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Abstract

Multiple sclerosis (MS) is a multifaceted neurological condition characterized by challenges

in timely diagnosis and personalized patient management. The application of Artificial Intelli-

gence (AI) to MS holds promises for early detection, accurate diagnosis, and predictive

modeling. The objectives of this study are: 1) to propose new MS trajectory descriptors that

could be employed in Machine Learning (ML) regressors and classifiers to predict patient

evolution; 2) to explore the contribution of ML models in discerning MS trajectory descriptors

using only baseline Magnetic Resonance Imaging (MRI) studies. This study involved 446

MS patients who had a baseline MRI, at least two measurements of Expanded Disability

Status Scale (EDSS), and a 1-year follow-up. Patients were divided into two groups: 1) for

model development and 2) for evaluation. Three descriptors: β1, β2, and EDSS(t), were

related to baseline MRI parameters using regression and classification XGBoost models.

Shapley Additive Explanations (SHAP) analysis enhanced model transparency by identify-

ing influential features. The results of this study demonstrate the potential of AI in predicting

MS progression using the proposed patient trajectories and baseline MRI scans, outper-

forming classic Multiple Linear Regression (MLR) methods. In conclusion, MS trajectory

descriptors are crucial; incorporating AI analysis into MRI assessments presents promising

opportunities to advance predictive capabilities. SHAP analysis enhances model interpreta-

tion, revealing feature importance for clinical decisions.

1. Introduction

Multiple Sclerosis (MS) is a complex, long-lasting condition affecting the brain and spinal

cord, leading to symptoms such as vision disturbances, impaired limb movement cognitive
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impairment, etc [1]. The disease typically progresses from a Relapsing-Remitting (RR) phase

to a Secondary-Progressive (SP) phase, resulting in worsening health and irreversible disability

[2,3]. The introduction of over fifteen approved disease-modifying treatments offers the poten-

tial to delay the onset of the SP phase significantly. However, the benefits must be carefully bal-

anced against substantial risks, especially with the most potent medications [4].

Magnetic Resonance Imaging (MRI) images offer insights into brain and spinal cord lesions

associated with MS, facilitating accurate diagnosis and disease tracking [5,6]. Various tech-

niques and scoring systems, such as the Barkhof [7] and Paty [8] scores, quantitatively evaluate

lesions and disease burden in the central nervous system but typically applied at a specific

point in time and do not consider the patient’s complete medical history. To obtain a compre-

hensive understanding of MS, it is crucial to consider broader factors, including genetics,

microbiota, lifestyle, and geographical settings [9].

The absence of established prognostic markers and reliable risk scores currently compli-

cates the accurate prediction of disease trajectories for individual patients, which is particularly

challenging given the availability of treatments that can slow disease progression but come

with potential adverse effects [10,11]. Early prognosis of disease trajectories could enable per-

sonalized treatment strategies, particularly for higher-risk patients, and Artificial Intelligence

(AI) algorithms are gaining momentum in addressing this need in neurology [12–17], to

heighten diagnostic precision and refine patient care efficacy. Some studies have used Machine

Learning (ML) to explore MS, for both diagnosis and prognosis, offering promising insights

[14,16]. While many studies focus on cross-sectional perspective and identifying static patterns

in the data, comprehending how MS changes over time requires a longitudinal perspective.

This approach helps connect information across different time points and understand the

holistic trajectory of each patient [17].

This paper presents a novel methodology for exploring the correlation between features

extracted from baseline MRI and the trajectory of MS in terms of each patient’s Expanded Dis-

ability Status Scale (EDSS) [18]. To achieve this, three different models are proposed to

describe these trajectories, and ML tools such as XGBoost [19] and, subsequently, Shapley

Additive Explanations (SHAP) [20], are applied to improve the understanding of these

relationships.

2. Materials

2.1 Dataset

In this study, a dataset comprising 478 patients from Galicia (North-Western Spain), was uti-

lized. The exclusion criterion was based on patient follow-up, excluding those with less than 1

year of follow-up and those with fewer than two EDSS evaluations. After applying this selec-

tion criteria, a total of 446 records were employed for the analysis, with data collected from

1987 to 2022. Finally, it was ensured that each patient included in the analysis had an associ-

ated MRI. Fig 1 shows the cohort selection schema, and S1 Table shows the patient characteris-

tics for the selected dataset. The data utilized, which was accessed for the first time on June 20,

2016, was approved by the Autonomous Committee of Research Ethics of Galicia under the

code 2016/307. Informed consent was obtained from all participants prior to any data collec-

tion procedures.

To examine our database in detail, it is essential to understand the temporal structure of the

data. Fig 2A illustrates how the 446 patients included in the study are distributed categorized

by the duration of their follow-up, measured in years. This representation helps us compre-

hend how patients are distributed concerning the duration of their follow-up in the database.

On the other hand, in Fig 2B, we provide an alternative way to represent the percentage of our
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study cohort based on the duration of follow-up in years, offering insights into the length and

quality of the collected data. Additionally, it is crucial to account for the distribution of EDSS

scores in these MS patients. EDSS is a common clinical scale used to evaluate disability in MS

patients, offering valuable insights into their clinical condition. Scores range from 0 (no dis-

ability) to 10 (severe disability). To illustrate the behaviour of EDSS within the dataset, Fig 2C

displays the distribution of values in each EDSS category, while Fig 2D illustrates the distribu-

tion of EDSS determinations per patient. This provides a clearer understanding of the distribu-

tion of EDSS scores and the frequency of assessments in the dataset.

2.2 AI tools (boosting and explainability)

2.2.1. XGBoost. Gradient Boosting is a powerful ensemble learning technique widely

employed in ML for enhancing predictive models. This method sequentially builds a strong

predictive model by combining the outputs of weak learners, usually decision trees. The algo-

rithm minimizes an objective function, represented by Eq 1.

obj yð Þ ¼ L yð Þ þ OðyÞ ð1Þ

where L(θ) is the training loss function measuring the model’s performance on the training

data and Ω(θ) is the regularization term accounting for the complexity of the model.

XGBoost represents a highly efficient and scalable implementation of gradient boosted

decision trees, systematically constructing additive models in a stepwise manner. This process

leads to an ensemble of base learners exhibit superior prediction capabilities compared to indi-

vidual classifiers. Each weak classifier is assigned a weight based on its prediction accuracy,

allowing them to contribute effectively to the final prediction [19,20]. XGBoost, being an

Fig 1. Illustration depicting the inclusion criteria used in the selection of participants for the studies.

https://doi.org/10.1371/journal.pone.0306999.g001
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advanced implementation, introduces additional regularization measures to control overfit-

ting. The objective function of XGBoost, aimed to be minimized, is given by Eq 2, and the reg-

ularization term is described in Eq 3.

obj ftð Þ ¼
XN

i¼1
l yi; ŷi

t� 1
þ ftðxiÞ

� �
þ O ftð Þ ð2Þ

O ftð Þ ¼
XK

k¼1
gT þ

1

2
a
XT

m¼1
w2

m ð3Þ

Where, yi is the target value of the i-th instance, ŷi is predicted value at the t-th iteration, ft
(xi) is the additive decision tree model greedily added to improve performance, and Ω(ft) is a

Fig 2. Temporal distribution of study cohort and follow-up duration. (A) Distribution of Patients Over Time: Follow-Up Duration in Days. (B) Temporal

Distribution of Study Cohort: Percentage of Patients Across Follow-Up Duration in Years. (C) Distribution of the number of values of each EDSS category in the

studied cohort. (D) Distribution of the number of determinations per patient in the studied cohort.

https://doi.org/10.1371/journal.pone.0306999.g002
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regularization term penalizing model complexity. N is the set of all samples in leaf m, T con-

sists of the number of leaf nodes, α and γ are parameters of the tree. The score of leaf m is mea-

sured by ωm. This regularization procedure aims to compress the weights for many features to

zero, facilitating feature selection.

2.2.2 SHAP. Model interpretability poses a significant challenge in the realm of ML algo-

rithms. To address this challenge, SHAP is recognized as a potent and commonly used tool in

the realm of explainable AI, serving a pivotal function in elucidating the importance and influ-

ence of input features on model predictions [21,22]. The SHAP methodology is based on a uni-

fied framework rooted in cooperative game theory, assigning the contribution of each feature

to the model’s output. Through a quantitative approach to assess the marginal impact of fea-

tures, SHAP considers all feature combinations [23]. This facilitates a thorough comprehen-

sion of feature interactions and their combined impacts on predictions [24]. The mathematical

expression representing SHAP values is given by Eq 4. This holistic perspective provides valu-

able insights into the inner workings of complex ML models, contributing to transparency and

informed decision-making regarding model behavior and feature importance.

;i ¼
1

jNj!

X

S�Nfig

jSj!ðjNj � jSj � 1Þ

N
f S [ if gð Þ � f ðSÞ½ � ð4Þ

where f(S) refers to the output of the XGBoost model, which is determined by a specific set of

features denoted as S. The complete set of all features is represented by N. The final contribu-

tions, denoted as ;i, are computed by averaging the contributions across all permutations of a

feature set. Subsequently, the features are sequentially incorporated into the set, and their

impact is reflected in the model’s output change.

3. Methods

To assess the correlation between the features derived from the baseline MRI and the clinical

trajectory of each patient (as assessed by EDSS), a new methodology has been developed,

which is divided into several stages. The first stage involves cohort selection. The second stage

is dedicated to proposing trajectory descriptors based on EDSS assessment. As a result, three

descriptors were obtained (detailed in section 3.1), represented as β1, β2, and EDSS(t). Subse-

quently, we proceed to build AI models using these baseline MRI-derived features, gender,

and age of MS onset to predict patient progression. Two models are considered for this pur-

pose: the classical Linear Regressor (LR) [25] and the state-of-the-art XGBoost-based predictor

(section 2.2.1). This allows for a dual evaluation: first, to determine if the ML approach (specif-

ically XGBoost) outperforms the classical method (LR); and second, to validate the patient tra-

jectory classification presented in the first section as patient descriptors. The final stage of the

method is devoted to understanding, using explainable AI (referred to as SHAP in section

2.2.2), which are the main features of the model that predicts the trajectories. Fig 3 shows the

methodology pipeline including all these stages.

3.1 Building the MS trajectory descriptors based on time dependent EDSS

assessment variations

The first proposed trajectory descriptor aims to transform the patient’s categorical EDSS

assessments into a single numerical variable representing the patient’s condition changes over

time. This is achieved by combining measurements taken at various time points and normaliz-

ing them by the time interval (in days) between measurements. Mathematically, the first
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trajectory descriptor is based on the initial and final EDSS scores and is represented by Eq 5.

b1 ¼
DEDSS
DT

ð5Þ

Where ΔEDSS represents the variation in terms of EDSS between the initial and final mea-

surements weighted by 0.5 for each category variation, whether increasing or decreasing, and

the term ΔT corresponds to the difference (in days) between such measurements. The result,

β1, corresponds to the “slope” of the line that connecting those points. This approach reduces

the trajectory complexity of each patient to just two points (the beginning and the end).

Following the previous logic, a more comprehensive description of this score can be

obtained by considering each of the EDSS assessments made for the patient. Using the same

convention as in Eq 1 for ΔT, Eq 6 describes the second trajectory descriptor.

b2 ¼
Xn

i¼1

DEDSSi
DTi

� �

∗DT ¼
Xn

i¼1

EDSS i � EDSSi� 1

Ti � Ti� 1ð Þ

� �

∗ ðTn � Ti� 1Þ ð6Þ

The term ΔEDSSi means the variability in EDSS between two measurements, and the term

ΔTi corresponds to the number of days between two consecutive determinations. The summa-

tion covers EDSS variations from i = 1 to n, where n represents the last recorded change.

ΔEDSSi weighted by 0.5 on each category variation, increasing or decreasing. Consequently,

the descriptor measures the time required to induce a change in EDSS values for a patient,

treating them as a numerical variable.

The third trajectory descriptor aims to treat EDSS assessments directly as categorical. To

consider the moment in time when these assessments are taken using this approach, a map of

Fig 3. General schema of the methodology proposed in this work.

https://doi.org/10.1371/journal.pone.0306999.g003
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values at specific time points is created, which is the same for all patients. This is described in

Eq 7.

EDSSðtÞ ¼ ½EDSSðt ¼ 0Þ; EDSSðt ¼ 1Þ; EDSSðt ¼ 2Þ; EDSSðt ¼ 5Þ; EDSSðt ¼ 10Þ� ð7Þ

To describe patient trajectories using this model, we collect EDSS values at specific time

intervals, including the initial assessment at t = 0, and subsequent evaluations at 1 year, 2

years, 5 years, and 10 years. This method enables us to predict the trajectory using classifiers

that estimate the EDSS values at these specific time points. If a patient’s EDSS value matches

that of the previous and subsequent assessments within a three-month interval in their medical

history, we assume that it remains unchanged during that period. This assumption is particu-

larly useful in cases where data for these time points are missing, as it provides additional val-

ues for the model to predict. Moreover, from a clinical point of view, the occurrence of a non-

documented transient change (more often an increase than a decrease) of EDSS between two

equal assessments is indeed a possibility in the clinical setting and would qualify as a (subclini-

cal) relapse. Nevertheless, the purpose of this paper is to use baseline MRI features to predict

the disability score (i.e., EDSS) at specific time points, not to foresee the annualized relapse

rate (ARR). While the behaviour of ARR is a primary of most clinical trials in relapsing MS in

the short and medium term (typically 1–2 years), disability is the most relevant feature in the

long run (2–10 years) for either relapsing or progressive MS. These proposed descriptors aim

to describe the progression of MS over time based on EDSS measures. Fig 4A depicts the vari-

ability of EDSS measures for a subset of the initial 10 patients in the study. Fig 4B showcases

the behaviour of the disease progression descriptors concerning the EDSS scores over time.

3.2 AI (regressor and classifier) to predict MS trajectories

Once the data has been curated and pre-processed to enable integration into the AI workflow,

two different sets of models are employed. The first one consists of the LR and the XGBoost

regressors, used to predict the β1 and β2 trajectories, which represent the time required to

change EDSS values. The second model utilizes Multiclass Logistic Regression (MLR) and the

Fig 4. Description of the behaviour of the EDSS Variable in the dataset. (A) Evolution of EDSS for the first 10 patients of the study, where abscissa axis is time in

days and ordinate, EDSS values. (B) Example of behaviour of possible descriptors of disease progression according to the EDSS score over time.

https://doi.org/10.1371/journal.pone.0306999.g004
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XGBoost classifiers to predict EDSS(t), forecasting the EDSS value at a specific moment (Eq 7),

functioning as a classifier.

In the context of hyperparameter optimization, a crucial process for identifying and select-

ing parameter configurations that produce the best prediction results, the Bayesian approach

was employed. Specifically, the Hyperopt Library [21] was utilized to optimize XGBoost (Eqs 2

and 3) leveraging Bayesian optimization.

For the analysis, the dataset is initially divided into two parts: one for model fitting and the

other for evaluating predictor quality, using an 80/20 ratio. All models are fitted and hyperop-

timized using the same set. Additionally, a five-fold cross-validation process is conducted,

involving random resampling of the initial dataset split to assess the generalizability of the

results. To address class distribution imbalance, stratified cross-validation is employed, ensur-

ing that each fold maintains a representative proportion of the classes present. To evaluate

whether the models are overfitting or underfitting, we compare the metrics (AUC-ROC, Sensi-

tivity, Accuracy, Precision) between both the training and testing datasets. The values obtained

permit us to conclude that neither overfitting nor underfitting occurs in the process.

4. Results

This section presents the results of three main experiments that explore the relationship

between the progression of MS and the baseline MRI of each patient, using the dataset

described in section 2.1. In the first experiment, trajectory descriptors were obtained using the

different proposed models (section 3.1). The second experiment employed data from the base-

line MRI to predict the patient trajectory based on the models obtained in the first experiment.

In the third experiment, SHAP was utilized to analyse and understand the key features influ-

encing the predictions of each model. The proposed method and analysis were implemented

in Python using multiple libraries, including Scikit-learn, Matplotlib, NumPy, Pandas, Hyper-

opt, XGBoost, and SHAP.

4.1 Obtaining the trajectories descriptors

The first experiment focuses on obtaining the descriptors for the dataset’s patients. β1 values,

computed using Eq 5, show an average of 0.02 and a standard deviation of 1.23. For β2, val-

ues are extracted using Eq 6, revealing an average of -1.47, and a standard deviation of 12.76.

Fig 5A displays the behaviour of β1 and β2 across all patients in our dataset. There is consen-

sus in considering MS has followed a mild (termed ‘benign’ by some authors) course when

EDSS score is�3.0, after a disease duration of at least 10 years [26], whereas aggressive

MS might be defined as reaching an EDSS score of ⩾6.0 within 10 years of disease onset

[27]. By calculating the β1 values for patients who meet these criteria, we’ve segmented the

dataset into three groups: mild, average, and aggressive trajectories of the disease, as show in

Fig 5B.

Regarding the extraction and quantification of EDSS(t) assessment for the specific moments

as described in Eq 3. Results of this process are provided in Table 1, in terms of the number of

patients in the study that has an EDSS value at each specific time.

4.2. Predicting patient trajectory descriptors using baseline MRI

The dataset described in 2.1 was employed to evaluate the presented AI methods to predict the

patient trajectories, as described in section 3.2.

4.2.1 Regressor model. To predict the trajectory descriptors β1 and β2 based on the base-

line MRI, patient age, and sex, two regression models were employed. In Table 2, a comparison

is presented between the classic LR model and the XGBoost model. This comparison includes
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default hyperparameters and the best-performing Bayesian hyperparameter-tuned model, and

it measures performance in terms of Mean Absolute Error (MAE). The results displayed on

the table, demonstrate the potential for AI methods to significantly reduce prediction errors

for both trajectory descriptors when compared to the classical LR method.

Fig 5. Behaviour of descriptors β1 and β2 in the dataset. (A) Results of β1 and f β2 for the Entire Patient Cohort. (B) Classification of disease trajectories in β1

analysed patients. In both at right a zoom of the area of interest.

https://doi.org/10.1371/journal.pone.0306999.g005

PLOS ONE Explainable machine learning on baseline MRI predicts multiple sclerosis trajectory descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0306999 July 16, 2024 9 / 19

https://doi.org/10.1371/journal.pone.0306999.g005
https://doi.org/10.1371/journal.pone.0306999


Prediction of benignant and aggressive evolutions. Following the prediction of the β1 trajec-

tory descriptor, the results could be categorized according to the criteria described in section

4.1 to predict whether the disease course is classified as benign or aggressive. This method

allows for the evaluation of the regressor’s ability to differentiate between the clinical categories

of disease progression. Table 3 presents the results comparing the criteria forecasted by the

regressor with the actual values from patients followed for ten years or more, belonging to the

test group.

4.2.2 Classifier model. To make predictions based on the time descriptor EDSS(t), a clas-

sifier is needed. Table 4 compares the MLR with optimized XGBoost models using various

metrics, including Area Under the Curve Receiver Operating Characteristic (AUC-ROC), Sen-

sitivity, Precision, and Accuracy. The most promising results were achieved with the XGBoost

model, with AUC-ROC values ranging from 0.7354 for EDSS(0) to the highest result of 0.9136

obtained for EDSS(1). Fig 6 displays the AUC-ROC curves generated by applying XGBoost to

each EDSS(t) timestamp.

4.3. Using SHAP to explain the ML models (regressor and classifier)

After obtaining the model, we employed SHAP (as described in section 2.2.2) to interpret the

best-performing regressor identified in Table 2. In this case, we utilized the hyperoptimized

version of XGBoost with predictors β1 and β2. Using this technique enables us to identify and

rank the importance of features. The analysis reveals that "Age at onset" is the most crucial fea-

ture for predictors β1 and β2. Fig 7A and 7C displays plots of the ranking of the 20 most

Table 1. Distribution of patients that has each EDSS(t) for certain time values.

Parameter EDSS Category

0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 �6

EDSS(0) 47 52 15 125 39 60 58 18 3 0 3 26

EDSS(1) 103 74 14 72 21 23 31 23 2 1 1 35

EDSS(2) 96 63 19 60 22 24 25 26 5 1 1 36

EDSS(5) 86 51 20 43 22 21 24 23 10 2 3 47

EDSS(10) 68 37 9 25 14 11 17 19 6 3 5 65

EDSS(0):EDSS(t) descriptor assessment at time t = 0; EDSS(1): EDSS(t) descriptor assessment at time t = 1 year; EDSS(2): EDSS(t) descriptor assessment at time t = 2

years; EDSS(5): EDSS(t) descriptor assessment at time t = 5 years; EDSS(10): EDSS(t) descriptor assessment at time t = 10 years.

https://doi.org/10.1371/journal.pone.0306999.t001

Table 2. Results of the Mean Absolute Error (MAE) obtained using three different regressor to predict the beta

values of the dataset described in 2.2, using a split ratio of 80/20.

Predictor MAE

β1 β2

Linear Regressor 0.25 7.22

XGBoost 0.19 6.87

XGBoost hyperoptimized 0.11 5.18

https://doi.org/10.1371/journal.pone.0306999.t002

Table 3. Evaluation of disease progression prediction using various metrics, including AUC-ROC, sensitivity, precision, and accuracy.

Predictor AUC-ROC Sensitivity Accuracy Precision

XGBoost hyperoptimized 0.86 0.84 0.88 0.81

https://doi.org/10.1371/journal.pone.0306999.t003
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important variables. Fig 7B and 7D illustrates the impact of features on the model output for

individuals in the validation dataset. The X-axis displays features sorted by the sum of SHAP

value magnitudes across all samples, indicating higher importance at the extremes. The Y-axis

shows how much each feature affects the model’s predictions using SHAP values. The colours,

from red to blue, stand for high to low values of these features.

In the section dedicated to the classifier, a similar approach to the regressor was followed,

employing the SHAP technique to assess and elucidate the performance of ML models. Fig 8

displays the ranking of the top 20 features that exert the most influence on the model’s classifi-

cation decisions, thereby contributing to a deeper understanding of variable importance and

overall model performance.

In the SHAP analysis of the classifier, we observed variations in the influence of each vari-

able across different classes and time points (as shown in Fig 8). Interestingly, while the age of

onset exhibited reduced influence compared to other predictors, the number of lesions greater

than nine ("Nb lesions/Brain (> = 9)") detected in the baseline MRI emerged as the most influ-

ential variable.

5. Discussion

The objective of this study is not to make the best predictor of the trajectory of MS, but rather

to explore the amount of information provided by the baseline MRI for predicting the evolu-

tion of MS. We propose a method for creating trajectory descriptors β1 and β2 (section 3)

which help us understand how MS patients’ EDSS scores change over time. β1 simplifies the

description, by connecting the first and last EDSS assessments with a straight line (see Fig 4D),

but it may lose important information and does not consider variations between measure-

ments. In contrast, β2 considers these variations over time and the changes in EDSS scores

between consecutive measurements. Both methods are weighted by the time between measure-

ments. The hyperoptimized XGBoost model showed the lowest MAE, suggesting it is better at

predicting patient trajectories. For β1, the MAE is 8.62 percent relative to the standard devia-

tion, while for β2, it is 40.60 percent relative to the standard deviation. This difference can be

attributed to the fact that β2 considers intermediate changes in EDSS values, including relapses

in patients, which can lead to randomly occurring elevated atypical EDSS values, potentially

making predictions for this descriptor more challenging. This method is a useful tool for

quickly characterizing disease behaviour over time, but it introduces an error when converting

Table 4. Performance comparison of classifier models for predicting EDSS(t) on testing dataset.

EDSS(t) CLS AUC-ROC Sensitivity Accuracy Precision

EDSS(0) MLR

XGBoost

0.67

0.74

0.19

0.78

0.29

0.42

0.20

0.50

EDSS(1) MLR

XGBoost

0.58

0.91

0.17

0.85

0.21

0.78

0.19

0.79

EDSS(2) MLR

XGBoost

0.75

0.86

0.30

0.89

0.44

0.75

0.31

0.78

EDSS(5) MLR

XGBoost

0.75

0.88

0.24

0.75

0.41

0.79

0.19

0.81

EDSS(10) MLR

XGBoost

0.71

0.89

0.24

0.88

0.45

0.73

0.23

0.73

EDSS(0), EDSS(t) descriptor assessment at time t = 0; EDSS(1), EDSS(t) descriptor assessment at time t = 1 year; EDSS(2), EDSS(t) descriptor assessment at time t = 2

years; EDSS(5), EDSS(t) descriptor assessment at time t = 5 years; EDSS(10), EDSS(t) descriptor assessment at time t = 10 years; CLS, classifiers; AUC-ROC, Area Under

the Receiver Operating Characteristic curve; MLR, Multiclass Logistic Regression.

https://doi.org/10.1371/journal.pone.0306999.t004
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categorical EDSS measurements into numbers, assuming all transitions between categories

carry the same weight.

To address the limitations of β1 and β2, we present an alternative method for constructing

the EDSS(t) trajectory descriptor. This new approach treats the variable as categorical, focusing

on how patients change over time. The descriptor is based on EDSS measurements at five spe-

cific time points, with varying patient counts: 446, 400, 377, 352, and 279, respectively. As

shown in Table 1, EDSS values are not evenly distributed across categories, with most samples

having values below EDSS = 4. Consequently, we only considered categories with a minimum

of ten occurrences at each time point. Table 4 compares the performance of the MLR against

optimized XGBoost models using various metrics. Notably, the XGBoost model exhibited the

most promising results, demonstrating AUC-ROC values ranging from 0.7354 for EDSS(0) to

Fig 6. ROC Curves for XGBoost applied to each analysed EDSS(t) Timestamp. Table 4 presents the metrics derived from the testing dataset. To assess the

model’s generalization performance, analogous metrics were calculated for the training dataset. These results are provided as supplementary material in S2 Table.

A comparison between the metrics presented in Table 4 and those in S2 Table reveals a notable similarity in values for both the training and testing datasets. This

congruence suggests that the models neither suffer from overfitting nor underfitting.

https://doi.org/10.1371/journal.pone.0306999.g006
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Fig 7. Relevance and SHAP analysis of the 20 most important features of the model XGBoost regressor to predict β1 y β2. (A-B)

Relevance and SHAP analysis of the 20 most important clinical variables extracted from the XGBoost regressor to predict β1. (C-D)

Relevance and SHAP analysis of the 20 most important clinical variables extracted from the XGBoost regressor to predict β2.

https://doi.org/10.1371/journal.pone.0306999.g007
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Fig 8. Relevance and SHAP analysis for those 20 most important clinical variables extracted from the XGBoost

classifier to predict EDSS(t). (A) Analysis to predict EDSS(0). (B) Analysis to predict EDSS(1). (C) Analysis to predict

EDSS(2). (D) Analysis to predict EDSS(5). (E) Analysis to predict EDSS(10).

https://doi.org/10.1371/journal.pone.0306999.g008
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a peak of 0.9136 for EDSS(1). The predictions for EDSS(0) showed slightly lower performance

compared to other time points. There are plausible reasons to think that was due to an imbal-

ance in the sample distribution at the initial stage, where category "2" represented 28% of all

samples, while category "1.5" accounted for only 3%. To handle this imbalanced-ness of the

problem, several actions have been taken to mitigate the effects as using a schema for valida-

tion considering a 5-fold cross validation approach. As this initial imbalance in debut condi-

tions produces suboptimal outcomes of the estimator only at this specific initial time point, the

task of exploring techniques to address this intrinsic data imbalance is posed as an open future

research study that potentially mitigate such issues improving the overall performance of pre-

dictive models for EDSS trajectory descriptors.

Several works have been published in recent years within the same domain, focusing on

predicting patient evolution using MRI studies [28–30]. These studies aim to forecast disease

progression at various time points according to the EDSS scale. While the prevailing literature

reports AUC values ranging from 0.71 to 0.89, our findings span from 0.74 to 0.91, contingent

upon the forecasted year for disease trajectory. While the resulting metrics from these works

align with ours, comparisons are somewhat heterogeneous due to differences in input vari-

ables, prediction different time points, and considerations of the EDSS scale. Moreover, our

proposed methodology focuses on forecasting disease progression solely utilizing derived fea-

tures extracted from baseline MRI scans.

It is interesting to remark that while baseline MRI studies are a good prognostic predictor

for MS, as demonstrated by the research community [31,32], the performance disparity

between the classifier models EDSS(0) predicting the initial EDSS level and the EDSS(1) at

one year and later, could be understood as a contribution of clinical variables such as treat-

ment, genetics and environmental factors, to the clinical evolution and assessment of the

patient.

The implementation of explainable AI methods facilitated the discovery of the core factors

influencing precise decisions within the ML model. This process renders complex models

understandable and accessible, even to those without advanced technical or medical knowl-

edge. In section 4.3, SHAP was utilized to interpret the ML models, both for the regressor and

the classifier. This analysis provided essential information about the internal performance of

each developed predictor and descriptor, including the classification of feature importance

and insights into how the values of each feature impact predictions. For the trajectory descrip-

tors β1 and β2, significant influence was highlighted, particularly related to the age at disease

diagnosis (age at onset), as observed in Fig 7. This observation aligns with findings from previ-

ous studies [33–35]. In the analysis of EDSS(t) using the XGBoost-based classifier, Fig 8 illus-

trates how the influence of each variable changes depending on the class being analysed for

each measured time point. It is noteworthy that, in this predictor, the age of onset does not

exert as much influence as in the previously analysed predictors. Instead, the most influential

variable is the number of lesions greater than nine ("Nb lesions/Brain (> = 9)") detected in the

baseline MRI. We found that the variable with the most significant impact in the classification

models is the number of lesions greater than nine ("Nb lesions/Brain (> = 9)") in the baseline

MRI. While previous works have not specifically analysed the number of lesions to predict

EDSS, there are studies that have examined the prediction of EDSS at 10 years based on brain

lesion volume [36], as well as others that have investigated the spatial distribution of lesions

[37]. Therefore, brain lesions emerge as a crucial parameter to consider in predicting the pro-

gression of MS. The incorporation of the SHAP tool represents a significant advancement

towards transparency and understanding in the context of AI and predictive modelling. This

allows healthcare professionals to comprehend how the model generates prediction and make

informed decisions.
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In the next coming years AI will have a great impact on the clinic when it comes to making

clinical decisions, prevention / diagnosis / prognosis, therapeutic efficacy, etc. This work

makes an intensive use of AI algorithms for producing prognosis and decisions tools, inten-

tionally derived exclusively from the baseline MRI, to measure the amount of information for

prediction patient evolution at the debut. Enhancing the model’s effectiveness could be accom-

plished by incorporating longitudinal MRI data, enabling more precise and resilient predic-

tions at each temporal instance. This approach could aid in identifying patterns in MRI images

associated with disease progression. Including supplementary clinical information, such as lab-

oratory results, genetic data, or other relevant biomarkers for MS could also enrich the models

and enhance their predictive capacity. However, it is important to consider the challenges

associated with collecting and integrating additional clinical data. Concerning data limitations

on this study, an additional issue for future works should be addressed in terms of two main

aspects, the public accessibility of the dataset employed and the inclusion of external databases

to further validate the proposed method in a broader cohort. Actions on those two lines have

been started but as this falls out of the scope of this paper, result will be included in future

works.

6. Conclusions

This paper presents a new method for describing MS trajectories based on two new numerical

scores (β1 and β2) and a categorical descriptor for time evolution, EDSS(t). The state-of-the-

art XGBoost method was employed to predict these new trajectory descriptors using informa-

tion provided in the baseline MRI study, and the results were compared with the classical mod-

els. Hyperparameter optimized XGBoost models improves the predictions of trajectories of

MS patients, in both categories regressors and classifiers. In terms of best AUC-ROC, Sensitiv-

ity, Accuracy and Precision. The layer of Explainable ML facilitates understanding the reasons

and variable importance within the AI models, being "Age at onset" the most significant vari-

able in predicting trajectories β1 and β2, while "Number of lesions in the brain (> = 9)" holds

the highest importance in predicting the trajectory and EDSS(t). This paper shows how AI is

superior to traditional logistic regression in predicting the patient’s disability status at 1, 2, 5

and 10 years based on human-imputed data regarding specific standardized findings in a base-

line MRI that could impact decisions. It is possible that the incorporation of AI analysis of

MRI could further improve the model’s prediction abilities.
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