
RESEARCH ARTICLE

A trustworthy hybrid model for transparent

software defect prediction: SPAM-XAI

Mohd MustaqeemID
1, Suhel Mustajab1, Mahfooz AlamID

1*, Fathe JeribiID
2*,

Shadab AlamID
2, Mohammed Shuaib2

1 Department of Computer Science, Aligarh Muslim University, Aligarh, India, 2 Department of Computer

Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia

* fjeribi@jazanu.edu.sa (FJ); mahfoozalam.amu@gmail.com (MA)

Abstract

Maintaining quality in software development projects is becoming very difficult because the

complexity of modules in the software is growing exponentially. Software defects are the pri-

mary concern, and software defect prediction (SDP) plays a crucial role in detecting faulty

modules early and planning effective testing to reduce maintenance costs. However, SDP

faces challenges like imbalanced data, high-dimensional features, model overfitting, and

outliers. Moreover, traditional SDP models lack transparency and interpretability, which

impacts stakeholder confidence in the Software Development Life Cycle (SDLC). We pro-

pose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplain-

able-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces

features, optimizes the model, and reduces time and space complexity, enhancing its

robustness. The SPAM-XAI model exhibited improved performance after experimenting

with the NASA PROMISE repository’s datasets. It achieved an accuracy of 98.13% on

CM1, 96.00% on PC1, and 98.65% on PC2, surpassing previous state-of-the-art and base-

line models with other evaluation matrices enhancement compared to existing methods.

The SPAM-XAI model increases transparency and facilitates understanding of the interac-

tion between features and error status, enabling coherent and comprehensible predictions.

This enhancement optimizes the decision-making process and enhances the model’s trust-

worthiness in the SDLC.

1. Introduction

Software quality assurance plays a critical role in successfully developing and deploying soft-

ware applications. Early detection of software defects is essential for mitigating risks, reducing

costs, and ensuring overall project success. However, traditional SDP models face various chal-

lenges, including imbalanced datasets, high-dimensional feature spaces, and a lack of transpar-

ency in decision-making. These limitations hinder the effectiveness and reliability of SDP

models in real-world applications. The high dimensionality with hundreds of variables creates

an overfitting problem. Besides, the model’s non-transparent decision system worsens trust

and real-life application prospects. The presence of outliers and the complexity of the feature

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 1 / 33

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mustaqeem M, Mustajab S, Alam M,

Jeribi F, Alam S, Shuaib M (2024) A trustworthy

hybrid model for transparent software defect

prediction: SPAM-XAI. PLoS ONE 19(7):

e0307112. https://doi.org/10.1371/journal.

pone.0307112

Editor: Hikmat Ullah Khan, University of Sargodha,

PAKISTAN

Received: March 21, 2024

Accepted: June 30, 2024

Published: July 11, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0307112

Copyright: © 2024 Mustaqeem et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: The authors extend their appreciation to

the Deputyship for Research& Innovation, Ministry

https://orcid.org/0000-0001-5055-5969
https://orcid.org/0000-0003-0668-9796
https://orcid.org/0000-0002-8511-8002
https://orcid.org/0000-0003-0504-4515
https://doi.org/10.1371/journal.pone.0307112
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0307112&domain=pdf&date_stamp=2024-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0307112&domain=pdf&date_stamp=2024-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0307112&domain=pdf&date_stamp=2024-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0307112&domain=pdf&date_stamp=2024-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0307112&domain=pdf&date_stamp=2024-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0307112&domain=pdf&date_stamp=2024-07-11
https://doi.org/10.1371/journal.pone.0307112
https://doi.org/10.1371/journal.pone.0307112
https://doi.org/10.1371/journal.pone.0307112
http://creativecommons.org/licenses/by/4.0/

space intensify the challenges that standard models face in effectively predicting defects. There-

fore, this research aims to address these challenges by proposing a novel SDP model, termed

SPAM-XAI, which leverages advanced machine learning (ML) techniques to enhance predic-

tion accuracy and transparency.

The existing SDP models for software engineering are mainly based on a hands-on

approach, which is not always effective. The data utilized by this paradigm is frequently inherently

biased or skewed in the case of sample distribution across its accessible classes. These are datasets

with many times more perfect instances than imperfect ones, if any. When these datasets are con-

tributed to the training datasets for predictors, there is the risk of experiencing over-fit situations

for the models [1]. The authors of [2] have used the Grey Wolf Optimization and Multilayer Per-

ception (GWOFS-MLP) for SDP. In [3], authors have balanced datasets to get good results. The

[4] used optimization, feature selection, dropout, and autoencoder concepts, but still, there are

possibilities of non-guarantee on parameter settings and convergence. Plus, the whole thing is

costlier to train due to using a complex data model that can add up the cost. Based on the view-

point of [5], the Microtext-Deep Neural Networks technique is applied in the dynamic fault pre-

diction of mobile apps with JIT; however, since MTL-DNN can be complex and may require you

to have a well-tailored hyperparameter tuning to achieve a good outcome. In [6], the author pro-

poses a layered recurrent neural network (L-RNN) architecture for SDP that employs an iterative

extraction feature model, resulting in an excellent ROC-AU curve. However, it is a complex and

slow training [7]. The author applies the node2defect method to enhance defect prediction accu-

racy by 9.15% using network embeddings and traditional features, but it has a high computational

cost for network embedding [8]. According to [9], overlaps in the class impact on SDP on apply-

ing the K-means data cleaning technique emerged. Still, K-means clustering affects through outli-

ers. In [10], the author developed a mathematical, cost-effective model of an SDP model. The

author highlighted the consequences of buffer overflows by focusing on 15 ML algorithms and

4000 defects in the work [11]. When dealing with noisy data and outliers, the Adaboost algorithm

becomes ineffective and inaccurate in SDP conditions. Although neural networks can mitigate

outliers using activation functions, they remain error-prone [12].

The MLP is demonstrated as a highly effective technique, which showed superior perfor-

mance compared to other approaches [13]. The proposed model also has high flexibility com-

pared to the Gaussian Naïve Bayes classifier, which is mainly suitable for large-scale datasets

and outperforms small datasets. Moreover, the limitation of the k-nearest neighbors (K-NN)

algorithm is that it keeps all the training data and is, therefore, slow and prone to being dis-

turbed by the outliers. Considering these traits of classifiers, researchers can make decisions to

apply specific challenges of the SDP process being analysed.

We have proposed the SPAM-XAI model to overcome the above-mentioned limitations

and problems. This model provides a robust and compact approach to improving the SDP.

The SPAM-XAI model solves the problems of imbalanced datasets and the high feature space

dimensionality, which the classical SDP models mainly deal with. The SPAM-XAI model

applies carefully fine-tuned hyperparameters to ensure optimal performance of such a model

with explanation and transparency by which a decision-making process is operated, and then

with the information on factors that contribute to its prediction becomes much clearer. In

comparison, the conventional SDP model may struggle with these challenges. This eventually

results in improved SDP performance in the SDP. This approach gives software development

brigades usable results which help reveal defects at the early stages of SDLC and make bridging

the gap between powerful prediction models and human understanding possible. The SPAM--

XAI model is primarily integrated into the testing phase of the SDLC. However, its influence

extends to other stages, including design, implementation, and maintenance, enhancing the

overall software development process. Moreover, the SPAM-XAI model is an exceptional and

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 2 / 33

of Education in Saudi Arabia, for funding this

research work through the project number ISP-

2024. The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript."

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0307112

productive instrument for assuring flawless, defect-free software projects and uplifting the

standard of software development practices.

• The SPAM-XAI model is a hybrid approach in SDP that solves the challenges, such as deal-

ing with imbalanced data, high-dimensional features, model overfitting, outliers, and lack of

transparency using various XAI techniques for the development of a deep understanding of

its decision-making processes and establishing trust among stakeholders in the SDLC.

• The SPAM-XAI model integrates the Synthetic Minority oversampling technique (SMOTE)

for oversampling, Principal Component Analysis (PCA) for feature selection, and MLP as

the classifier. Unlike many models that rely on linear functions or discard noisy data,

SPAM-XAI employs a logistic function as an activation function, directly addressing this

challenge. This approach yields promising results across various datasets from NASA’s direc-

tory, including CM1, PC1, and PC2.

• The SPAM-XAI model has computationally efficient and optimal training. Unlike those

models in the literature, by increasing expenses because they train on the high dimensional

complex datasets using intricate models, our model can reduce time complexity and opti-

mize feature values.

• Our SPAM-XAI model surpasses the performance of other baseline models, Naïve Bayes

(NB), SVM, Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), K-Nearest

Neighbors (KNN), Linear discriminant analysis (LDA), and Quadratic Discriminant Analy-

sis (QDA) in both datasets - CM1 and PC1. In addition, SPAM-XAI reaches remarkable per-

formance for the CM1; the accuracy is 98.20%, and the result is 97.51% for PC1, showing its

strength and effectiveness.

• The SPAM-XAI model showcased superior performance across CM1 and PC1 datasets,

exhibiting higher precision, recall, f-measure, accuracy, and au-roc than previous models.

Our proposed method outperformed various algorithms, including SVM, RF, Immunos,

HSOM, Artificial Neural Network-artificial bee colony (ANN-ABC), NB, C4.5 Miner,

Majority Vote, AntMiner+, ADBBO-RBFNN, DT, KNN, and MLP in various areas of the

experiment. The superiority of SPAM-XAI to the traditional approaches by which the sys-

tems are built is demonstrated, making this technology a robust and advanced solution.

The remaining part of this paper is structured as follows. Section 2: "Literature Review" –

This section of the paper studies the literature surrounding concepts. Section 3, “Comparative

Analysis of Various Algorithms with the SPAM-XAI Model”, compares the SPAM-XAI model

and other algorithms. Section 4, “Proposed Modelling”, describes the proposed SPAM-XAI

model and its components or methods used in modelling. Section 5, “Implementation”, dem-

onstrates the implementation process of the SPAM-XAI model. Section 6: “Results and Dis-

cussion Section”, this section includes the description of the experimental results. Section 7:

“eXplainability”, in this section the work performed to implement XAI techniques within

SPAM-XAI is presented. At last, Section 8, i.e., “Conclusion and Future Direction”, concludes

the findings of the study and outlines the scope for further research. This organization helps to

present realistic data about the SDP and use a clear and comprehensible SPAM-XAI model to

explain the accuracy of its interpretation.

2. Literature review

As we know, with the daily growth of the software industry, more cost, time, and effort are

required to test the software, which increases maintenance costs and achieves software quality

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 3 / 33

https://doi.org/10.1371/journal.pone.0307112

assurance. So, there is a requirement to develop the SDP models and use statistical data to pre-

dict the faulty modules so that the developers can use their skills in designing and not in testing

[14,15]. The potential influence of this work on software development methodologies makes it

significant. By improving the accuracy and interpretability of SDP, the SPAM-XAI model can

help developers identify defective modules early, leading to enhanced software quality and

reduced maintenance costs. Moreover, adopting XAI techniques contributes to the growing

field of XAI, where understanding the decision logic of AI models is crucial in applications

such as SDP. The empirical findings from evaluating the SPAM-XAI model on real-world

datasets demonstrate its superiority over traditional SDP models, validating its effectiveness in

addressing imbalanced data and providing transparent outcomes. The empirical study of pre-

viously developed SDP models & techniques can be represented in this section.

2.1 Software defects

Bugs are also known as software defects which are characterized as mistakes or failures in a

software program that lead to poor functionality or failure of the program to perform its

intended task. These defects may stem from various factors such as errors that may have been

coded, errors that may have been in the design of the application or may have been in the

requirement specifications. Software defects can be classified into three major types: Nature

based software defects, Priority based software defects, and Severity based software defects [16]

as shown in Fig 1. Software defects can be classified into three types such as nature, priority,

and severity. These include different features and effects of defects within each category, yet all

offer valuable insights that help in acquiring essential knowledge on managing defects.

Nature-based Software Defects: Functional Bugs: Defects causing software malfunctions.

Metrics include “Defect Density” and “Requirement Coverage”, Unit-level bugs: Issues related

to specific software units. Measured by Unit “Test Coverage” and “Defect Leakage”, Integra-

tion Level Bugs: Arise from combining multiple components. Metrics include “Integration

Test Coverage” and “Defect Escape Rate”, Usability Defects: Affect user experience. Evaluated

through “Usability Testing Scores” and “Task Success Rate”, Performance Defects: Impact effi-

ciency like response time. Metrics include “Response Time” and “Resource Utilization”, Secu-

rity Defects: Relate to vulnerabilities. Measured by “Vulnerability Count” and “Mean Time to

Patch”, Compatibility Defects: Issues with device or software compatibility. Metrics include

Fig 1. Software defects types.

https://doi.org/10.1371/journal.pone.0307112.g001

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 4 / 33

https://doi.org/10.1371/journal.pone.0307112.g001
https://doi.org/10.1371/journal.pone.0307112

“Compatibility Test Coverage” and “Compatibility Issue Ratio”, Syntax Errors: Deviations

from programming syntax. Assessed through “Static Code Analysis Metrics”, Logic Errors:

Flaws in logic. Evaluated by “Code Coverage” and “Defect Discovery Rate”.

Priority-based Software Defects: Low-Priority Defects: Minor impact on operation. Metrics

include “Defect Density” and “User Impact Rating”, Medium Priority Defects: Can be

addressed later. Measured by “Defect Resolution Time” and “Severity Rating”, High-Priority

Defects: Seriously affect operations. Metrics include “Defect Escalation Rate” and “Defect Res-

olution Efficiency”, Urgent Defects: Must be fixed within 24 hours. Measured by “Urgent

Defect Resolution Time” and “Escalation Rate”, Missing Defects: Unmet requirements. Evalu-

ated through “Requirement Coverage” and “Requirement Traceability Matrix”, Wrong

Defects: Incorrect implementation of requirements. Metrics include “Requirement Correct-

ness” and “User Feedback”, Regression Defects: Caused by code changes. Evaluated by

“Regression Test Coverage” and “Defect Leakage Rate”.

Severity-based Software Defects: Critical Defects: Major impact on functionality. Metrics

include “Defect Impact Analysis” and “Time to Resolution”, Major Defects: Significantly affect

functionality. Measured by “Defect Density” and “Severity Distribution”, Minor Defects:

Minor functional impact. Metrics include “Defect Aging” and “User Impact Rating”, Trivial

Defects: No functional impact. Evaluated by “Defect Ratio” and “Defect Discovery Rate”.

2.2 Imbalanced class problem

The imbalanced class problem occurs when the dataset is non-uniformly distributed among

the classes. When ML classification algorithms are applied to these datasets, their prediction

performance decreases, and models lead to overfitting. Previous research efforts have

attempted to address this challenge through various balancing approaches. However, these

techniques have shown limited success in significantly improving prediction accuracy [17].

According to [18], the author has used the N-US algorithm to improve SDP accuracy and

AUC significantly, outperforming other models on NASA datasets, but the potential informa-

tion loss from under-sampling. For instance, while multi-objective SDP models coupled with

innovative optimization algorithms have been proposed to handle under-sampled datasets,

scalability remains a crucial concern [19]. In [20], the authors combined ensemble learning

and various ML techniques to enhance the model’s performance, but they did not address the

imbalance of data problem.

2.3 Previously developed SDP models using AI techniques

Researchers have proposed various ML-based SDP models to enhance the accuracy and effi-

ciency of defect identification in software development. In [21], authors utilized PCA, DA, LR,

and L-N Non-twenty-seven projects to evaluate performance based on predictive validity,

quality, and verification cost. Similarly, in [22], the HMOCS-US-SVM model was introduced

to address class imbalance and parameter selection challenges in SDP. However, limitations of

this model include specific conditions for optimal performance and its efficacy across diverse

datasets. In [23], a modified objective cluster analysis (OCA) was proposed for SDP, although

with limited generalizability.

Furthermore, [24] introduced an optimization model using a cost-sensitive radial basis

function with stacked generalization-based SDP. In a comparative study, [25] demonstrated

that SVM outperformed ANN on various NASA datasets. Deep learning techniques were

explored in [26], allowing for automatic learning of complex patterns without manual feature

extraction. However, [27] noted the computational complexity associated with long short-

term memory (LSTM) networks, posing resource challenges for large-scale projects.

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 5 / 33

https://doi.org/10.1371/journal.pone.0307112

Innovative approaches such as gated hierarchical LSTM networks were proposed in [28],

though computational complexity remained a concern, particularly for extensive projects.

Authors in [29] developed an effective model using AI-based techniques on the NASA MDP

repository dataset, achieving promising results with adaptive neuron fuzzy inference system,

SVM, and ANN. The FILTER technique proposed in [30] improved SVM-based SDP accu-

racy, although with sensitivity to hyperparameter tuning and overfitting.

Tree-based bagging ensembles were introduced in [31], but computational expenses were

highlighted as a limitation. A framework eliminating the need for separate feature extraction

tools was proposed in [32], although concerns about capturing crucial features arose. Convolu-

tional neural networks (CNN) were employed [33] to enhance prediction performance, while

SVM was utilized to avoid overfitting problems.

The challenge of predicting defects without labeled modules was addressed in [34] using

a genetic algorithm-based LSTM-AST model. Additionally, a deep belief network (DBN)–

based semantic features model was proposed in [35], which is affected by computational

expenses. Despite advancements, [32] underscored the importance of reading software

source code, suggesting a reliance on traditional techniques. In [36], limitations of the

PCA-SVM hybridization technique and the slow convergence rate of the multi-verse opti-

mizer algorithm (MOA) were acknowledged. By weighing these strengths and limitations,

researchers can make informed decisions when selecting suitable methods for SDP and

optimization tasks.

2.4 ML-based techniques

In [37], a NB classifier-based SDP model with normalization and noise reduction was pro-

posed, yielding promising results. However, limitations were observed due to the limited inde-

pendence assumption of the NB algorithm, which may not accurately capture

interdependencies among attributes [38]. In [39], three defect prediction ML models based on

the C4.5 algorithm were developed, enhancing prediction accuracy by reducing DT. Despite

improvements, the model’s performance was hindered by its slow execution and lack of a

method for quantifying case relevance.

Biological and immunological concepts inspired by the artificial immune system were

employed in SDP [40], improving defect module detection results. Although the model exhib-

ited better recall measures, it demonstrated low evaluation metrics. In [41], a hybrid technique

combining ANN-ABC algorithms was proposed, achieving successful results in defect predic-

tion. However, the model’s limitations included time-consuming training and the requirement

for extensive data with multiple layers.

A semi-supervised ML-based Hybrid Self-Organizing Map (H-SOM) approach for auto-

mated SDP was introduced in [42], demonstrating good performance even without quality

data. Nonetheless, challenges in obtaining accurate data and dealing with incomplete informa-

tion were noted. In [43], SVM was employed as a RELIEF technique for SDP, enhancing per-

formance metrics. However, the model’s suitability for large datasets and noisy data was

questioned.

An ensemble approach using weighted majority voting techniques for SDP was proposed in

[44], aiming to improve performance on imbalanced datasets. However, the constraint of iden-

tical contributions from each model raised concerns about adaptability to various circum-

stances. In [45], a hybrid approach combining adaptive dimensional biogeography-based

optimization (ADBBO) and radial basis functional neural network (RBFNN) was employed,

achieving good performance metrics. However, increasing complexity with the number of

neurons was observed as a limitation.

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 6 / 33

https://doi.org/10.1371/journal.pone.0307112

Parameter adjustment in K-NN significantly influenced defect prediction performance in

[46], with better results obtained using Dilca distance over Euclidean distance. Nevertheless,

challenges persisted in handling large datasets and feature scaling.

2.5 Limitations of previously developed models

Using a high-quality dataset from a large software repository can improve model performance.

However, there is still a strong need for a suitable defect prediction method.

2.5.1 Imbalanced datasets and extreme bias.

• Most ML-based techniques that store recurrent attributes are not feasible for removing

errors from the dataset [47]. Supervised algorithms are more beneficial for defect predicting

at a comparable logical level. However, they are inappropriate for high-level software mod-

ules. The current SDP using classifier algorithms are somewhat incorrect in practical appli-

cations since they consider many features [36].

2.5.2 Accurate defect prediction model.

• Accurate, robust, noisy data for the SDP model is essential for huge projects. They utilize tra-

ditional DT for classification. However, there are several limitations to the conventional DT

technique. The appropriate prediction approach is necessary to predict software defects

from the archive. Data migration helps software quality approaches be more productive [48].

2.5.3 Consistent ML-based mechanism.

• A big challenge is the lack of a reliable ML-based technique to develop the most appropriate

SDP model. Due to a lack of thorough comparison analyses of popular methodologies, tes-

ters and quality assurance specialists struggle to identify effective defect prediction models

[49].

3. Comparative analysis of various algorithms with the SPAM-XAI

model

In this section, a comparative analysis of multiple techniques is shown. Table 1 shows the fea-

ture-optimized algorithms compared with PCA. In Table 2, MLP is compared with classifica-

tion algorithms, and Table 3 shows the comparison of SPAM-XAI with previously developed

models.

The GA is suitable for the feature’s selection and optimization but PCA was selected due to

its simplicity and faster execution which is appropriate for our less complex dataset. PCA

Table 1. Comparative analysis with PCA vs feature optimization approaches.

S.

No.

Feature Optimization

Approach

Execution Speed Performance

Improvement

Feature Selection Capability

1 Genetic Algorithm Lower complexity; Built-in feature selection High Yes

2 Correlation Threshold Manual implementation; Risk of exclusion of crucial

attributes

Moderate No; Eliminates redundant

features

https://doi.org/10.1371/journal.pone.0307112.t001

Table 2. MLP vs classification algorithms.

S. No. Classification Method Dataset Size Overfitting Resistance Visualization Ease Computational Complexity

1 DT Small Moderate Low Low

2 RF Large High Moderate High

https://doi.org/10.1371/journal.pone.0307112.t002

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 7 / 33

https://doi.org/10.1371/journal.pone.0307112.t001
https://doi.org/10.1371/journal.pone.0307112.t002
https://doi.org/10.1371/journal.pone.0307112

improves performance efficiently with its embedded selection of features [50]. Setting a corre-

lation cut-off might lead to omission of important features. PCA saves time as it removes

redundancy and hence increases the performance and reliability of the feature selection [51].

DT is fast with small samples and reasonably capable of avoiding overfitting. However, they

are not as useful in the aspect of offering the ease of visualization as MLPs. As far as their

computational complexity is concerned, they are appropriate for simpler tasks [48]. RF work

effectively with a big amount of data and have a high degree of protection against over-fitting.

but they are more computationally complex and provides moderate ease of visualization. Even

though CNNs are highly robust, compared to MLPs they are complex and are not easily inter-

preted, making them effective for specific tasks [52].

The presence of outliers also affects AdaBoost in a negative way. On the other hand, the

MLP within the SPAM-XAI model is better equipped to deal with outliers thus producing

more accurate predictions. The CART algorithm has low flexibility, especially with linear data.

The MLP in the SPAM-XAI model is superior to CART because it can handle linear as well as

non-linear datasets. The MLP is thus more accurate in classification than the KNN in the

SPAM-XAI model. This makes MLP a better candidate for SDP. The Chao Genetic algorithm

offers the best solutions, on the other hand, the PC approach within SPAM-XAI focuses on the

best solutions by improving feature selection and optimization. The E-M model sometimes

does not provide an optimal solution. However, the SPAM-XAI model provides a guaranteed

solution, which enhances reliability and efficacy in SDP [53]. To address the limitations speci-

fied above, we have developed the SPAM-XAI model.

4. Proposed modelling

In this section, the SPAM-XAI model is proposed to enhance performance with a higher cate-

gorization rate for SDP.

4.1 Data description and data pre-processing

The datasets contain software measurements as attributes, along with indications of defects

provided by the repository [54]. The Metrics information system is responsible for collecting

and validating the data stored in the system. The authors have used the NASA MDP repository

dataset to conduct an experimental investigation for SDP. The authors used CM1, PC1, and

PC2 datasets that can be divided into test and train sets, and attributes are shown in Table 4.

4.1.1 Original dataset. The dataset taken from the NASA MDP repository is CM1, PC1,

and PC2. The CM1 dataset is a NASA spacecraft instrument data written in C-programming

language. PC1 and PC2 are also NASA metrics datasets, the data from earth-orbit spacecraft

flight software written in C-programming language. Initially, this data was in code and con-

verted into the numeric form using Halstead and McCabe feature extractor software metrics.

These attributes were recognized in the 70s during features code characterization related to

Table 3. SPAM-XAI compared with previous models.

S. No. Algorithm Shortcoming

1 AdaBoost Outlier influence: Efficient handling by MLP

2 Cart Limited adaptability; Outperformed by MLP

3 KNN High misclassification rate compared to MLP

4 Chao Genetic Best solution provided by PC

5 E-M model Suboptimal solution; Guaranteed solution by SPAM-XAI

https://doi.org/10.1371/journal.pone.0307112.t003

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 8 / 33

https://doi.org/10.1371/journal.pone.0307112.t003
https://doi.org/10.1371/journal.pone.0307112

software quality, as shown in Table 5. Fig 2 shows the Defective (“D”) and Non-Defective

(“ND”) in graphical form using CM1, PC1 and PC2 datasets.

The CM1 dataset contains 1988 observations. Among them, 97.6% are non-defective, and

2.4% are defective. The authors have split it into train and test sets for feeding the developed

model (1391 training and 597 tests). In PC1, 97.8% of observations are non-defective, and

2.1% are defective. It contains 705 observations, which have also been divided into two parts

(493 training & 212 tests) for the same. Similarly, the PC2 dataset contains 745 elements with

97.8 “ND” and 2.2% “D” It contains 745 observations, which have also been divided into two

parts: 521 training & 224 tests.

4.2 SPAM-XAI model

The SPAM-XAI model reduces features, optimizes the model, and reduces its time and space

complexity, enhancing its robustness. The working of the model can be illustrated in Fig 3,

which shows the SMOTE implementation; the authors have datasets represented by the grey

diagram and split data into train and test sets, as indicated by the blue and red charts. The

training data is given to the SMOTE, i.e., data from the minority class set A (Rand-N)); the

Euclidean distance is calculated using K-NN. The imbalanced data determines the testing rate

Table 4. PROMISE defects prediction attribute aspects.

Attribute name Description of attribute

v(g) measurement Cyclomatic complexity (McCabe)

uniq_opnd unique operand overall

Locomment software module line comments
Iv(g) Analysis of design complexity (McCabe)

T Estimator of Time

Total_opnd operands total no.

Ev(g) McCabe essential complexity

LOC the total number of lines in the module is counted.

Loblank blank lines totally in the module
N The software module has a certain number of operators.

uniq_op unique operators overall
D difficulty Measurement

Branchcount Branch total software module

B Effort Estimation

Locodeandcomment lines of code and comments totally

total_op operators total no.

L length of Program

E effort with Measurement

I Measurement of Intelligence

V Volume

Defects/Problems Information on the problem, whether the defect is present

https://doi.org/10.1371/journal.pone.0307112.t004

Table 5. Dataset detail division.

Dataset Language Total Element ND D ND % D %

CM1 C 1988 1942 46 97.6 2.4

PC1 C 705 644 61 91.3 8.7

PC2 C 745 729 16 97.8 2.2

https://doi.org/10.1371/journal.pone.0307112.t005

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 9 / 33

https://doi.org/10.1371/journal.pone.0307112.t004
https://doi.org/10.1371/journal.pone.0307112.t005
https://doi.org/10.1371/journal.pone.0307112

N; the N models selected randomly from the closest K-NN can generate the set. The set gener-

ated by the K-NN is utilized to create a new model that will deal with the varying numbers

under 0 and 1and. Finally, the desired result is sent to the next part of the proposed model.

Furthermore, this section represents the balance data generated by the SMOTE that is now

fed to the PCA. Fig 3 shows that the PCA will take the training data generated by the SMOTE.

This data is highly dimensional; Its dimensionality can be reduced using the mathematical

covariance matrix. The Eigenvalues and Eigenvectors are also calculated. Moreover, Eigen

Value Proportion (EVP) is computed for the ratio, and based on EVP, the necessary attributes

are selected.

Additionally, this reduced dimensional data with the test data is provided to the MLP classi-

fier, as shown in Fig 4. It will use multiple layers with weights; it consists of the input layer on

which the data is given weights and some hidden layers. Every layer feeds to the next layer

based on its computational output and continues with all the hidden layers. It uses forward

propagation with an activation function (sigmoid) to optimize the values; with several itera-

tions, the output value is compared with the original value. The following process, backpropa-

gation, begins to adjust the weights during learning iteratively, and its main motive is to

Fig 2. (a). Dataset: CM1. (b). Dataset: PC1. (c). Dataset: PC2.

https://doi.org/10.1371/journal.pone.0307112.g002

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 10 / 33

https://doi.org/10.1371/journal.pone.0307112.g002
https://doi.org/10.1371/journal.pone.0307112

reduce the error or cost function. Finally, the optimized values are obtained. Lastly, the output

layer will generate the “D” and “ND” classifications.

Fig 4 illustrates how the model functions and how data flows. The summary demonstrates

how robustness is impacted by the unbalanced data (training data) provided to the SMOTE

algorithm. PCA reduces the degree of dimensionality of training data (blue arrows indicate

this). The input, reduced in dimension through PCA (indicated by the red arrow), is further

processed by an MLP for categorization. Once the model’s parameters are fine-tuned, it can

make classification predictions. The high-dimensional data was fed into PCA, while the low-

dimensional data (PCA output) was used as input for the MLP model to facilitate

classification.

4.2.1 Synthetic Minority Over-sampling Technique (SMOTE). Previously, SDP models

encountered challenges due to highly imbalanced datasets. Small classes were difficult for clas-

sification algorithms to detect accurately, necessitating balancing imbalanced datasets for pre-

cise SDP. Various balancing techniques exist in the SPAM-XAI model. SMOTE creates

artificial data samples and adjusts the distribution of classes by oversampling the tiny class

without substituting. This phase’s tiny class is oversampled, which involves attributes area

activities. K-NN are chosen, and replicas are created based on differences between their NN

and feature vectors of the target value. These synthetic samples are then created by inserting

the feature vector of interest with a random value between 0 and 1 along a line segment

Fig 3. SMOTE representation.

https://doi.org/10.1371/journal.pone.0307112.g003

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 11 / 33

https://doi.org/10.1371/journal.pone.0307112.g003
https://doi.org/10.1371/journal.pone.0307112

connecting two distinct characteristics.

ynew ¼ yþ randð0; 1Þ � ð�y � yÞ ð1Þ

The notation “rand (0, 1)” denotes a random number selected uniformly between 0 and 1.

4.2.2 Principal Component Analysis (PCA). In ML algorithms, the primary task is to

find the desired features for the classification problem. Large and small datasets can extract

essential features to mitigate overfitting issues by employing feature optimization and

dimensionality reduction techniques. In our research, we utilized the PCA technique.

Unsupervised ML algorithms, such as PCA and multivariate statistical approaches, aid

in reducing the number of variables by selecting the most relevant ones. This technique

affects the data by removing fundamental trends from the dataset. It produces a compact

set of new multivariate data known as “Principal Components” (PC) by closely tying

together strongly related variables. These elements capture a variety of information well.

Cross-validation methods like bootstrap and jack-knife are used to assess the efficacy of the

PCA model. The following procedures are involved in solving the PC problem

mathematically.

• Examine the entire dataset that consists of the N + 1 dimension. Use the following formula

(Eq 2) to get the average of each dimension for the whole dataset:

�xA ¼
1

n

Xn

i¼1

xAi ð2Þ

Fig 4. Internal architecture of the SPAM-XAI model.

https://doi.org/10.1371/journal.pone.0307112.g004

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 12 / 33

https://doi.org/10.1371/journal.pone.0307112.g004
https://doi.org/10.1371/journal.pone.0307112

• After that, use the features approach below to generate the covariance matrix for the full

dataset. Using Eq 3, xA and xB:

Cov xA; xBð Þ ¼

Pn
i¼1
ðxAi � �xAÞðxBi � �xBÞ

n
ð3Þ

• Now, find the eigenvectors and corresponding eigenvalues of the covariance matrix. To do

this, solve the characteristic equation (Eq 4):

jA � l:Ij ¼ 0 ð4Þ

Following eigenvector and eigenvalue acquisition, diminish dimensionality and craft a fea-

ture vector. The eigenvector linked to the highest eigenvalue signifies the dataset’s principal

component. Construct a matrix, denoted as M, with dimensions N × I, arranging eigenvectors

in a descending order based on eigenvalues. Opt for the I eigenvectors with utmost signifi-

cance. Project the model into the fresh subspace by applying the N × I eigenvector matrix.

4.2.3 Multilayer Perceptron (MLP). There are three types of learning: unsupervised,

supervised, and semi-supervised. Classification categorizes them based on addressed prob-

lems. In SDP, our focus is classification to predict software defects. ML offers diverse classifica-

tion methods like DT, LR, and RF. These techniques, foundational in AI, tackle classification

challenges. Among supervised ML, ANN stands out. CM1, PC1 and PC2 datasets aid model

training and validation. Dataset split precedes metadata initialization, encompassing weights,

learning rates, hidden layers, minimum error, and epochs. The sigmoid function, depicted in

Fig 5, is commonly employed for classification.

It may be expressed mathematically: Vector defines an input layer that may be a distinct

characteristic to identify software defects.

X ¼ ½x1; x2; x3; . . . xi� ð5Þ

Where X represents the input features in the input layer, the output layer, Z = [Z1, Z2] will rep-

resent the projected class.

B ¼ ½b1; b2; b3; b4 . . . bi� ð6Þ

Where B represents the weights. The net input (netj) to the jth hidden neuron is

netj ¼ h0j þ
X

xi∗bij ð7Þ

Where h0j is the bias term for the jth hidden neuron. xi are the input features. bij are the weights

from the ith input features to the jth hidden unit. The ∑xi*bij represents the weighted sum of the

inputs.

The output hj of the jth hidden neuron can be represented as:

hj ¼ f ðnetjÞ ð8Þ

f is the activation function applied to the netj.

netk ¼
X

hj∗vjk þ h0k ð9Þ

Where net input (netk) to the kth output neuron. It is the weighted sum of all the outputs from

the hidden neurons (hj) multiplied by their respective weights (vjk) connecting them to the kth

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 13 / 33

https://doi.org/10.1371/journal.pone.0307112

output neuron, plus the bias term (h0k) for that output neuron.

yk ¼ gðnetkÞ ð10Þ

Where output (yk) of the kth output neuron, which is obtained by applying an output activation

function (g) to the net input (netk).

The terms “ND” and “D” can indicate error correction.

dl ¼
ND
D
� yk

� �

∗outputlayerderivative g netkð Þ ð11Þ

The term ND
D � yk

� �
calculates the difference between the target output and the predicted

output for a given neuron k outputlayerderivative g(netk) represents the derivative of the acti-

vation function g with respect to its input netk.

Fig 5. Illustration of MLP.

https://doi.org/10.1371/journal.pone.0307112.g005

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 14 / 33

https://doi.org/10.1371/journal.pone.0307112.g005
https://doi.org/10.1371/journal.pone.0307112

Updation of the weight can be done as follows:

dvjk ¼ b∗dl∗hj ð12Þ

where: δvjk is the weight change for the connection between the jth hidden neuron and the kth

output neuron. β is the learning rate parameter. δl is the error signal at the kth output neuron,

hj is the output of the jth hidden neuron.

For kth neuron (Weight Change for Bias).

dv0k ¼ b∗dl for bias ð13Þ

Here δv0k is the weight change for the bias term associated with the kth output neuron. The

bias term is often considered to have a constant input of 1.

We have sent an error backward (Weight update).

vjkðnewÞ ¼ vjkðoldÞ þ dvjk ð14Þ

Where, vjk(new) Updated weight from the jth hidden neuron to the kth output neuron and

vjk(old) Previous weight from the jth hidden neuron to the kth output neuron (Bias Weight

Update).

v0kðnewÞ ¼ v0kðoldÞ þ dv0k ð15Þ

Here v0k(new) Updated bias weight for the kth output neuron. v0k(old) is the previous bias

weight for the kth output neuron.

4.2.4 LIME (Local Interpretable Model-Agnostic Explanations). Being an ANN, it pro-

vides a relatively recent model that explicitly provides the input’s eXplanation. It is a model-

agnostic algorithm that can be utilized twofold with any predictor (i.e. classifier or regressor).

Such information allowed territories to model the local environmental situation rather than

the general plan of the whole empire and region. The simple meaning of LIME is to approxi-

mate a compounded model as a simple interpretable model near the input. The algorithm, in

turn, peeks at the sample area of the given input and then serves a descriptive model that fits

those samples. A complex framework, on the other hand, can be demonstrated by a simple

line. Mentioning [55], LIME consists of a description of information networks. In [56], the

authors have extended LIME for image classification, which is called LIME-Image get, inte-

grated with LIME for image data, and in [57], the authors have also extended LIME for text

classification, which is LIME-Text gets LIME for text data [58]. These researches have demon-

strated that LIME can be a legitimate substitute for complex model explainers and help users

understand the model structure. A LIME algorithm is based on estimating how the behaviour

of the complex model generally performs using a simple linear model. Given a black-

box model f, LIME compares the model’s behaviour by locally approximating it with a linear

model g, which is described as:

gðxÞ ¼ w0þ w1x1þ w2x2 þ � � � þ wn∗xn ð16Þ

For x represents an entity, and w is a set of weights. LIME performs the approximation by

taking instances from the ‘local neighbourhood’ around x, called the “local neighbourhood

sampling”. These instances are then used to train the linear model g, which is learned by solv-

ing the following optimization problem:

minimizeg jjf ðxÞ � gðxÞjj þ OðgÞ ð17Þ

Where f(x) represents the predictions from the complex model, g(x) is a linear function that

takes x as input and produces an output. Supposing we define |(|f(x)-g(x)|)| as the difference

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 15 / 33

https://doi.org/10.1371/journal.pone.0307112

between the predictions taken from the complex model. The regularization term O(g) typically

represents a penalty on the complexity of the linear model g, aiming to prevent overfitting and

ensure simplicity and interpretability. One common form of regularization is the L2 regulari-

zation, which penalizes the squared values of the coefficients of g. Mathematically, it can be

expressed as:

OðgÞ ¼ l
Xp

j¼1

kwjk
2

2
​

Where λ is the regularization parameter, controlling the strength of regularization. p is the

number of features in the linear model g. wj represents the coefficient associated with the jth

feature in g. k.k2 denotes the L2 norm, which computes the Euclidean norm of a vector. The

term kwjk
2

2
calculates the squared value of the coefficient wj, and the summation over j ensures

that the regularization term penalizes the overall complexity of the linear model.

The LIME algorithm also assigns different weights to the instances based on their proximity

to x. These weights are computed using a kernel function, such as the exponential kernel or

the radial basis kernel, represented as:

K xi; xð Þ ¼ exp �
dxi
dx

2

s2

 !

ð18Þ

In which xi depicts a sample from the neighbourhood, x is a case to be discussed. dxi
dx indi-

cates a distance between xi and x, and σ stands for a parameter that will determine the width of

the kernel. The last stage of LIME consists of assigning meaning to every feature of the linear

model g by computing the absolute values of the model weights as the significance measure for

each feature. The items fastest moving are.

Below is this flowchart of the SPAM-XAI model in black and white boxes, as shown in Fig

6. The black box uses the ML techniques to predict probable SDP conclusions. Moreover, the

XAI is also included, which generates the reasons concerning a specific dataset and attribute

influencing the SDP. Besides, the SPAM-XAI model can offer a detailed explanation of the

software; thus, the developers, stakeholders, and other project parties can make clear decisions

ahead of the development that will reduce the time, resources, and cost of software

development.

The black box here refers to our MLP component in Fig 6 above, which uses a neural net-

work architecture for making predictions. The black box pipes in the preprocessed dataset that

Fig 6. Overview of SPAM-XAI model complete architecture.

https://doi.org/10.1371/journal.pone.0307112.g006

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 16 / 33

https://doi.org/10.1371/journal.pone.0307112.g006
https://doi.org/10.1371/journal.pone.0307112

is obtained through SMOTE and PCA, and the output is that the predicted class label is either

“ND” or “D”. Within the NN system is the difficult-to-understand portion that is not visible to

the user which is why it has been called “black box”. The white box displays the LIME part of the

model employed in the prediction explanation instead of the black box. LIME produces explana-

tions of high interpretability for complex predictions by identifying and making the parameters

that most contributed to the output of the black box explicit. According to that, the white

box improves the transparency and interpretability of the black box. It provides users with insights

on where the predictions were made and about the potential model errors or biases.
Algorithm (SPAM-XAI)
Start
1. Import necessary libraries // Import necessary libraries
and files
2. Data = read (defect_dataset) // Read available
data from a file
3. Data = Train Dataset, Testing Datasets. Divided (Ratio) //
dividing the data into two groups:

a training model and a testing model,
according to the appropriate ratio
4. SMOTE // Eq (1), Dataset balance
5. Set the learning rate to arbitrary, initialize the random weights
W, and bias b with any number.
6. Optimized features // Decide which characteristics
are relevant for the prediction.
7. Describe and input X // Eq (5)
8. Compute the deep layer’s net input (netj) // as per
Eq (7)
9. Determine the hidden layer’s entire output estimation f(hinput)

//Eq (8)
// Identification of the acti-

vation function is bipolar or binary sigmoidal
10. Calculate the overall input using the result level
hj //Eq (8)
11. The total output of the final level g(netk) // Eq
(10)
12. Error calculation δl // Eq (11)
13. Error correction & weight Updation // Eqs
(11–13)
14. Updates to weights and biases //Eq (12) Minimal weight
adjustments to determine the

ideal gap
15. Apply LIME algorithm // Eqs 16–18) to explain the pre-
dictions of the mode

understand the features that have the most impact on the pre-
dictions made by the model l
16. Fine-tune the model //by adjusting the parameters of
SMOTE, PCA, MLP, and LIME
17. Repeat Steps 6-16: // Once epochs are finished,
recalculate by predicting the outcome

using the updated W
18. End
19. Evaluate Performance // To assess the mode’s
effectiveness.
20. Accuracy Total no:of correctpredictions

Total no:of predictions ∗100

21. Output // Providing the model’s accuracy as an output
Stop

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 17 / 33

https://doi.org/10.1371/journal.pone.0307112

4.3 Metrics evaluation

This section shows the evaluation criteria for the SPAM-XAI model, which involves various

methods, including a confusion matrix, classification accuracy, precision, recall, F-m, and

AU-Roc curve.

4.3.1 Purpose of using evaluation metrics. It is crucial to analyse our model utilizing a

variety of measures. Performance measures are essential to ensure that the paradigm functions

correctly and adequately.

4.3.2 Confusion matrix. The confusion matrix is used to define the performance of the

SPAM-XAI model as shown in Table 6.

4.3.3 Measures of classification. It is essentially an expanded form of the confusion

matrix. Other metrics than the confusion matrix also aid in achieving a more profound com-

prehension and studying our model’s functionality.

• Accuracy: There are two types of solutions in a confusion matrix: TP and TN. The authors

must practically evaluate the SPAM-XAI model’s accuracy for industrial SDP applications.

So, being more accurate can help in better decision-making and reduce the cost of testing

and efforts.

Accuracy ¼
ðTPÞ þ ðTNÞ

ðTP þ FN þ FPþ TNÞ

• Precision: It measures the defects to the total predicted defects in the SPAM-XAI model.

Precision in our model must be used to identify both “D” and “ND” items as defective,

regardless of whether the classification was accurate or not.

Precision ¼
ðTPÞ

ðTPÞ þ ðFPÞ

• Sensitivity/Recall: It measures “D” values, which are all actual defects in the classification. It

can detect all the “ND” values in the dataset. Without bothering about how “D” values are

incorrectly or correctly differentiated. It can be represented as:

Recall ¼
ðTPÞ

ðTPÞ þ ðFNÞ

Table 6. Demonstration confusion matrix.

Expected Quantities

Real Quantities

Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

https://doi.org/10.1371/journal.pone.0307112.t006

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 18 / 33

https://doi.org/10.1371/journal.pone.0307112.t006
https://doi.org/10.1371/journal.pone.0307112

• F1-score: It employs precision and recall. It is an essential evaluation metric because it sums

up the model’s predictive performance elegantly. It can vary from 0 to 1. Zero represents the

worst possible outcome, and one represents the best. It can be described as:

F ¼
2∗Precision∗Recall
Precisionþ Recall

• AU-Roc Curve: We have used the ROC curve because it gives an appropriate angle when

the dataset is balanced. The coordinate of the ROC curve contains two variables; one is the

True Positive Rate (TPR), which is the proportion of the truly predicted value that was cor-

rectly predicted for all true values. Another variable is the False Positive Rate (FPR), the false

predicted value proportion to the total false values.

TPR=(TP/(TP+FN))

FPR=(FP/(TN+FP))

The curve is shown as a function of two variables: Actual Positive Rate (TPR) and Type I

Error/Predicted Positive Rate (FPR)

FPR ¼
ðFPÞ

ðFPÞ þ ðTNÞ

5. Implementation

This section describes the application of the work by employing SPAM-XAI model for classifi-

cation. The adoption of the model is done through the application of Python language with

Spyder being the Integrated Development Environment (IDE). The classification model

SPAM-XAI uses Sklearn – an ML library for Python – as the learning algorithm for this

model. During the entire course of the work, the NASA MDP repository is used as a source

and venue for various datasets used for training and evaluation. Especially, the model is taught

and tested by utilizing these datasets for evaluating the efficiency for SDP. During the imple-

mentation phase, some settings are made regarding different parameters aimed at enhancing

the efficiency of a model. These parameters are hidden layer sizes ‘100 50’, activation function

‘relu’, solver ‘adam’, alpha (regularization parameter) ‘0’. 001”, learning rate=”0. ‘001’, iter.

max=’200’, momentum=”0.9”, and epsilon= “1e-08”. LimeTabularExplainer: Feature names:

[list of feature names], Class names: [list of class names], Kernel width: 0. 25, Feature Selection:

Range: “auto”, “lasso_path”, “forward_selection”, and “none”, Mode: “classification”. These

values are chosen through trial and error as well as based on the requirements of the dataset to

achieve the best possible performance SPAM-XAI model in SDP tasks.

5.1 Dataset CM1

The authors have worked on the CM1 dataset, driven from the NASA dataset repository. The

confusion matrix of the SPAM-XAI model is shown in Table 7.

The SPAM-XAI model is done using the CM1 dataset, which is illustrated in Table 7. The

testing dataset consisted of 597 sample observations. The model correctly classified “D”

instances 571 times (True Positives) and included 10 as “ND” (False Negative). Also, it found

that “ND” data was labeled as “D” 16 times more often (False Positive), whereas “ND” was

labeled as “D” 0 times (True Negative). It illustrates the high true positive and true negative

rates and good performance of the model.

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 19 / 33

https://doi.org/10.1371/journal.pone.0307112

Moreover, the ROC curve contains the model’s efficiency evaluation. The depiction is a

curve plotted FPR versus TPR, which measures the model’s trade-off between sensitivity and

specificity. An area under the curve (AUC) value of 0.91 was obtained. Such a high value sug-

gests excellent classification accuracy. Altogether, we conclude that the model displayed the

optimal AUC value of 0.91, which successfully confirms the ability to differentiate between

positive and negative class labels, as shown in Fig 7.

5.2 PC1 dataset

The authors have worked on the PC1 dataset, driven from the NASA dataset repository. The

confusion matrix of the SPAM-XAI model is shown in Table 8.

The SPAM-XAI model is done using the PC1 dataset, which is illustrated in Table 8. The

testing dataset consisted of 224 sample observations. The model correctly classified “D”

instances 215 times (True Positives) and included 2 “D” instances as “ND” (False Negative).

Also, it found that “ND” data was labeled as “D” 7 times more often (False Positive), whereas

“ND” was labeled as “D” 0 times (True Negative). It illustrates the high true positive and true

negative rates and good performance of the model.

Table 7. SPAM-XAI confusion matrix.

Expected

D ND

Real D 571 10

ND 16 0

https://doi.org/10.1371/journal.pone.0307112.t007

Fig 7. Analysis of CM1 ROC curve.

https://doi.org/10.1371/journal.pone.0307112.g007

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 20 / 33

https://doi.org/10.1371/journal.pone.0307112.t007
https://doi.org/10.1371/journal.pone.0307112.g007
https://doi.org/10.1371/journal.pone.0307112

Furthermore, the ROC curve contains the model’s efficiency evaluation. The depiction is a

curve plotted FPR versus TPR, which measures the model’s trade-off between sensitivity and

specificity. An AUC value of 0.79 was obtained. Such a high value suggests excellent classifica-

tion accuracy. Altogether, we conclude that the model displayed the optimal AUC value of

0.79, which successfully testifies to the ability to differentiate between positive and negative

class labels, as mentioned in Fig 8.

The authors have evaluated the SPAM-XAI model on various matrices that show the per-

formance of CM1, PC1, and PC2 datasets.

5.3 PC2 dataset

The authors researched using the PC2 dataset derived from the NASA dataset repository. The

confusion matrix for the SPAM-XAI model is presented in Table 9 of their work.

The test dataset with 212 observations utilized comprising the PC2 dataset is shown in

Table 9 below. The SPAM-XAI model was proven right in 186 cases (True Positives). While in

Table 8. SPAM-XAI confusion matrix using PC1 dataset.

Expected

D ND

Real D 215 2

ND 7 0

https://doi.org/10.1371/journal.pone.0307112.t008

Fig 8. Analysis PC1 AU-ROC curve.

https://doi.org/10.1371/journal.pone.0307112.g008

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 21 / 33

https://doi.org/10.1371/journal.pone.0307112.t008
https://doi.org/10.1371/journal.pone.0307112.g008
https://doi.org/10.1371/journal.pone.0307112

13 cases (False Negatives), it identified the “D” data as “ND”. Furthermore, the algorithm iden-

tified False Positives (“ND” data as “D”) 9 times and True Negatives (“D” declared “ND” data)

4 times. This distribution communicates a strong model performance as it maintains equally

good True Positive and True Negative values. Besides that, the ROC curve is an additional

evaluation measure of our model, showing our approach’s diagnostic ability. The graph con-

cerns the relationship between FPR and TPR and goes along the curve from 0 to 1. Using the

0.5 reference line, we can assess performance. The ROC curve’s shape tells the model’s sensitiv-

ity and specificity levels, and the point with the highest specificity is attentive when the curve

approaches the y-axis with 0.2 or lower. The AUC value of 0.59 suggests that the classification

ability is satisfactory, greater than 0.5, and lower than 1. To sum up, the results of experiments

demonstrated that the model significantly outperforms the PC2; the AUC is close to 0.60, as

Fig 9 shows.

Table 10 presents the performance metrics for defect prediction models evaluated on three

datasets: CM1, PC1, and PC2, covering Precision, Recall, F-Measure, AU-ROC, cross-valida-

tion Accuracy, and validation Accuracy. For CM1, the model achieved a Precision of 95.00%,

recall of 96.00%, F-Measure of 95.00%, and AU-ROC of 91.00%, with cross-validation and val-

idation Accuracies of 98.20% and 97.91%, respectively, indicating high consistency and overall

performance. The PC1 dataset showed a Precision of 97.01%, recall of 99.00%, F-Measure of

Table 9. SPAM-XAI confusion matrix using PC2 dataset.

Expected

D ND

Real D 186 13

ND 9 4

https://doi.org/10.1371/journal.pone.0307112.t009

Fig 9. Analysis PC2 AU-ROC curve.

https://doi.org/10.1371/journal.pone.0307112.g009

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 22 / 33

https://doi.org/10.1371/journal.pone.0307112.t009
https://doi.org/10.1371/journal.pone.0307112.g009
https://doi.org/10.1371/journal.pone.0307112

98.00%, and a lower AU-ROC of 79.00%, with cross-validation Accuracy at 97.51% and valida-

tion Accuracy at 92.10%, still maintaining high performance despite the drop in discrimina-

tion ability. For PC2, the model achieved a Precision of 94.00%, recall of 97.01%, F-Measure of

95.10%, and a notably lower AU-ROC of 59.00%. However, it excelled in cross-validation and

validation, with an accuracy of 99.52% and 98.65%, respectively, highlighting challenges in dis-

tinguishing defect instances while maintaining high accuracy.

6. Results and discussion

This section establishes our experimental study on datasets to validate our proposed model on

various ML-based measurement scales or evaluation criteria. We have represented our experi-

mental study’s analysis, interpretation, and justification by comparing our presented model

results with the previously developed approaches.

6.1 SPAM-XAI model experimental comparison with baseline models

This section represents the rigorous experimental comparison, and the SPAM-XAI model is

pitted against various baseline models, as shown in Table 11.

Fig 10A and 10B shows the graphical representation of the baseline model comparison

using CM1 and PC1 datasets for experimental verification of the SPAM-XAI model.

Table 10. Statistical model evaluation for CM1, PC1 & PC2 datasets using SPAM-XAI model.

Dataset Precision Recall F-Measure AU-ROC Accuracy (cross-valid) Accuracy (Validation)

CM1 95.00 96.00 95.00 91.00 98.20 97.91

PC1 97.01 99.00 98.00 79.00 97.51 92.10

PC2 94.00 97.01 95.10 59.00 99.52 98.65

https://doi.org/10.1371/journal.pone.0307112.t010

Table 11. Experimental evaluation of various baseline models with the SPAM-XAI model.

Dataset Baseline Models Precision Recall F-Measure AU-ROC Accuracy

CM1

NB 50.77 53.09 93.78 77.48 91.92

SVM 97.79 50.00 92.70 69.35 97.79

RF 55.25 56.13 93.93 87.16 97.71

LR 50.18 51.05 91.62 49.66 97.48

DT 62.13 66.56 90.69 66.56 96.65

KNN 48.89 49.96 93.66 57.68 97.71

LDA 54.52 55.27 91.15 80.03 96.19

QDA 58.82 64.86 94.35 72.20 93.24

SPAM-XAI 95.00 96.00 95.00 91.00 98.20

PC1

NB 58.25 60.23 87.70 74.16 87.32

SVM 45.69 50.00 87.28 52.80 91.39

RF 60.14 58.27 89.37 88.07 92.05

LR 61.35 57.92 89.07 72.08 91.39

DT 62.04 64.20 88.23 64.20 88.39

KNN 45.67 49.76 87.06 51.94 90.96

LDA 62.95 59.48 88.68 83.77 90.09

QDA 53.31 55.96 87.65 61.04 89.90

SPAM-XAI 97.01 99.00 98.00 79.00 97.51

https://doi.org/10.1371/journal.pone.0307112.t011

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 23 / 33

https://doi.org/10.1371/journal.pone.0307112.t010
https://doi.org/10.1371/journal.pone.0307112.t011
https://doi.org/10.1371/journal.pone.0307112

6.2 SPAM-XAI model comparison with prior State-of-the-art

The estimation of the performance of the proposed model can be validated by comparing the

results, and we have shown the comparative analysis of the proposed model with the previ-

ously developed one in Table 12.

Table 12 shows the discussion by comparing various models on CM1 and PC1 datasets.

Table 12 shows the discussion by comparing various models on CM1 and PC1 datasets. The

SPAM-XAI model is outperforms other models in SDP because of its holistic approach. Thus,

the model reduces generalisation and rich prediction errors due to factors such as class imbal-

ance and high-dimensional feature vectors. It also uses advanced XAI methods for model

interpretability to avoid ambiguous decisions or lack of trust in the model’s predictions. Care-

fully fine-tuned hyperparameters further enhance its effectiveness and decrease its computa-

tional cost. However, there may be some previously developed models that may possess some

evaluation metrics that outperform the SPAM-XAI model due to some domain-specific fea-

tures, appropriate algorithm selection, data, and evaluation biases. These models may perform

well in certain aspects depending on their comparative strengths in terms of alignment with

certain characteristics of a given dataset or on the selection of some evaluation metrics as

opposed to others and showcasing the importance of considering multiple factors in model

evaluation and selection.

Fig 10. (a). Baseline model Comparative Analysis with CM1 dataset. (b). Baseline model Comparative Analysis with

PC1 dataset.

https://doi.org/10.1371/journal.pone.0307112.g010

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 24 / 33

https://doi.org/10.1371/journal.pone.0307112.g010
https://doi.org/10.1371/journal.pone.0307112

6.3 A combined comparison analysis using the CM1 and PC1 datasets with

the previously created model

This section represents the graphical implementation of the combined comparative study of

previously developed models. The illustrations of Fig 11 are shown below.

The graph shown in Fig 11A illustrates that our model precision score (95.00% with CM1

and 97.01% with PC1) performs better than the others. The Recall value graph can be repre-

sented using Fig 11B. It includes the proposed model recall value (red and blue horizontal line)

(CM1: 96.00 and PC1: 99.00) percentage, which is higher than the other models.

The graph in Fig 11C illustrates that the SPAM-XAI model F-measure score (95.00%with

CM1 and 98.00%with PC1) performs better than the others. The accuracy value graph can be

represented using Fig 11D, which shows that the proposed model’s accuracy value (CM1:

97.00% and PC1: 96.00%) percentage is higher than that of the other models.

Table 12. Analysis of previously developed models with SPAM-XAI model.

Dataset Models Precision Recall F-m Accuracy AU-ROC

CM1 Naïve Bayes [49,36] 86.20 78.65 34.09 64.57 70.0

Random Forest [49,58] 71.10 71.29 32.17 60.98 76.0

C4.5 Miner [37,59] 74.91 74.66 27.68 66.71 53.0

Immunos [37,60] 73.65 75.02 30.99 66.03 63.0

ANN-ABC [37,60] 75.00 81.00 33.00 68.00 77.0

HSOM [38,60] 70.12 78.96 30.65 72.37 80.0

SVM [39,49] 81.20 79.08 31.27 78.69 50.0

Majority vote [40,60] 79.80 80.00 30.46 77.01 81.0

AntMiner+ [40,60] 80.65 78.88 30.90 73.43 84.0

ADBBO-RBFNN [59,41] 81.92 80.96 29.71 82.57 90.0

NN GAPO + B [42] - - - 74.40 -

DT [39,50] 83.30 74.23 81.20 73.49 37.0

KNN [59]

MLP [59]

83.90

90.40

84.70

95.50

84.30

92.90

–

86.73

47.0

63.4

HybridModel (PC-SVM) [2] 96.10 99.00 97.00 95.20 -

Hybrid approach(GA-DNN) [2] 80.32 97.32 89.09 97.50 -

GWOFS-MLP Model [2] 98.27 86.36 91.93 92.72 81.60

SPAM-XAI model 95.00 96.00 95.00 98.20 91.0

PC1

Naïve Bayes [59] 96.00 90.00 97.20 90.30 75.0

Random Forest [59] 97.00 - 98.80 97.69 73.0

C4.5 Miner [60] 76.58 81.76 34.05 62.18 68.0

Immunos [60] 81.99 79.66 36.92 61.73 64.0

ANN-ABC [60] 89.00 83.00 33.00 65.00 -

HSOM [60] 86.79 85.67 35.67 95.87 -

SVM [60] 80.98 86.59 98.00 92.45 50.0

Majority vote [60] 84.61 84.37 30.98 92.50 -

AntMiner+ [60] 89.34 87.12 26.11 91.85 -

ADBBO-RBFNN [60] 90.89 89.33 20.24 - -

DT [59] 97.00 - 98.00 - 57.0

KNN [59]

MLP [59]

95.00

97.00

90.00

99.00

98.00

98.00

95.71

96.00

49.0

74.0

DNN [2] 94.00 99.00 97.00 93.00 -

GWOFS-MLP Model [2] 99.24 95.65 97.40 95.03 84.00

SPAM-XAI model 97.01 99.00 98.00 97.51 79.0

https://doi.org/10.1371/journal.pone.0307112.t012

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 25 / 33

https://doi.org/10.1371/journal.pone.0307112.t012
https://doi.org/10.1371/journal.pone.0307112

Furthermore, the AU-ROC curve is a significant criterion for validating a model. The

AU-ROC curve, as shown in Fig 11E (91.0% with CM1 and 79.00% with PC1), is higher than

the previously developed one.

6.4 Time complexity and computational cost

In this section, we will discuss the time features of the SPAM-XAI model. We will focus on the

execution time, which encompasses three main stages: the processing time for the SMOTE

phase for data balancing, the MLP training stage, the LIME algorithm implementation, and

any other possible stage of processing. This may include variety of operations such as manipu-

lation of the data, transformations or computations. Furthermore, we will discuss the testing

time, which directly relates to the time used for inferences or predictions. With this timing

analysis, we will seek to bring insights into how the SPAM-XAI model is efficient in time,

revealing useful information about how time is budgeted for each crucial stage of its use.

Total execution time
¼ EL PhaseðTimeÞ þ SDA PhaseðTimeÞ þ Additional ProcessingðTimeÞ þ TestingðTimeÞ

Total Training Time ¼ Total SPAMXAI ExecutionðTimeÞ � TestingðTimeÞ

Where the SDA phase time involves Stacked Denoising Autoencoder (SDA), Ensemble

Learning (EL) is the training stage.

SPAM-XAI model is created with the intention of being useful for making predictions

while also being as computationally efficient as possible. We show the runtime complexity of

the model, training time, comparison of time cost with other state-of-the-art models [2,61].

Fig 11. (a). Precision CM1 and PC1 dataset. (b). Recall CM1 and PC1 dataset. (c). F-Measure CM1 and PC1 dataset. (d). Accuracy

CM1and PC1 dataset. (e). AU-ROC-area CM1 and PC1 dataset.

https://doi.org/10.1371/journal.pone.0307112.g011

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 26 / 33

https://doi.org/10.1371/journal.pone.0307112.g011
https://doi.org/10.1371/journal.pone.0307112

The SPAM-XAI model further highlight the focus on performance and computational effi-

ciency. This comprises of the discussion regarding the temporal aspects of the model such as

the time complexity of the model, the total duration required to train the model and lastly a

comparison between the temporal costs in terms of other models are discussed in Table 13.

Table 13 below shows the performance of the SPAM-XAI model where it can be noted that

during training SPAM-XAI consistently outperforms other state-of-the-art models in terms of

training time. Overall the SPAM-XAI model is most efficient in computational performance

compared to others. This lower time cost can be ascribed to the optimal feature selection using

the MLP and the data balancing using SMOTE which were both model-efficient. This explains

the significance of SPAM-XAI in time costs and it is therefore recommended as a novel

approach for situations where computational effectiveness is high on priorities.

7. eXplainability- AI (XAI)

XAI is used in this model to give interpretability and transparency to the SPAM-XAI model

predictions. A LIME algorithm is used to explain the model’s predictions. The LIME algorithm

generates local interpretations of a prediction by locally fitting an interpretable linear model

on the input space. The algorithm operates by giving noise to the input data and monitoring

the changes in the model’s predictions.

7.1 CM1 dataset

The SPAM-XAI model interprets the ML model’s outcomes as an application and a technique.

Among those things is identifying the critical features that affect the probability of issues and

handling how attribute values impact the prognosis. The SPAM-XAI model aims to provide a

platform for software developers and engineers to give them guidelines on dealing with the

source of the mess. This is achieved by providing transparency and unambiguous insight into

the dataset. Fig 12 depicts the importance of sub-class attributes in SDP. For instance, the pre-

diction production of SPAM-XAI on CM1 dataset output is shown in Fig 12. The result indi-

cates prediction probabilities for the given sample: 0% for Irreparable and 100% for No

Repairs at All. The model guarantees that the instance is defect-free with certainty at this high

condensability. The subsequent section briefly details the feature set-up and corresponding

values, which is critical in making the correct prediction. Among all the features, CALL_-

PAIRS has a power of -1.16, which has the highest correlation with the prediction, and the

power weight is only 0.33. One of the most distinguishing features is LOC_BLANK, which has

a value of -3.94 and is the importance of 0.7, indicating its effect. Varying other metrics, for

example, the NO_OF_BRANCHES, DECISION_DEPTH, DECISION_COUNT, LOC_CO-

DE_BRANCH, COUINIT_METRIC, CYCLOMATIC_DENSITY, INCIDENT_COUNT, and

FACADE_LATERAL_SIZE play their role but to a much lesser extent the product provides

the features’ values and their weights that were used to generate the prediction ultimately. In

this case, the lack of any defect occurs because the model has analysed all the attributes

involved and seen how each attribute contributes to the result.

Table 13. Comparison of total training duration (in seconds) of previously developed models with SPAM-XAI.

Dataset SPAM-XAI GWOFS-MLP BPDET RF MLP L-SVM-B Bagging NB AdaBoost

CM1 4.2589 5.2132 12.64 0.091 1.331 0.021 0.031 0.0001 0.051

PC1 3.1257 2.5321 16.53 0.212 2.370 0.031 0.061 0.0001 0.061

https://doi.org/10.1371/journal.pone.0307112.t013

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 27 / 33

https://doi.org/10.1371/journal.pone.0307112.t013
https://doi.org/10.1371/journal.pone.0307112

7.2 PC1 dataset

The SPAM-XAI model is shown to be valuable in the exploration of the ML model trained

with the PC1 dataset. SPAM-XAI model predictions via locally fitting a linear multivariate

regression counterpart. In addition, the SPAM-XAI model could enhance the examination of

the relevance of particular features with the help of the feature importance scores. The model

acquires better interpretability through this enhancement and cultivates the user’s confidence

and faith, as shown in Fig 13.

The predicted model of the sample (Fig 13) shows that the sample was an “ND” module

with a probability of occurrence of 0.99, and a “D” module had an occurrence probability of

only 0.01. The main component of the metric is “HALSTEAD_CONTENT” with 15.83, along

with “CYCLOMATIC_DENSITY” and “PARAMETER_COUNT” having 0.20 and 0.00,

respectively. These are the impacts of each feature on the prediction’s result, which can be seen

by using the SPAM-XAI model as the explainability model of the algorithm. We would imitate

the local model behaviour guiding us around the predicted instance and will provide a

humanly interpretable explanation for the model predictions.

Fig 13. SPAM-XAI using the PC1 dataset.

https://doi.org/10.1371/journal.pone.0307112.g013

Fig 12. SPAM-XAI using the CM1 dataset.

https://doi.org/10.1371/journal.pone.0307112.g012

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 28 / 33

https://doi.org/10.1371/journal.pone.0307112.g013
https://doi.org/10.1371/journal.pone.0307112.g012
https://doi.org/10.1371/journal.pone.0307112

8. Conclusion and future direction

The SPAM-XAI model is a state-of-the-art hybrid tool that combines the best features of ML

and deep learning algorithms. This novel approach effectively addresses the weaknesses that

have limited the efficiency of previous state-of-the-art models. Some of the most important

limitations are the ones that correlate imbalanced datasets, the curse of dimensionality, the

influence of outliers, and the explainability of the models. SPAM-XAI, which utilises CM1,

PC1, and PC2 datasets, has shown its transformative capability during the experimentation

phase, with the results being concluded. On the CM1 dataset, its performance yields striking

metrics: accuracy (97.00%), recall (96.00%), precision (95.00%), AU-Roc (91.0%), and F-mea-

sure (95.00%). Besides this, the SPAM-XAI model is efficient on the PC1 dataset with accuracy

(96.0%), recall (99.00%), precision (97.01%), F-measure (98.00%), and AU-Roc of 79.0%. In

addition, on the PC2 dataset, where it accomplished great accuracy (98.65%), precision

(94.00%), recall (97.01%), F-measure (95.10%), and AU-Roc (59.00%), respectively. This

hybrid model significantly improves precision by 10.2% on the CM1 dataset and enhances

source code quality, reliability, and maintainability. SPAM-XAI offers an optimized, cost-

effective solution for software development, making the SDP process more precise and effi-

cient and bringing a new perspective to defect prediction in the earlier stages of development.

The proposed model excels in computational efficiency.

Future Direction: Considering what is still to be learned and what to investigate more in the

SPAM-XAI model, research and exploration are exciting.

• Firstly, the model’s capabilities by submitting it to a variety of larger-in-scope datasets

already as diverse as software contexts can show a lot about the depth of its adaptability and

robustness in software environments. Providing this means of assessment will be advanta-

geous for the researcher to ensure his investigation of the limitations and superiority of the

model in real-life scenarios.

• Secondly, algorithmic diversity would be another direction to grow the model’s catalogue.

An ML environment with diverse algorithms and XAI models (for comparison) would be

enlightening to see their strong and weak sides. This could be beneficial for appreciating the

SPAM-XAI model characteristics in the overall framework. Such comprehensive assessment

would practically answer the medical staff‘s demand for what model to apply.

• The final extension of the model will be to different phases of the SDLC, allowing us to

explore fascinating insights. Considering its operation in various stages in the project’s scope

as to be specific to requirements engineering, design, and maintenance would allow for the

emergence of innovative applications and opportunities for its improvement.

This thorough evaluation may give the other team members an understanding of how the

model could influence software quality and reliability during development.

Author Contributions

Conceptualization: Mohd Mustaqeem, Mahfooz Alam.

Data curation: Mohd Mustaqeem.

Formal analysis: Mohd Mustaqeem, Suhel Mustajab, Mahfooz Alam, Fathe Jeribi, Shadab

Alam, Mohammed Shuaib.

Funding acquisition: Fathe Jeribi.

Methodology: Suhel Mustajab, Mahfooz Alam, Mohammed Shuaib.

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 29 / 33

https://doi.org/10.1371/journal.pone.0307112

Project administration: Fathe Jeribi, Shadab Alam.

Resources: Suhel Mustajab, Fathe Jeribi, Shadab Alam.

Supervision: Suhel Mustajab, Fathe Jeribi, Shadab Alam.

Validation: Mohammed Shuaib.

Visualization: Mohammed Shuaib.

Writing – original draft: Mohd Mustaqeem, Mahfooz Alam.

Writing – review & editing: Suhel Mustajab, Fathe Jeribi, Shadab Alam, Mohammed Shuaib.

References

1. Omri S, Sinz C. Deep learning for software defect prediction: A survey. In Proceedings of the IEEE/

ACM 42nd international conference on software engineering workshops. 2020 Jun 27, pp. 209–214,

https://doi.org/10.1145/3387940.3391463.

2. Mustaqeem M, Mustajab S, Alam M. A hybrid approach for optimizing software defect prediction using

a grey wolf optimization and multilayer perceptron. International Journal of Intelligent Computing and

Cybernetics. 2024 Mar 22; 17(2):434–464. https://doi.org/10.1108/IJICC-11-2023-0385.

3. Manjula C, Florence L. Deep neural network based hybrid approach for software defect prediction using

software metrics. Cluster Computing. 2019 Jul; 22(Suppl 4):9847–63. https://doi.org/10.1007/s10586-

018-1696-z.

4. Anbu M. Improved mayfly optimization deep stacked sparse auto encoder feature selection scorched

gradient descent driven dropout XLM learning framework for software defect prediction. Concurrency

and Computation: Practice and Experience. 2022 Nov 15; 34(25):e7240. https://doi.org/10.1002/cpe.

7240.

5. Huang Q, Li Z, Gu Q. Multi-task deep neural networks for just-in-time software defect prediction on

mobile apps. Concurrency and Computation: Practice and Experience. 2024 May 1; 36(10):e7664.

https://doi.org/10.1002/cpe.7664.

6. Turabieh H, Mafarja M, Li X. Iterated feature selection algorithms with layered recurrent neural network

for software fault prediction. Expert systems with applications. 2019 May 15; 122:27–42. https://doi.org/

10.1016/j.eswa.2018.12.033.

7. Sheneamer, Abdullah M. Multiple similarity-based features blending for detecting code clones using

consensus-driven classification. Expert Systems with Applications 2021 Nov 30; 183: 115364. https://

doi.org/10.1016/j.eswa.2021.115364

8. Qu Y, Liu T, Chi J, Jin Y, Cui D, He A, Zheng Q. node2defect: using network embedding to improve soft-

ware defect prediction. In Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering 2018 Sep 3 (pp. 844–849). https://doi.org/10.1145/3238147.3240469.

9. Gong L, Jiang S, Wang R, Jiang L. Empirical evaluation of the impact of class overlap on software

defect prediction. In 2019 34th IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE) 2019 Nov 11 (pp. 698–709). https://doi.org/10.1109/ASE.2019.00071.

10. Herbold S. On the costs and profit of software defect prediction. IEEE Transactions on Software Engi-

neering. 2019 Dec 5; 47(11):2617–31. https://doi.org/10.1109/TSE.2019.2957794

11. Falessi D, Ahluwalia A, Penta MD. The impact of dormant defects on defect prediction: A study of 19

apache projects. ACM Transactions on Software Engineering and Methodology (TOSEM). 2021 Sep

28; 31(1):1–26. https://doi.org/10.1145/3467895.

12. Miholca DL, Czibula G, Czibula IG. A novel approach for software defect prediction through hybridizing

gradual relational association rules with artificial neural networks. Information Sciences. 2018 May 1;

441:152–70. https://doi.org/10.1016/j.ins.2018.02.027.

13. Iqbal A, Aftab S. A Classification Framework for Software Defect Prediction Using Multi-filter Feature

Selection Technique and MLP. International Journal of Modern Education & Computer Science. 2020

Feb 1; 12(1). https://doi.org/10.5815/ijmecs.2020.01.03.

14. Sheneamer Abdullah. Vulnerable JavaScript functions detection using stacking of convolutional neural

networks. PeerJ Computer Science. 2024 Feb 29; 10 : e1838. https://doi.org/10.7717/peerj-cs.1838

PMID: 38435587

15. Zhang F, Hassan AE, McIntosh S, Zou Y. The use of summation to aggregate software metrics hinders

the performance of defect prediction models. IEEE Transactions on Software Engineering. 2016 Aug

10; 43(5):476–91. https://doi.org/10.1109/TSE.2016.2599161.

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 30 / 33

https://doi.org/10.1145/3387940.3391463
https://doi.org/10.1108/IJICC-11-2023-0385
https://doi.org/10.1007/s10586-018-1696-z
https://doi.org/10.1007/s10586-018-1696-z
https://doi.org/10.1002/cpe.7240
https://doi.org/10.1002/cpe.7240
https://doi.org/10.1002/cpe.7664
https://doi.org/10.1016/j.eswa.2018.12.033
https://doi.org/10.1016/j.eswa.2018.12.033
https://doi.org/10.1016/j.eswa.2021.115364
https://doi.org/10.1016/j.eswa.2021.115364
https://doi.org/10.1145/3238147.3240469
https://doi.org/10.1109/ASE.2019.00071
https://doi.org/10.1109/TSE.2019.2957794
https://doi.org/10.1145/3467895
https://doi.org/10.1016/j.ins.2018.02.027
https://doi.org/10.5815/ijmecs.2020.01.03
https://doi.org/10.7717/peerj-cs.1838
http://www.ncbi.nlm.nih.gov/pubmed/38435587
https://doi.org/10.1109/TSE.2016.2599161
https://doi.org/10.1371/journal.pone.0307112

16. Rajkumar SM. 20 Types of Software Defects Every Tester Should Know. Software Testing Material,

2024.Available:https://www.softwaretestingmaterial.com/types-of-software defects/?utm_source=rs-

s&utm_medium=rss&utm_campaign=types-of-software-defect.

17. Sheneamer, Abdullah M. An Automatic Advisor for Refactoring Software Clones Based on Machine

Learning. IEEE Access. 2020 July 01; 8: 124978–124988, 2020, https://doi.org/10.1109/ACCESS.

2020.3006178

18. Goyal S. Handling class-imbalance with KNN (neighbourhood) under-sampling for software defect pre-

diction. Artificial Intelligence Review. 2022 Mar; 55(3):2023–64. https://doi.org/10.1007/s10462-021-

10044-w.

19. Ye T, Li W, Zhang J, Cui Z. A novel multi-objective immune optimization algorithm for under sampling

software defect prediction problem. Concurrency and Computation: Practice and Experience. 2023 Feb

15; 35(4):e7525. https://doi.org/10.1002/cpe.7525.

20. Yu X, Wu M, Jian Y, Bennin KE, Fu M, Ma C. Cross-company defect prediction via semi-supervised

clustering-based data filtering and MSTrA-based transfer learning. Soft Computing. 2018 May; 22

(10):3461–72. https://doi.org/10.1007/s00500-018-3093-1.

21. Cao H. A systematic study for learning-based software defect prediction. In Journal of Physics: Confer-

ence Series 2020 Mar 1; 1487(1):012017. https://doi.org/10.1088/1742-6596/1487/1/012017.

22. Cai X, Niu Y, Geng S, Zhang J, Cui Z, Li J, Chen J. An under-sampled software defect prediction

method based on hybrid multi-objective cuckoo search. Concurrency and Computation: Practice and

Experience. 2020 Mar 10; 32(5):e5478. https://doi.org/10.1002/cpe.5478.

23. Ren J, Zhang Q. A novel software defect prediction approach using modified objective cluster analysis.

Concurrency and Computation: Practice and Experience. 2021 May 10; 33(9):e6112. https://doi.org/10.

1002/cpe.6112.

24. Eivazpour Z, Keyvanpour MR. CSSG: A cost-sensitive stacked generalization approach for software

defect prediction. Software Testing, Verification and Reliability. 2021 Aug; 31(5):e1761. https://doi.org/

10.1002/stvr.1761.

25. Arora I, Saha A. Software defect prediction: a comparison between artificial neural network and support

vector machine. In Advanced Computing and Communication Technologies: Proceedings of the 10th

ICACCT, 2016. 2018 (pp. 51–61). Springer Singapore. https://doi.org/10.1007/978-981-10-4603-2_6.

26. Giray G, Bennin KE, Köksal Ö, Babur Ö, Tekinerdogan B. On the use of deep learning in software

defect prediction. Journal of Systems and Software. 2023 Jan 1; 195:111537. https://doi.org/10.1016/j.

jss.2022.111537.

27. Deng J, Lu L, Qiu S. Software defect prediction via LSTM. IET software. 2020 Aug; 14(4):443–50.

https://doi.org/10.1049/iet-sen.2019.0149.

28. Wang H, Zhuang W, Zhang X. Software defect prediction based on gated hierarchical LSTMs. IEEE

Transactions on Reliability. 2021 Jan 18; 70(2):711–27. https://doi.org/10.1109/TR.2020.3047396.

29. Alkhasawneh MS. Software defect prediction through neural network and feature selections. Applied

Computational Intelligence and Soft Computing. 2022; 2022(1):2581832. https://doi.org/10.1155/2022/

2581832.

30. Goyal S. Effective software defect prediction using support vector machines (SVMs). International Jour-

nal of System Assurance Engineering and Management. 2022 Apr; 13(2):681–96. https://doi.org/10.

1007/s13198-021-01326-1.

31. Aljamaan H, Alazba A. Software defect prediction using tree-based ensembles. In Proceedings of the

16th ACM international conference on predictive models and data analytics in software engineering

2020 Nov 8 (pp. 1–10). https://doi.org/10.1145/3416508.3417114.

32. Chen J, Hu K, Yu Y, Chen Z, Xuan Q, Liu Y, Filkov V. Software visualization and deep transfer learning

for effective software defect prediction. In Proceedings of the ACM/IEEE 42nd international conference

on software engineering 2020 Jun 27 (pp. 578–589). https://doi.org/10.1145/3377811.3380389.

33. Li J, He P, Zhu J, Lyu MR. Software defect prediction via convolutional neural network. In 2017 IEEE

international conference on software quality, reliability and security (QRS) 2017 Jul 25 (pp. 318–328).

IEEE. https://doi.org/10.1109/QRS.2017.42.

34. Abdu A, Zhai Z, Abdo HA, Algabri R. Software Defect Prediction Based on Deep Representation Learn-

ing of Source Code From Contextual Syntax and Semantic Graph. IEEE Transactions on Reliability.

2024 Feb 1; 73(2):820–34 https://doi.org/10.1109/TR.2024.3354965.

35. Wang S, Liu T, Nam J, Tan L. Deep semantic feature learning for software defect prediction. IEEE

Transactions on Software Engineering. 2018 Oct 23; 46(12):1267–93. https://doi.org/10.1109/TSE.

2018.2877612.

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 31 / 33

https://www.softwaretestingmaterial.com/types-of-software
https://doi.org/10.1109/ACCESS.2020.3006178
https://doi.org/10.1109/ACCESS.2020.3006178
https://doi.org/10.1007/s10462-021-10044-w
https://doi.org/10.1007/s10462-021-10044-w
https://doi.org/10.1002/cpe.7525
https://doi.org/10.1007/s00500-018-3093-1
https://doi.org/10.1088/1742-6596/1487/1/012017
https://doi.org/10.1002/cpe.5478
https://doi.org/10.1002/cpe.6112
https://doi.org/10.1002/cpe.6112
https://doi.org/10.1002/stvr.1761
https://doi.org/10.1002/stvr.1761
https://doi.org/10.1007/978-981-10-4603-2_6
https://doi.org/10.1016/j.jss.2022.111537
https://doi.org/10.1016/j.jss.2022.111537
https://doi.org/10.1049/iet-sen.2019.0149
https://doi.org/10.1109/TR.2020.3047396
https://doi.org/10.1155/2022/2581832
https://doi.org/10.1155/2022/2581832
https://doi.org/10.1007/s13198-021-01326-1
https://doi.org/10.1007/s13198-021-01326-1
https://doi.org/10.1145/3416508.3417114
https://doi.org/10.1145/3377811.3380389
https://doi.org/10.1109/QRS.2017.42
https://doi.org/10.1109/TR.2024.3354965
https://doi.org/10.1109/TSE.2018.2877612
https://doi.org/10.1109/TSE.2018.2877612
https://doi.org/10.1371/journal.pone.0307112

36. Mustaqeem M, Saqib M. Principal component based support vector machine (PC-SVM): a hybrid tech-

nique for software defect detection. Cluster Computing. 2021 Sep; 24(3):2581–95. https://doi.org/10.

1007/s10586-021-03282-8 PMID: 33880074

37. Rahim A, Hayat Z, Abbas M, Rahim A, Rahim MA. Software defect prediction with naïve Bayes classi-

fier. In 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST) 2021

Jan 12 (pp. 293–297). https://doi.org/10.1109/IBCAST51254.2021.9393250.

38. Soe YN, Santosa PI, Hartanto R. Software defect prediction using random forest algorithm. In 2018

12th South East Asian Technical University Consortium (SEATUC) 2018 Mar 12;1.1–5. https://doi.org/

10.1109/SEATUC.2018.8788881.

39. Wang J, Shen B, Chen Y. Compressed C4. 5 models for software defect prediction. In 2012 12th Inter-

national Conference on quality software 2012 Aug 27 (pp. 13–16). https://doi.org/10.1109/QSIC.2012.

19.

40. Haouari AT, Souici-Meslati L, Atil F, Meslati D. Empirical comparison and evaluation of Artificial Immune

Systems in inter-release software fault prediction. Applied Soft Computing. 2020 Nov 1; 96:106686.

https://doi.org/10.1016/j.asoc.2020.106686.

41. Arar ÖF, Ayan K. Software defect prediction using cost-sensitive neural network. Applied Soft Comput-

ing. 2015 Aug 1; 33:263–77. https://doi.org/10.1016/j.asoc.2015.04.045.

42. Abaei G, Selamat A, Fujita H. An empirical study based on semi-supervised hybrid self-organizing map

for software fault prediction. Knowledge-Based Systems. 2015 Jan 1; 74:28–39. https://doi.org/10.

1016/j.knosys.2014.10.017.

43. Gayatri N, Nickolas S, Reddy AV, Reddy S, Nickolas A. Feature selection using decision tree induction

in class level metrics dataset for software defect predictions. In Proceedings of the world congress on

engineering and computer science 2010 Oct; 2186(1):124–129.

44. Moustafa S, ElNainay MY, El Makky N, Abougabal MS. Software bug prediction using weighted majority

voting techniques. Alexandria engineering journal. 2018 Dec 1; 57(4):2763–74. https://doi.org/10.1016/

j.aej.2018.01.003.

45. Kumudha P, Venkatesan R. Cost-Sensitive Radial Basis Function Neural Network Classifier for Soft-

ware Defect Prediction. The Scientific World Journal. 2016; 2016(1):2401496. https://doi.org/10.1155/

2016/2401496 PMID: 27738649

46. Mabayoje MA, Balogun AO, Jibril HA, Atoyebi JO, Mojeed HA, Adeyemo VE. Parameter tuning in KNN

for software defect prediction: an empirical analysis. Jurnal Teknologi dan Sistem Komputer. 2019 Oct

31; 7(4):121–6. https://doi.org/10.14710/jtsiskom.7.4.2019.121-126.

47. Benala TR, Tantati K. Efficiency of oversampling methods for enhancing software defect prediction by

using imbalanced data. Innovations in Systems and Software Engineering. 2023 Sep; 19(3):247–63.

https://doi.org/10.1007/s11334-022-00457-3.

48. Thota MK, Shajin FH, Rajesh P. Survey on software defect prediction techniques. International Journal

of Applied Science and Engineering. 2020 Dec; 17(4):331–44. https://doi.org/10.6703/IJASE.202012_

17(4).331.

49. Huang Q, Xia X, Lo D. Revisiting supervised and unsupervised models for effort-aware just-in-time

defect prediction. Empirical Software Engineering. 2019 Oct 15; 24(5):2823–62. https://doi.org/10.

1007/s10664-018-9661-2.

50. Li X, Wong WE, Gao R, Hu L, Hosono S. Genetic algorithm-based test generation for software product

line with the integration of fault localization techniques. Empirical Software Engineering. 2018 Feb; 23

(1):1–51. https://doi.org/10.1007/s10664-016-9494-9.

51. Shao Y, Liu B, Wang S, Li G. Software defect prediction based on correlation weighted class associa-

tion rule mining. Knowledge-Based Systems. 2020 May 21; 196:105742. https://doi.org/10.1016/j.

knosys.2020.105742.

52. Naseem R, Khan B, Ahmad A, Almogren A, Jabeen S, Hayat B, Shah MA. Investigating tree family

machine learning techniques for a predictive system to unveil software defects. Complexity. 2020; 2020

(1):6688075. https://doi.org/10.1155/2020/6688075.

53. Kalcheva N, Todorova M, Marinova G. Naive Bayes Classifier, Decision Tree and AdaBoost Ensemble

Algorithm–Advantages and Disadvantages. In Proceedings of the 6th ERAZ Conference Proceedings

(part of ERAZ conference collection), Online 2020 May 21 (pp. 153–157). https://doi.org/10.31410/

eraz.2020.153.

54. Sayyad Shirabad J, Menzies TJ. The PROMISE repository of software engineering databases, 2005.

School of Information Technology and Engineering, University of Ottawa, Canada. Available: http://

promise.site.uottawa.ca/SERepository/datasets-page.html.

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 32 / 33

https://doi.org/10.1007/s10586-021-03282-8
https://doi.org/10.1007/s10586-021-03282-8
http://www.ncbi.nlm.nih.gov/pubmed/33880074
https://doi.org/10.1109/IBCAST51254.2021.9393250
https://doi.org/10.1109/SEATUC.2018.8788881
https://doi.org/10.1109/SEATUC.2018.8788881
https://doi.org/10.1109/QSIC.2012.19
https://doi.org/10.1109/QSIC.2012.19
https://doi.org/10.1016/j.asoc.2020.106686
https://doi.org/10.1016/j.asoc.2015.04.045
https://doi.org/10.1016/j.knosys.2014.10.017
https://doi.org/10.1016/j.knosys.2014.10.017
https://doi.org/10.1016/j.aej.2018.01.003
https://doi.org/10.1016/j.aej.2018.01.003
https://doi.org/10.1155/2016/2401496
https://doi.org/10.1155/2016/2401496
http://www.ncbi.nlm.nih.gov/pubmed/27738649
https://doi.org/10.14710/jtsiskom.7.4.2019.121-126
https://doi.org/10.1007/s11334-022-00457-3
https://doi.org/10.6703/IJASE.202012_17(4).331
https://doi.org/10.6703/IJASE.202012_17(4).331
https://doi.org/10.1007/s10664-018-9661-2
https://doi.org/10.1007/s10664-018-9661-2
https://doi.org/10.1007/s10664-016-9494-9
https://doi.org/10.1016/j.knosys.2020.105742
https://doi.org/10.1016/j.knosys.2020.105742
https://doi.org/10.1155/2020/6688075
https://doi.org/10.31410/eraz.2020.153
https://doi.org/10.31410/eraz.2020.153
http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html
https://doi.org/10.1371/journal.pone.0307112

55. Ribeiro MT, Singh S, Guestrin C. "Why should i trust you?" Explaining the predictions of any classifier.

In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data

mining 2016 Aug 13 (pp. 1135-1144). https://doi.org/10.1145/2939672.2939778.

56. Jiarpakdee J, Tantithamthavorn CK, Dam HK, Grundy J. An empirical study of model-agnostic tech-

niques for defect prediction models. IEEE Transactions on Software Engineering. 2020 Mar 23; 48

(1):166–85. https://doi.org/10.1109/TSE.2020.2982385.

57. Ribeiro MT, Singh S, Guestrin C. Anchors: High-precision model-agnostic explanations. In Proceedings

of the AAAI conference on artificial intelligence 2018 Apr 25; 32(1). https://doi.org/10.1609/aaai.v32i1.

11491.

58. Li X, Xiong H, Li X, Zhang X, Liu J, Jiang H, Chen Z, Dou D. G–LIME: Statistical Learning for Local Inter-

pretations of Deep Neural Networks Using Global Priors (Abstract Reprint). In Proceedings of the AAAI

Conference on Artificial Intelligence 2024 Mar 24; 38(20):22705–22705. https://doi.org/10.1609/aaai.

v38i20.30605.

59. Abualigah L. Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its

results, variants, and applications. Neural Computing and Applications. 2021 Apr; 33(7):2949–72.

https://doi.org/10.1007/s00521-020-05107-y.

60. Abualigah L. Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and appli-

cations. Neural Computing and Applications. 2020 Aug; 32(16):12381–401. https://doi.org/10.1007/

s00521-020-04839-1.

61. Pandey SK, Mishra RB, Tripathi AK. BPDET: An effective software bug prediction model using deep

representation and ensemble learning techniques. Expert Systems with Applications. 2020 Apr 15;

144:113085. https://doi.org/10.1016/j.eswa.2019.113085.

PLOS ONE A trustworthy hybrid model for transparent software defect prediction: SPAM-XAI

PLOS ONE | https://doi.org/10.1371/journal.pone.0307112 July 11, 2024 33 / 33

https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1109/TSE.2020.2982385
https://doi.org/10.1609/aaai.v32i1.11491
https://doi.org/10.1609/aaai.v32i1.11491
https://doi.org/10.1609/aaai.v38i20.30605
https://doi.org/10.1609/aaai.v38i20.30605
https://doi.org/10.1007/s00521-020-05107-y
https://doi.org/10.1007/s00521-020-04839-1
https://doi.org/10.1007/s00521-020-04839-1
https://doi.org/10.1016/j.eswa.2019.113085
https://doi.org/10.1371/journal.pone.0307112

