momentum of 0.9 and a weight decay of 0.0005.
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The training process incorporated Multiple Losses, specifically CrossEntropyLoss and

DiceLoss, applied to the datasets. The ratio was set at 3. Data augmentation techniques, includ-

ing flipping, rotating, and cropping operations, were applied to augment the three datasets.

The input model operated on images with dimensions of 512 × 512, while the crop size for the

transformer model was set to 224 × 224. Pre-training utilized the ImageNet-1k dataset, and

model performance was evaluated on the official test set provided by the dataset itself. A total

of 360,000 iterations were conducted during the training phase.

Comparison with other methods

To show the efficacy of ASATrans, a comparative analysis was conducted against several state-

of-the-art methods using two distinct datasets. The selected methods encompassed Vision

Transformer [9], Swin Transformer [10], Swin Unet [40], U2NET [41], UNET++ [42], and

TransUNET [43]. To ensure equitable comparisons, all models were executed within the same

Fig 3. Display of dataset image.

https://doi.org/10.1371/journal.pone.0307206.g003
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configuration environment. The outcomes of these comparisons are presented in Tables 1 and

2, while visual contrasts are depicted in Figs 4 and 5.

Across two datasets with disparate characteristics (HRASPP dataset and the ISBI dataset),

the results in Tables 1 and 2 consistently indicate the superior performance of our proposed

method when compared to both CNN-based and Transformer-based models. This observation

underscores the notable potential of our model for the segmentation of cervical cell nuclei

edges, particularly in the context of limited dataset sizes.

Specifically, on HRASPP dataset, cervical cell nuclei often appear in cell clusters, leading to

cell stacking, overlapping, and difficult segmentation. The CNN-based U2Net and Unet+

+ models converge quickly and fluctuate stably, and can quickly learn the morphological fea-

tures of the cell nuclei, achieving notable results, with the best model achieving an IoU of

0.5034. In contrast, the Transformer-based model converges slower and fluctuates more, with

a longer training cycle, and due to the lack of the CNN-based model’s inherent of inductive

biaes, their performance is often inferior to that of CNN-based models. For example, the ViT

model only achieved an IoU of 0.4077, the worst performance on our dataset. However, our

ASATrans model provides finer segmentation of cell nucleus edges with comparable model

sizes by dynamic adaptive spatial aggregation, which allows the input patch embedding to con-

tain more local detail information, and APAM to bias the transformer’s attention more

towards the foreground. Ultimately, our model achieves 0.89% higher IoU performance and

0.35% higher Dice performance than the next best CNN-based model, and 1.65% higher IoU

Table 1. Quantitative comparison of different excellent methods on HRASPP dataset.

Methods Input Size Crop Size Params(M) IoU Dice PA

ViT 5122 2242 142 0.4077 0.5792 0.5449

Swin-Trans 5122 2242 120 0.4629 0.6329 0.5709

Swin-UNet 5122 2242 79 0.4552 0.6256 0.5335

NucleiSegNet 5122 2562 93.54 0.4943 0.6866 0.5735

U2Net 5122 2562 44.63 0.5034 0.6697 0.5771

UNet++ 5122 2562 35 0.4761 0.6451 0.5412

OCR 5122 2562 56.75 0.5058 0.6718 0.6124

HR-AS 5122 2562 71.23 0.5064 0.6723 0.5923

TransUNet 5122 2242 86 0.4958 0.6629 0.5854

Ours 5122 2242 63.71 0.5123 0.6732 0.5991

https://doi.org/10.1371/journal.pone.0307206.t001

Table 2. Quantitative comparison of different excellent methods on ISBI Dataset.

Methods Input Size Crop Size Params(M) IoU Dice PA

ViT 5122 2242 142 0.7698 0.8699 0.9627

Swin-Trans 5122 2242 120 0.8628 0.9264 0.9484

Swin-UNet 5122 2242 79 0.8216 0.9021 0.9532

NucleiSegNet 5122 2562 93.54 0.8456 0.9261 0.9475

U2Net 5122 2562 44.63 0.8321 0.9082 0.9480

UNet++ 5122 2562 35 0.8474 0.9174 0.9493

OCR 5122 2562 56.75 0.8457 0.9163 0.9541

HR-AS 5122 2562 71.23 0.8498 0.9188 0.9776

TransUNet 5122 2242 86 0.8581 0.9236 0.9569

Ours 5122 2242 63.71 0.8779 0.9362 0.9775

https://doi.org/10.1371/journal.pone.0307206.t002
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performance and 1.03% higher Dice performance than the next best Transformer-based

model. This also proves the effectiveness of our module design.

On the ISBI dataset, all models perform well with very clear nuclei and good contrast,

despite the presence of cell stacking. In this case, the model structure based on Transformer

Fig 5. Refinement effect of ASATrans on edge. Left is the segmentation result with ASATrans, right is the segmentation result without ASATrans.

https://doi.org/10.1371/journal.pone.0307206.g005

Fig 4. Display of transformer-based methods prediction results. Each dataset presents two nuclei images and ground truth images.

https://doi.org/10.1371/journal.pone.0307206.g004
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can better establish long-distance dependency and fully utilize the performance of Trans-

former. As can be seen from Table 2, compared with the next best model, the model in this

paper achieves 1.51% and 0.98% improvement in IoU and Dice metrics, respectively.

Combining the results of the two individual datasets, we find that the CNN-based model

usually converges faster and works better than the Transformer-based model on HRASPP

dataset, which has severe nucleus stacking, cell aggregation, and large picture differences. And

on ISBI and Herlev, two small datasets with little difference, Transformer can fully utilize the

performance. Our designed A and B modules perform adequately on all three datasets to better

model cell nucleus images. ASATrans can improve the accuracy of spatial localization of

small-size targets such as cell nuclei, act as a refinement of segmentation edges, and enhance

the robustness of the model. These optimizations have a significant role in improving the per-

formance in the task of cell nucleus image segmentation.

Ablation studies

Taking the ISBI dataset as an example, we have conducted experimental discussions on the

selection of hyperparameters and ablation experiments under various settings to validate the

effectiveness of the proposed individual modules for segmentation.

In order to demonstrate the effectiveness of the proposed modules, we conducted compari-

son experiments on the ISBI dataset using various combinations as shown in Table 3. Based on

the results reported in Table 3, it is easy to see that the components in ASATrans are compati-

ble with each other, while each component contributes to the improvement of segmentation

rate.

Specifically, we compare the segmentation performance of the base model in the first row

and the second row with the addition of the APAB module. Observe that the addition of

APAB module improves IoU, Dice and PA by 0.7%, 0.38% and 0.23%, respectively. This indi-

cates that the new embedding can maintain the local continuity of the pixels around the patch,

and will not roughly break up the complete image into split chunks as in the case of plain

block segmentation, thus avoiding the loss of image information at the edges of the block and

maintaining the intrinsic scale invariance of the image. Compared to adding module APAB,

comparing the segmentation performance of the base model in the first row and the third row,

we find that the performance improvement is more with the addition of module MREL. The

IoU and Dice are improved by 0.9% and 0.7%, respectively. This is that the APAM operator

compensates for the shortcomings of regular convolution in terms of long distance depen-

dence and adaptive spatial aggregation; Compared with common attention-based operators

such as MHSA and closely related deformable attention, this operator inherits the inductive

bias of convolution, which makes our model more efficient, with less training data and shorter

training time; this operator is based on sparse sampling, which is more efficient than previous

methods such as MHSA and heavily parameterized methods such as the large kernel with

parameterization is more computationally and memory efficient. MREL supplements the

Table 3. Quantitative comparison of different excellent methods on ISBI dataset.

Components Results

APAB MREL IoU Dice PA

x x 0.8628 0.9264 0.9484
p

x 0.8698 0.9302 0.9507

x
p

0.8718 0.9334 0.9594
p p

0.8779 0.9362 0.9775

https://doi.org/10.1371/journal.pone.0307206.t003
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image information lost at patch edges due to plain patch partitioning and prevents the seman-

tic corruption caused by mapping different patches to similar latent representations. Compar-

ing lines 2, 3, and 4, adding two modules results in greater performance improvement

compared to adding one module. This demonstrates that the components in ASATrans are

compatible with each other and that each component contributes to improving segmentation

performance. Furthermore, it shows that our proposed ASATrans effectively enhances the seg-

mentation performance of cervical cancer cell nucleus edges on small datasets.

Hyperparameter discussion

Multi-group (head) design first appeared in group convolution, which is widely used in

MHSA of transformers and used with adaptive spatial aggregation to effectively learn richer

information from different representation subspaces at different locations. Inspired by this, we

divide the spatial aggregation process into G groups, each group has separate sampling offsets

and modulation scales, so different groups on a single convolutional layer can have different

spatial aggregation patterns, thus providing better performance for downstream tasks. Strong

functionality.

In order to determine the optimal hyperparameter G, we set it to groups 2, 3, 4, 6, and 12

respectively. The experimental results are shown in Table 4.

Experimental results show that when G is set to 2, the performance improvement is mini-

mal, only 0.12. However, setting the number of spatial aggregation groups to 4 results in the

best performance improvement, up to 0.33. Therefore, we conclude that 4 is the optimal num-

ber of groups. This choice is similar to the spatial pyramid structure, where people usually

aggregate 4 feature maps of different sizes to obtain comprehensive information. The reason

we didn’t choose 5 is that it is difficult to divide. Additionally, when the number of sets

increases to 6 or 12, performance drops to about 0.32. We believe this is because aggregating a

larger number of groups leads to information redundancy, thereby reducing performance. In

addition, choosing a larger number of groups will increase the computational complexity and

may lead to the problem of exploding gradients. Therefore, choice 4 considers both speed and

accuracy.

Visualization

Segmentation results. Fig 4 shows the visualization results of the segmentation predic-

tion, with two images selected for visualization for each dataset. Observing the visualization

results of rows 2, 3, and 4 in Table 4, it can be seen that the visualization results of Transformer

models with poorer performance (e.g., Vision Transformer) are also very rough, and the visu-

alization results reflect the performance performance of the models very well. In contrast, as

seen in the last column, our model has the best visualization results, with higher segmentation

accuracy and finer segmentation of edges.

Table 4. Hyperparameter discussion.

Group Number Improved(%)

2 0.13

3 0.24

4 0.33

6 0.323

12 0.322

https://doi.org/10.1371/journal.pone.0307206.t004
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To further illustrate the improved effect of our proposed APAB on edge segmentation. We

compare our model with the benchmark model and show the visualization results. It can be

clearly observed that the originally adherent nuclei edges become clearer in the left-right com-

parison plots in Fig 5. The edges of Overlapping nuclei tend to be adherent and unclear, and

we can observe in the region marked by the red box in Fig 5 that the overlapping boundaries

segmented by ASATrans are more clearer than the edges segmented by the benchmark model

as the training progresses.

Convergence and stability. The ASATrans we proposed can effectively improve the sta-

bility of the model and accelerate the convergence of the model. The proposed MREL module

avoids the loss of local structure information through multi-scale feature extraction and accel-

erates the convergence of the model. At the same time, the inherent inductive bias is supple-

mented to enhance semantic consistency and make model training more stable. As shown in

Fig 6, red represents our model. It is obvious that our model is more stable than other models.

Attention map. To further illustrate that the APAB does indeed bias attention that would

otherwise be focused on the background more towards the foreground, we used GradCAM to

visualize the model’s attention. We visualized the 2D activations by weighting the 2D activa-

tions by the average gradient and selecting the maximum value channel. The first row of Fig 7

shows the distribution of attention before the addition of the APAB module, and it can be seen

that the attention is scattered and much of it is focused on the background. Whereas after the

addition of the APAB module, as shown in the second row of Fig 7 the attention is shifted

from the background to the foreground, focusing more on the region of the nucleus clusters.

Comparing columns 1, 2, and 3 in the figure, we can observe that as the training progresses,

Transformer’s attention becomes more refined, better segmenting the edges of the cell nuclei.

This further proves the effectiveness of APAB.

Conclusions

In this paper, we delve into how the transformer model can be improved to finely segment

blurred cell nuclei edges on small-scale datasets. First, we observe that the existing transformer

model loses edge information when crudely dividing an image into small patches, making it

difficult to quickly establish long-distance dependencies, which is detrimental to model

Fig 6. Effect on the convergence and stability.

https://doi.org/10.1371/journal.pone.0307206.g006
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convergence and edge segmentation. In addition, when extracting image features, the trans-

former’s attention tends to focus too much on the background and ignores the important fore-

ground information. To address these issues, we propose a simple yet effective transformer

framework named ASATrans, which learns sparse attention in a data-dependent manner and

models geometric transformations to bias the attention more from the background to the fore-

ground. ASATrans effectively improves the accuracy of edge segmentation of cell nuclei. We

applied ASATrans to the difficult task of cell nuclei segmentation with small datasets and

obtained finer cell nuclei segmentation edges. Numerous experiments demonstrate the effec-

tiveness of our ASATrans model, which performs better and achieves significant improvement

compared to other baseline models.
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