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Abstract

The New York City (NYC) subway system accommodates 5.5 million daily commuters, and

the environment within the subway is known to have high concentrations of fine particulate

matter (PM2.5) pollution. Naturally, subway air pollution varies among individuals according

to their mobility patterns, introducing the possibility of inequality in PM2.5 exposure. This

study aims to evaluate individual and community-level exposure to subway PM2.5. We simu-

lated the intracity home-to-work trip patterns using the Longitudinal Employer-Household

Dynamics (LEHD) records of 3.1 million working commuters across 34,169 census blocks in

four boroughs (Manhattan, Brooklyn, Queens, and the Bronx) of NYC. We incorporated the

on-platform and on-train measured PM2.5 concentration data for the entire subway system.

The mean underground platform concentration in the city was 139 μg/m3 with a standard

deviation of 25 μg/m3, while the on-train concentration when underground was 99 μg/m3

with a standard deviation of 21 μg/m3. Using a network model, we determined the exposure

of individual commuters during their daily home-work trips. We quantified the mean per cap-

ita exposure at the census block level by considering the proportion of workers within the

blocks who rely on the subway for their work commute. Results indicate statistically signifi-

cant weak positive correlation between elevated subway PM2.5 exposure and economically

disadvantaged and racial minority groups.

Introduction

Particulate matter (PM) is a complex mixture of solid and liquid particles comprising a range

of inorganic and organic chemicals [1]. PM2.5 refers to the PM with an aerodynamic diameter

equal to or smaller than 2.5 μm [2]. Due to their small size, these particles can remain sus-

pended in the air for long periods, and when inhaled, they can easily enter the bloodstream.

This can cause short-term and long-term health complications, including cardiovascular,

respiratory, metabolic, and neurological disorders [3–13]. Approximately 4.1 million people

prematurely die worldwide each year due to exposure to PM2.5 [14].
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For the last few decades, cities worldwide have promoted public transportation systems to

reduce traffic congestion and improve air quality. These measures have helped reduce emis-

sions and improve city ambient outdoor air quality [15–18]. Although subway systems effec-

tively reduce ambient air pollution by decreasing the number of fossil fuel-powered vehicles

on the road, the air quality inside the subway system is poor. This is largely due to elevated con-

centrations of PM2.5 with high concentrations of iron [19–28]. Metal-rich particles in subway

systems are mostly generated by the wear and friction of brakes and between rails and wheels

[29]. Contributing factors for the high PM2.5 concentrations in subways include train fre-

quency, station depth, ventilation, age of the subway system, piston effect, and others. [30–33].

When assessing health impacts, the total exposure and the inhaled dose are commonly used

as representative measures of exposure to pollutants such as PM2.5 in indoor and outdoor set-

tings [34–42]. Several studies have been carried out on personal exposure in environments

such as the subway and bus systems of a city, using the inhaled dose of PM2.5 [34, 37, 43]. The

total exposure and the inhaled dose depend on the mean inhalation rate during a trip, the

mean concentration during a trip, and the trip duration [35, 36, 38]. In complex cases, expo-

sure has been calculated as the sum of exposures in different microenvironments, such as

inside a subway train, waiting on a platform, or walking [38]. To evaluate the exposure city res-

idents face in transportation systems, network-based models are generally used to simulate

mobility patterns between different parts of a city, following the most common requirement

and the fastest route to estimate the air pollution to which commuters have been exposed

when they have traveled using that route [41, 42, 44, 45]. For instance, [41] calculated the

shortest routes for different locations to simulate mobility patterns and compute the total

exposure associated with those trips.

Existing research on subway PM2.5 has focused on a variety of topics, including measuring

air pollution concentrations in subway systems [24, 46–54], identifying the factors that con-

tribute to air pollution and mitigation strategies [55–58], and assessing the health effects of

subway PM2.5 exposure [59–63]. However, no studies to date have investigated inequality in

subway PM2.5 exposure at the community level while accounting for daily intracity subway

mobility. It is important to note that not everyone is equally exposed to subway air pollution,

even if the system as a whole is polluted. Individual exposure is influenced by the frequency

and duration of subway use, which introduces the potential for inequality in subway-related

exposure. As a result, we hypothesize that economically disadvantaged communities and racial

minority groups living farther from the city center may take more frequent and longer subway

trips, thus disproportionately exposed to subway PM2.5. The main objective of this study is to

assess individual and community level PM2.5 exposure and uncover any disparities in subway-

related exposure. To achieve this goal, we carry out our analysis in three distinct phases. In the

first phase, we focus on measuring PM2.5 concentrations across the entire subway system. This

phase builds upon our prior investigation [26], which examined PM2.5 concentrations on sub-

way trains and platforms within nine subway lines. In this study, we expanded our research to

include the assessment of particle concentrations on an additional ten subway lines, resulting

in a comprehensive analysis of on-train concentrations for a total of 19 subway lines and on-

platform concentrations for 608 subway station platforms located within 429 stations. The sec-

ond phase involves quantifying PM2.5 exposure associated with subway usage at the individual

and community levels. To accomplish this, we utilized LEHD origin-destination (OD) data

[64] to simulate the daily commutes of 3.1 million working individuals on 34,169 census

blocks in New York City. We constructed a network model to analyze mobility patterns and

calculate the corresponding subway PM2.5 exposure for each origin and destination. In the

third phase, we conducted correlative analyses to highlight any disparities in exposure result-

ing from the use of the subway system in NYC.
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2. Materials and methods

2.1 Study region

New York City comprises five boroughs: Manhattan, Brooklyn, Queens, the Bronx, and Staten

Island. Staten Island has a standalone subway line not connected to the rest of the city’s subway

network. This study focused on the four boroughs with the connected subway system. The

working population within these four boroughs is approximately 3.6 million, among which 3.1

million live and work in the city, while the remaining 0.5 million commute outside the city for

work [64]. Our study focuses specifically on the mobility of work-home trips for these 3.1 mil-

lion workers who reside and work within the study area.

Fig 1(a) shows the distribution of jobs across the city. Manhattan accommodates over 2.5

million jobs within its boundaries. Most jobs in this borough are concentrated in downtown

Fig 1. Home-job mobility dynamics. (a) Heatmap showing the number of jobs, (b) Shows a heatmap of where

workers live. The kernel density estimation is done with 1-km bandwidth and 100-meter pixel size. (c) Displays the

distribution of workers’ residential and workplace locations at the borough level, along with the number of jobs in each

borough.

https://doi.org/10.1371/journal.pone.0307096.g001
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and midtown. Approximately 71% of workers who live in Manhattan also work within Man-

hattan. However, Brooklyn, Queens, and the Bronx workers often have to commute to other

boroughs for employment. Only 35% of workers in Brooklyn, 29% in Queens, and 22% in the

Bronx work within the same borough in which they reside. Fig 1(b) shows the distribution of

workers across the city based on their residence. Lastly, Fig 1(c) presents a detailed representa-

tion of the home-job dynamics at the borough level, categorizing workers into three distinct

groups: those who live and work within the same borough, those who live in one borough and

commute to work in another borough, and the total number of jobs available in each borough.

2.2 Workers’ intracity mobility

We used the 2019 LEHD Origin-Destination (OD) dataset [64] to map the mobility of workers

traveling from their homes to their places of work within the city. The LEHD dataset provides

OD data at the census block level. This data also provides information on the number of work-

ers residing in each block and their workplaces. According to the 2019 census block boundary

[65], there are 34,169 blocks in our study area. Of these, 25,694 census blocks have at least one

worker in the city. On average, 119 workers live in each block, with a standard deviation of

135. We have used data for 2019 because, in our analysis, we wanted to exclude the changes in

mobility patterns following the onset of the COVID-19 pandemic in 2020 [66, 67]

Workers living in one block often need to travel to other blocks for work. Those who live

further away from their job take longer subway rides to get to work, increasing their exposure

to high subway PM2.5. Fig 2(a) and 2(b) shows the home-to-job mobility patterns of two exam-

ples (Block X Fig 2a and YFig 2b). The red star represents the origin block, with block ‘X’ in

the Bronx accommodating 965 workers and block ‘Y’ in midtown Manhattan accommodating

732 workers. The heatmap in the figure shows where these workers go to work. For block ‘X’,

where there are not enough jobs around, the heatmap indicates that most workers living in

block ‘X’ travel to midtown Manhattan, where most jobs are concentrated. Some even travel to

downtown Manhattan and Brooklyn, with very few working in the Bronx, which is their home

borough. In contrast, block ‘Y’ is located in midtown Manhattan, and the workers who live in

this block work in midtown and downtown Manhattan, which is very close to their residence.

Unlike block ‘X’ workers, block ‘Y’ workers do not need to travel far. As a result, they are less

vulnerable to subway exposure. We have made a web platform with this LEHD OD data which

can be utilized to investigate the workers’ mobility at the census block level. This platform can

be accessed through this link: https://bit.ly/3MK7B4r.

When a census block has a significant number of job opportunities, many workers who live

there may not need to travel to other blocks for work. In such cases, some workers live and

work in the same block, which can significantly reduce the necessity of subway travel for work.

Fig 2(c) displays the mobility patterns of workers, which are determined by the number of

blocks they travel to for work, measured at a ratio of ten workers per block. The green color-

coded blocks in the figure indicate that, for every ten workers, at least three workers work

within the same block they live in, reducing the need to travel to other blocks. In contrast, the

red shaded blocks show that all ten workers need to travel to other blocks to work, increasing

the need for travel and potential exposure to subway air pollution.

ACS provides data on the proportion of workers who use public transit for their commute

at the census tract level (2057 census tracts in the study area); this includes subway and public

buses [68]. While we do not have the exact number of subway users at census block level, we

have approximated that the majority of workers who use public buses likely use them to get to

the closest subway station, and therefore, most of them eventually use the subway. We disag-

gregated the census tract-level transit usage data to the census block level.
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Fig 2(d) illustrates the percentage of workers who use the subway for their home-to-job

commute. The map shows that workers living in midtown and downtown Manhattan use the

subway less frequently compared to those residing in other areas. This indicates the people

who live in these areas may use private transportation or carpool services or live in close prox-

imity to their workplace. However, subway usage is also low in the outskirts of Queens. This is

likely due to the lack of nearby subway stations in those places, which forces workers to rely on

private transportation to get to work.

2.3 Measurement of PM2.5 concentration in the subway system

This study used sampling data from our previous study [26], which offered information on

PM2.5 concentration on subway station platforms and inside train cabins for nine subway

Fig 2. Home-job trips at the census block level. (a) Heatmap Home to job mobility for block ‘X’ located in the Bronx,

(b) Heatmap Home to job mobility for block ‘Y’ located in Manhattan, Kernel density estimation is done with 1-km

bandwidth and 100-meter pixel size. (c) Number of destinations blocks from each origin block for 10 workers. (d)

Percent of workers using public transportation for work.

https://doi.org/10.1371/journal.pone.0307096.g002
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lines. However, to incorporate the entire NYC subway system, this study conducted additional

measurements of PM2.5 concentration for stations and train cabins, which were not covered

by the previous study.

We measured PM2.5 concentration on the station platforms and inside train cabins by tak-

ing a round trip of each subway line. First, we measured on-train concentration by co-locating

real-time and gravimetric instruments while the train moved from the first station to the last

station on its route. On the return journey, we got off at each station along the line and col-

lected samples of air pollution concentrations on the platform until the next train arrived on

the same line. We spent around 5–15 min on each platform before boarding the train to the

next station. For real-time PM2.5 measurements, we utilized Nephelometric-based DataRAM

pDR 1500 units (pDR) manufactured by Thermo Fisher Scientific Inc. PDRs were equipped

with a 2.5 μm diameter cut point inlet cyclone and underwent calibration with gravimetric

PM2.5 concentrations. The pDRs collected real-time measurements at 1-s intervals and were

zeroed with HEPA-filtered air before the start of each sampling run. The mean concentration

for each platform is determined by calculating the mean value of measurements taken at 1-s

intervals over a duration of 5 to 15 min, which depends on how long the investigators

remained on the platform for sampling. We also report the on-train concentration for each

link, which represents the segment between two stations. This is calculated by determining the

mean concentration inside the train car from the moment the doors close at one station until

they open at the next station. During sampling, we recorded the times of door opening and

closing at stations, as well as boarding and disembarking times for each station. During post-

processing, we filtered the real-time data using these recorded times to calculate the mean on-

platform concentration in each station and on-train concentrations for each link. We used

MTA defined publicly available subway station and route data to visualize the concentration

data on maps. The on-train and on-platform concentration for the NYC subway system is

shown in Fig 4.

2.4 Network model

In order to evaluate the exposure, it is necessary to profile the mobility patterns from one

block to another. Therefore, it is reasonable to assume that commuters use the fastest route to

get from one subway station to another, so a model of the NYC subway system is needed to

calculate the shortest paths [69]. Therefore, in order to estimate mobility patterns, the shortest

paths between city blocks can be calculated [41, 42, 44]. A very common approach in the

modeling of transport networks consists of modeling a transport system by means of a net-

work [36, 45, 70–72]. A network G = {V, E, W} can be used to represent a subway system,

where V = {v1,. . ., vN} is the set of graph nodes, where N is the number of network nodes.

E = {(vi, vj): vi, vj 2 V} is the set of edges, represented by a set of vertex tuples, where eij 2 E rep-

resents an edge connecting nodes vi and vj, i.e., a path between two stations. Finally, W 2 RNxN

is the matrix of costs, where Wij is the cost associated to edge eij. There are different variants

that can be used depending on the network, in the case of the subway, it makes sense to use an

undirected graph, where the existence of a subway line in one direction implies the existence

of the line in the opposite direction, i.e., eij implies the existence of eji. Moreover, there is an

additional challenge with subway networks, which is the existence of multiple lines between

different stations as well as the possibility of commuting from one line to another and transfer-

ring from one subway station to another.

In this study, we create a network G where the nodes represent line platforms within the

different stations, i.e., each node represents the specific platform of subway station’s line. The

set of edges E is formed by edges connecting stations along the same line El, edges connecting
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line platforms within the same station Ep, and edges connecting line platforms from different

stations where there is the possibility of transferring Et, so E = El [ Ep [ Et. We have decided to

use this network approach to penalize possible line changes within the same subway station.

Fig 3 shows an example of how different stations are represented by the network as well as the

different station transfers and line transfers.

Finally, costs Wij must be assigned to the different connections between nodes, so as to

reflect the cost of going from one station to another. Usually, the most important metric for

commuters is time, so we can define the cost Wij as follows,

Wij ¼

dij

vavg
; eij 2 El

tp ; eij 2 Ep

tt ; eij 2 Et

1 ; eij =2 E

8
>>>>>>><

>>>>>>>:

ð1Þ

Where dij 2 R is the distance between stations i and j, vavg 2 R is the mean train speed, tp 2 R
is the time required to commute between lines within the same station, and tt 2 R is the trans-

fer time. The mean train speed is set to 28 km/h [73]. The waiting times in the NYC subway

system can range from 3–5 min [74]. Thus, for our calculations, we set the time required to

change platforms to 5 min, while the time required to transfer from one station to another is

set to 8 min, i.e., 3 min for transferring and 5 min for waiting.

With the network G created and the different weights Wij assigned to the corresponding

edges, Dijkstra’s algorithm is used to calculate the shortest path between two stations, thus

mimicking the mobility patterns of commuters [36]. Dijkstra’s computational cost is often set

to O (|E| + |V|log|V|) [37, 38, 75].

2.5 PM2.5 exposure calculations

2.5.1 Mean per capita exposure at the census block level. We assessed subway PM2.5

exposure by considering both the concentration of PM2.5 within the subway system and the

duration of exposure. When individuals use the subway to commute to work, they typically

spend time waiting on the station platform before boarding the train [74]. To calculate the

exposure at the first station, we can multiply the on-platform PM2.5 concentration by the

Fig 3. Network model architecture. (a) Stations are represented by their corresponding line platforms, e.g., the 86th Street Station has three different lines, and

edges ep mark the cost of transferring from one line to another within the same station. (b) Shows four different line platforms from different stations that are

reachable by a transfer, denoted by the edges et. As illustrated, there are three different stations in Canal Street where interstation transfers can be made.

https://doi.org/10.1371/journal.pone.0307096.g003
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waiting time at the station. Subsequently, workers embark on the train and travel for several

minutes, which could potentially be the longest part of their journey, depending on the dis-

tance covered. The exposure experienced on the train can be determined by multiplying the

time spent on the train by the mean PM2.5 concentration measured onboard. During their

commute, workers may also need to transfer trains. These transfers can involve waiting on the

same platform as the initial train or walking to a different platform. To calculate the exposure

during transfers, we consider the PM2.5 concentration at the transferring station and the dura-

tion of the transfer. It is possible for workers to have multiple transfers or train changes

throughout their commute. We considered a constant 5-min waiting time for boarding and 3

mins for the exit station. The total exposure E can be expressed using the following notation:

Ea;b ¼ t0 Ci þ
X

i;jð Þ2L
ðdi;j=vavgÞ Ci;j þ

X

p2P
tpCp þ

X

t2TR
ttCt þ tf Cf ð2Þ

Where,

Ea,b = Exposure for moving from block ‘a’ to ‘b’

t0 = Waiting time at station i. This is the boarding station in block ‘a’

Ci = On-platform PM2.5 concentration on station i
Ci,j = On-train PM2.5 concentration between station i and station j

L = Set of subway line segments traveled for a trip

P = Set of transfers within same station for a trip

TR = Set of interstation transfers for a trip

di,j = Distance between station i and station j
vavg = Mean train speed

tf = Exiting time at last station f

In this study, we employed the network model described in Section 2.4 to identify the travel

routes encompassing boarding, transfers, and destination stations, as well as the specific train

lines used for commuting between blocks. Each train route corresponds to a measured PM2.5

concentration (as shown in Fig 4) and time, allowing us to calculate the overall exposure. The

total travel time (TT) for a trip can be computed as:

TT ¼ t0 þ
X

i;jð Þ2L
ðdi;j=vavgÞ þ

X

p2P
tp þ

X

t2TR
tt ð3Þ

In order to determine the mean per capita PM2.5 exposure per census block, we used the

weighted average technique. As illustrated in Fig 2, workers residing in a particular block may

commute to various other blocks for work purposes. However, not all workers use public

transportation for their daily commute. The percentage of workers using the public transit sys-

tem to travel to their workplace at the census block level is demonstrated in Fig 2(d). The cal-

culation of the mean per capita exposure for each census block can be expressed

mathematically as Eq 4.

PE að Þ ¼

Pn
i¼1

W a;bið ÞE a;bið Þ
Pn

i¼1
W a;bið Þ

X
% subway að Þ

100
X 2 ð4Þ

Where, PE(a) = Per capita workers’ exposure for a round work-home subway trip

Wa,bi = total workers move from ‘a’ block to ‘bi’ block for work, (i = 1, 2, . . ., n).

Ea,bi = total PM2.5 exposure for moving to block ‘a’ to block ‘bi’
% subwaya = Percent worker in block ‘a’ uses subway to work

Here the E(a,bi) is calculated by Eq 2, and Wa,bi comes from LEHD OD dataset described in

section 2.1.
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2.5.2 Methods for correlation analysis. To understand the relation between the workers

of different races as well as income groups and per capita mean exposure at census block level,

we performed the bivariate correlation analysis with the Pearson correlation coefficient that

can be determined with the following equation.

r x; yð Þ ¼
Cov x; yð Þ

sxsy
ð5Þ

Where, ρ(x,y) is the Pearson coefficient, Cov(x,y) is the covariance of x and y. σx and σy are the

standard deviation of x and y, respectively. There is a total of 25,694 observations to calculate

this correlation where each observation is a census block.

Additionally, we computed the mean PM2.5 exposure for different race and income groups.

This is done with the equation below,

ER ¼
Pn

i¼1
PE ið Þ∗R ið Þ

Pn
i¼1

R ið Þ
ð6Þ

Here, ER is the mean exposure for one race or income group, PE(i) is the per capita expo-

sure for block i measured with Eq (4), and R(i) is the population of the race group in block i.

Fig 4. PM2.5 concentration in the subway system. (a) On-platform PM2.5 concentration and (b) on-train PM2.5 concentration.

https://doi.org/10.1371/journal.pone.0307096.g004
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3. Results and discussion

3.1 PM2.5 concentration in the NYC subway system

Results indicate on-platform underground mean and standard deviation concentration of

139 ± 25 μg/m3 versus aboveground values of 30 ± 11 μg/m3. On-train underground values

were measured as 99 ± 21 μg/m3 versus aboveground 25 ± 18 μg/m3. These readings contrast

with the 24-hr PM2.5 exposure guideline value of 15 μg/m3 set by the World Health Organiza-

tion (WHO), which means 24-hour mean exposures should not exceed 15 μg/m3 more than 3

to 4 days per year [76]. It should be noted that a subway ride is not an entire day; hence, results

cannot be directly contrasted with WHO’s mean daily guideline. However, it does provide

some context or baseline to understand the extent of exposure during a daily commute. Fig 4

(a) shows the on-platform PM2.5 concentration for 429 stations from 19 subway lines. Fig 4(b)

shows the on-train concentration of 19 subway lines. We have created an interactive platform

that can be used to calculate personal exposure for any origin and destination within NYC.

This can be accessed at https://bit.ly/47kTcDh.

3.2 Quantifying personal exposure with the network model

We have implemented the network-based model above on a server with the measured air pol-

lution concentrations. In this way, users can select two locations on the map (origin and desti-

nation) and get the exposure level for their subway trip. The output consists of the

approximate travel time and total exposure associated with that subway trip. Fig 5 shows

examples of two different trips.

In the example of the trip from the Bronx to Downtown Manhattan, Fig 5 (a), a line change

is needed, resulting in a travel time of approximately 48 min for a total exposure of 47.72 μg/

m3-hr. On the other hand, the trip from Midtown to Downtown Manhattan, Fig 5(b), shows a

case where no transfer is needed, where the travel time is short (17 min), resulting in a total

exposure of 26.96 μg/m3-hr.

3.3 Quantifying per capita exposure at the census block level

In addition to personal exposure, we also computed the per-capita census block level exposure

to understand the scenario at the community level. In Fig 6, a detailed representation is pro-

vided, illustrating the per capita exposure to PM2.5 at the census block level. The exposure met-

ric used in this context is expressed in units of micrograms per cubic meter per hour (μg/m3-

hr). To provide a comprehensive understanding of per capita exposure, let us examine the

Fig 5. Personal subway PM2.5 exposure. (a) Exposure for a sample trip from the Bronx to Downtown Manhattan (b)

Exposure for a sample trip from Midtown to Downtown Manhattan.

https://doi.org/10.1371/journal.pone.0307096.g005
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northwestern part of Queens as an example. In this area, the per capita exposure to subway air

pollution appears to be lower compared to other areas (Fig 6). However, workers residing in

these outskirts and utilizing the subway system may encounter longer commuting times due

to their distance from the job center, such as midtown. Consequently, these workers may expe-

rience high subway PM2.5 exposure. It should be noted that the majority of workers residing in

these areas do not rely on the subway for their daily commute (Fig 2d). Therefore, while those

who use the subway may face elevated exposure, the overall mean per capita exposure remains

lower due to the significant number of workers who do not utilize the subway system. So, it is

important to note that per capita exposure is a metric to compare exposure at the community

level and is not suitable for measuring individual or personal exposure. For accurately assess-

ing personal exposure during a subway trip, we recommend employing the network model

described in section 3.2.

3.4 Inequality in subway PM2.5 exposure

In this section, we have explored the socioeconomic dimensions of subway PM2.5 exposure by

focusing on economic and racial disparities. The downtown and midtown Manhattan areas

are mostly inhabited by White workers. These areas serve as the city’s central business districts

Fig 6. Mean per capita exposure at census block level.

https://doi.org/10.1371/journal.pone.0307096.g006
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and major job hubs. These residents live close to their workplace, so they have shorter com-

muting distances and a lower possibility of extensive subway PM2.5 exposure. Conversely,

upper Manhattan and the Bronx offer comparatively fewer job opportunities and have a higher

proportion of Black and Hispanic workers. Southwest Queens and Brooklyn also have a sizable

population of Black workers. Due to the limited job opportunities in these areas, many workers

commute longer distances to their workplaces. Asian workers, although constituting only

around 11% of the total workforce in the city, are concentrated in specific areas, including

south-downtown Manhattan (Chinatown). West Brooklyn and East Queens also have signifi-

cant Asian populations. Fig 7 shows the distribution of workers of different races.

The Pearson correlation coefficients between the percentages of White and Asian workers

and subway PM2.5 exposure are -0.22 and -0.23, respectively. These are statistically significant,

but weak negative correlation coefficients indicate that areas with a higher percentage of

White and Asian workers may have slightly lower levels of subway-driven PM2.5 exposure.

Conversely, the correlation coefficients between the percentages of Hispanic and Black work-

ers and subway exposure are +0.38 and +0.18, respectively. These weak but statistically

Fig 7. Spatial distribution of different racial groups in the city at census block level. (a) percent of White workers,

(b) percent of Hispanic workers, (c) percent of Black workers, (d) percent of Asian workers.

https://doi.org/10.1371/journal.pone.0307096.g007
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significant ((p-value < 0.05) positive correlation coefficients suggest that areas with a higher

percentage of Hispanic and Black workers may be associated with high subway PM2.5

exposure.

We also quantified the mean PM2.5 exposure for different race groups. Fig 8 shows the

mean per capita exposure for different race groups. The numbers indicate that Asian and

White workers are exposed to lower concentrations of subway PM2.5 compared to Black and

Hispanic workers. The mean exposure for Asian workers is 51 μg/m3-hr, while White workers

have a mean exposure of 56 μg/m3-hr. However, both Black and Hispanic workers experience

a mean exposure of 69 μg/m3-hr. This means that Black and Hispanic workers are exposed to

35% higher subway PM2.5 exposure compared to Asian workers.

Moving on to the analysis of the exposure of different income groups, the correlation analy-

sis reveals a weak positive Pearson correlation coefficient of +0.36 between subway PM2.5

exposure and the size of the population below the poverty threshold at the census block level, a

statistically significant positive relation. Looking at it from a different angle, a statistically sig-

nificant negative Pearson correlation coefficient of -0.23 was found between subway exposure

and median family income. This weak negative correlation indicates that higher income levels

have a chance to associate with lower levels of subway PM2.5 exposure. A note on the income

data: the available poverty and income data from the U.S. Census Bureau is reported at the

census tract level. In order to conduct our correlative analysis, we spatially disaggregated the

census tract data to the census block level, allowing us to examine the relationship between

subway exposure and socioeconomic factors at a more granular level.

The mean per capita subway PM2.5 exposure within a community can be influenced by the

percentage of workers relying on the subway system. Higher dependence on the subway corre-

sponds to a higher mean per capita exposure to PM2.5. Fig 9(a) shows the relationship between

Fig 8. Mean exposure for different race groups.

https://doi.org/10.1371/journal.pone.0307096.g008
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exposure and income and exposure and poverty in box plots. Here, first we divide the census

block level income and poverty data into deciles (divide data into ten equal parts), and the dis-

tribution of exposure in each decile is shown in a box in the plot. The horizontal line inside the

box represents the median exposure value for each group and the whiskers extending from the

box represent the minimum and maximum values of the data, excluding any outliers. From

the figure, it is evident that the lowest income group in the city, with a median family income

between 12,000 and 39,000, experiences the highest levels of subway PM2.5 exposure. As the

income level increases, there is a gradual decline in exposure levels until reaching the highest

income groups. Fig 9(b) reveals a clear relationship between the percentage of individuals liv-

ing below the poverty line and subway PM2.5 exposure. Areas with a low percentage of people

below the poverty line (less than 4%) exhibit the lowest levels of subway PM2.5 exposure. How-

ever, as the percentage of people living below the poverty line increases, the exposure levels

also gradually rise. Fig 9(c) shows the spatial distribution of the median household income in

the city. Fig 9(d) shows the spatial distribution of the percentage of poverty in the city.

To some extent, the discrepancy in subway usage between income groups can be attributed

to high-income workers having access to alternative transportation options, such as private vehi-

cles or carpool services. Fig 2(a) highlights that many workers residing in downtown and

Fig 9. Mean exposure in different income levels. (left) Box plot shows the exposure level in different income groups,

(right) relation of exposure level with poverty.

https://doi.org/10.1371/journal.pone.0307096.g009
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midtown Manhattan have the convenience of working in the same block where they live, elimi-

nating the need for subway usage. This stands in contrast to workers residing in other parts of

the city who must undertake longer commutes to reach their workplaces. However, there are

some notable anomalies; for example, one of the highest household income groups experiences

high levels of exposure when using the subway. This is because these census blocks are heavily

populated with high-income workers and use highly polluted subway stations, as shown in Fig 4.

Limitations

While the reported high concentration of PM2.5 is alarming, a health outcomes analysis of that

exposure is complex since health outcomes guidelines (by US EPA and WHO) are largely

based on particulate matter from fossil fuel combustion. Health impact analysis of inhalation

of iron-based particles is needed to contextualize the results presented here.

This study relied on data related to workers’ mobility for their daily commutes from home

to work to estimate community-level subway exposure. However, achieving more precise

results would have been feasible if it had been possible to include all types of trips, not only

home-to-job commutes, and considered all residents, not just the working population. Such

enhancement could be achieved through multiagent simulation modeling and is an area to be

explored in future research.

Conclusion

Through this study, it was possible to examine the population exposure to PM2.5 in the NYC

subway system. This was accomplished using a network model that incorporated the commut-

er’s origin-destination data, as well as measured fine particulate matter concentrations

throughout the system (platforms and cars), resulting in the mean per capita PM2.5 exposure

of 3.1 million working commuters across 34,169 census blocks in NYC.

The study revealed the presence of exceptionally high concentrations of iron rich fine

PM2.5, where mean concentrations on platforms and train cars were measured to be 10 times

and 7 times the 24-hr guideline set by WHO, respectively. We quantified the disparities in the

subway PM2.5 exposure across different racial and income groups. Results indicate weak posi-

tive correlation between elevated subway PM2.5 exposure and racial minority as well as eco-

nomically disadvantaged groups. Results show statistically significant weak positive

correlation between high subway PM2.5 exposure and lower-income working communities.

We also found that Black and Hispanic workers experience 35% and 23% higher PM2.5 expo-

sure, respectively, compared to Asian and white workers.

One of the primary contributors to this disparity is the difference in commuting patterns

observed among subway users. Different workers have distinct origins and destinations, result-

ing in variations in the stations they pass through during their home-job subway trips. As a

consequence, exposure to PM2.5 can significantly differ based on the specific route taken and

the stations encountered along the way.

Additionally, Individuals with longer commutes or those who frequently transfer between

subway lines may spend more time in the subway environment, potentially leading to

increased exposure to air pollution. We found that certain subway stations exhibit higher con-

centrations of PM2.5 than others. Consequently, commuters who spend time at these stations

for transferring or boarding are subject to increased exposure.

We also found that the on-train concentration of PM2.5 increases in certain subway lines

when passing through specific underground tunnels. This implies that commuters whose sub-

way routes include these lines and tracks may be exposed to higher concentrations within the

train cabins.
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The mean per capita subway PM2.5 exposure within a community can be influenced by the

proportion of workers who rely on the subway system for their daily commute. A higher

dependence on the subway is associated with a higher mean per capita exposure to PM2.5. We

observed that workers residing in low-income communities tend to have a greater reliance on

subways compared to workers in more affluent communities. Therefore, socioeconomic fac-

tors play a role in shaping the transportation choices of individuals and subsequently impact

their exposure to subway driven PM2.5.
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