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Abstract

This study presents a comprehensive approach for optimizing the acquisition, utilization,

and maintenance of ABLVR vascular robots in healthcare settings. Medical robotics, partic-

ularly in vascular treatments, necessitates precise resource allocation and optimization due

to the complex nature of robot and operator maintenance. Traditional heuristic methods,

though intuitive, often fail to achieve global optimization. To address these challenges, this

research introduces a novel strategy, combining mathematical modeling, a hybrid genetic

algorithm, and ARIMA time series forecasting. Considering the dynamic healthcare environ-

ment, our approach includes a robust resource allocation model for robotic vessels and

operators. We incorporate the unique requirements of the adaptive learning process for

operators and the maintenance needs of robotic components. The hybrid genetic algorithm,

integrating simulated annealing and greedy approaches, efficiently solves the optimization

problem. Additionally, ARIMA time series forecasting predicts the demand for vascular

robots, further enhancing the adaptability of our strategy. Experimental results demonstrate

the superiority of our approach in terms of optimization, transparency, and convergence

speed from other state-of-the-art methods. The source code is available at https://github.

com/ybfo/improved-GA.

1 Introduction

Medical robotics is a rapidly evolving field that leverages advanced algorithms to unlock the

full potential of cutting-edge technologies [1]. One of these technologies is the vascular robot,

which can perform precise and minimally invasive procedures within the human vasculature.

Among the various types of vascular robots, the ABLVR vascular robot is a novel and promis-

ing technology that consists of a robotic vessel and four operators who can navigate the blood-

stream autonomously [2, 3]. However, this technology poses a unique challenge in terms of
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resource allocation and optimization, as the operators require a week-long biological learning

process before they can be fully operational, and the robotic vessel needs to be periodically

removed for maintenance [4]. Vascular robots need to be fully trained in the vessel boat before

they can work.

Maintenance of medical robots is a healthcare resource allocation problem. Navaz et al. [5]

conducted a comprehensive review, highlighting various approaches to optimizing resource

allocation in this context. Their work serves as a foundational reference, summarizing existing

methodologies and identifying research gaps. Faccincani et al. [6]. investigated adaptive

resource allocation strategies, emphasizing the need for dynamic models that can adapt to

changing conditions. Their research underscores the importance of flexibility in resource allo-

cation to meet the evolving demands of healthcare environments. Zouri et al. [7] delved into

cost-effective resource allocation models, emphasizing the the importance of cost optimization

in rehabilitation hospitals. Their study provides insights into the trade-offs between cost and

treatment efficiency, a critical consideration in healthcare robotics. Guo et al. [8] focused on

system control models for vascular robots and used robust controllers to optimize their perfor-

mance and improve system stability. Their research contributes to understanding the dynam-

ics of acquiring and maintaining robotic assets for vascular treatments. However, their study

does not directly relate to optimizing the birth of robotic assets for vascular therapy, and it is

difficult for hospitals to go directly through their methodology to design and optimize acquisi-

tion strategies for robots for vascular therapy.

In recent years, the rapid development of computer technology has allowed it to be used in

a wide range of applications in the healthcare industry. Pashaei et al. [9] used a hybrid binary

COOT algorithm with simulated annealing to search for targeted genes. Pashaei et al. [10] pro-

posed a simulated annealing-based mRMR search method for feature selection in high-dimen-

sional biomedical data. Yu et al. [11] explored the role of reinforcement learning in the

healthcare domain for health resource allocation and scheduling and health management

problems. These applications show that the application of computer technology in the health-

care industry promotes the development of the healthcare industry.

This study aims to address this challenge by developing a comprehensive and adaptive

long-term strategy for the acquisition, utilization, and maintenance of ABLVR vascular robots

and operators [2]. This study aims to address this challenge by developing a comprehensive,

adaptable, and long-term strategy for the acquisition, use, and maintenance of the ABLVR vas-

cular robot and operator. We designed a genetic algorithm based on improved greed and sim-

ulated annealing, along with an ARIMA time-series model optimized by the genetic algorithm,

for optimizing the ordering and scheduling of the ABLVR vascular robot’s capacity boats and

operators to ensure efficient treatment while minimizing costs and addressing potential dam-

age to the robot. Specifically, with the known number of vascular robot uses required per

week, the greedy algorithm is first embedded into a genetic algorithm to solve for the optimal

number of vessel boats and operators to be purchased per week as an initial solution to the

genetic algorithm. Then the genetic algorithm optimized based on the simulated annealing

idea is built to solve the final result. The ARIMA model, optimized by the genetic algorithm,

forecasts the unknown demand for vascular robot uses in a time series, and determines the

optimal number of vessel boats and operators to purchase accordingly. The key contributions

and highlights of our research include:

• Comprehensive Resource Allocation Model: We have developed a robust resource allocation

model that optimizes the procurement of both robotic vessels and operators, considering the

dynamic nature of healthcare environments.
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• Incorporating Adaptive Learning: Our model accounts for the adaptive learning process

required for operators, as well as the maintenance and disposal of robotic components.

• Hybrid Genetic Algorithm: We introduce a hybrid genetic algorithm that incorporates simu-

lated annealing and greedy approaches to efficiently solve the optimization problem.

• Time Series Forecasting: We use an ARIMA time series model to predict the demand for

vascular robots, enhancing the adaptability of our procurement strategy.

We compare our proposed method with traditional heuristic approaches and machine

learning-based methods, highlighting the advantages of our approach in terms of optimization

and transparency. This study proposes an innovative approach based on an improved genetic

algorithm that can optimize the ordering and scheduling of the ABLVR vascular robots and

operators. By applying computational optimization techniques, this study seeks to enhance the

efficiency and cost-effectiveness of this groundbreaking medical technology.

2 Methodology

2.1 Assumptions

This research employs a quantitative approach grounded in computational modeling and opti-

mization techniques to address the multifaceted challenges posed by the acquisition and utili-

zation of ABLVR vascular robots in healthcare settings. To maintain the reasonableness and

accuracy of the model solution in alignment with the specific problem, it is necessary to intro-

duce the following assumptions:

• Cost-Based Part Disposal: The model adopts a cost-centric approach, whereby any compo-

nent of the robot is discarded if the cost of maintaining it surpasses the combined cost of

purchasing a new part and facilitating the learning process for both new and used parts [12].

Additionally, parts are considered for disposal if they are no longer viable for reuse.

• Rounding in Calculations: Throughout the calculation process in this paper, rounding is per-

formed at each step. It is assumed that rounding does not introduce significant deviations or

impact the overall reliability of the model’s results. This assumption is made to ensure the

feasibility of computational solutions [13].

• Predictable Part Reliability: It is assumed that each component of the robot will not experi-

ence unexpected failures due to internal problems during use. This assumption simplifies

our model, allowing focus on external factors and optimizing the ordering strategy [14].

2.2 Mathematical modeling

2.2.1 Optimal decision making based on the single-objective genetic algorithm. First,

there is need to establish a robot purchase strategy model to make the lowest cost of purchased

operators and container boats under the premise of meeting the hospital treatment demand,

and the purchase cost is linearly related to the quantity [15]. In order to better control costs,

this paper takes into account that there may be cases where the cost of maintenance to the

robot vessel boat or operator exceeds the cost of purchase of that part and learning of new and

used parts, i.e

WO � POm > PO þ 2POt ð1Þ

WC � PCm > PC ð2Þ
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Where WO and WC indicate the current number of weeks of maintenance for either operator

and vessel, respectively. This document chooses to discard this part when the vessel mainte-

nance cost exceeds the purchase price of a new vessel and the operator maintenance cost

exceeds the purchase cost of a new operator and the learning cost of a new or old operator, or

when the part was last used.

To determine the objective function, the current total number of operators and vessel boats

can be expressed as follows,respectively.

NCi ¼
Xi

j¼1

ðCBi � CDiÞ þ NCo ð3Þ

NOi ¼
Xi

j¼1

ðCOi � COiÞ þ NO0
ð4Þ

Where NCi indicates the total number of vessels owned in week i, Nu
Oi indicates the total num-

ber of operators owned in week i, CBi indicates the number of vessels purchased in week i, and

CDi indicates the number of vessels discarded in week i. NC0
indicates the number of vessels

owned at the beginning of week 1, and NO0
indicates the number of operators owned at the

beginning of week 1.

Hence the total purchase cost can be expressed as:

minPðCBi;OBi;N
g
Oi;Nt

Oi;N
m
Ci;N

m
OiÞ ¼

P
CBið Þ � PC þ ð

P
OBiÞ � PO

þð
P

Ng
Oi þ Nt

OiÞ � POt þ ð
P

Nm
CiÞ � POm

þð
P

Nm
OiÞ � PCm

ð5Þ

Where PC denotes the unit price per vessel boat, and PO denotes the unit price per operator,

the POt denotes the price of one operator training, and POm denotes the price of one operator

maintenance, and PCm denotes the total cost required to complete hospital treatment

operations.

To determine the constraint conditions the relationship between the total number of opera-

tors and vessel boats in week 1 and the number in maintenance is shown below:

NCi ¼ Nm
Ci þ Nu

Ci ð6Þ

Nu
Ci ¼ Ri ð7Þ

NOi ¼ Nm
Oi þ Nu

Oi þ Ng
Oi þ Nt

Oi ð8Þ

Nu
Oi ¼ 4Ri ð9Þ

Nt
Oi ¼ OBi ð10Þ

Ng
@i ¼

�
OBi

G

�

ð11Þ

Where G indicates the number of new operators each skilled operator can instruct, and the

total number of operators owned in week i is equal to the sum of the number of operators in

maintenance, use, training instruction, and training at that point.
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Since the vascular robot must be dismantled after one week of work in the vasculature, the

robot’s operators within it cannot work again until after 7 days of maintenance [16]. Therefore,

the number of operators under maintenance in week i is equal to four times the number of

robots in the hospital’s operational requirements in week i-1 minus the number of operators

discarded in that week, i.e.

Nm
Oi � 4Ri� 1 � ODi ð12Þ

Ri−1 denotes the number of robots in demand for hospital operations in week i-1. Since the

newly purchased vessel boats cannot start working until after a week of commissioning, there

is: the number of vascular robots required by the hospital in week 1 must be less than the total

number of vessel boats owned in week 1 minus the number of vessel boats discarded in week

1. This can be expressed mathematically as:

Ri < NCi� 1 � CDi ; i > 1

Ri < NC0 � CDi ; i ¼ 1

(

ð13Þ

where NC0 indicates the original number of container boats. Therefore, the robot buying strat-

egy can be modelled as follows:

min PðCBi;OBi;N
g
Oi;Nt

Oi;N
m
Ci;N

m
OiÞ ð14Þ

Assuming that 20% of the vascular robots in the human body are destroyed each week, so

that the total number of vessel boats and operators changes each week, the total number of ves-

sel boats and operators by changing the composition of a set of functions can be expressed

recursively as:

NCi ¼ NCi� 1 þ CBi � CDi � K � Nu
Ci� 1 ð15Þ

NOi ¼ NOi� 1 þ OBi � ODi � K � Nu
Oi� 1 ð16Þ

where K indicates the percentage of vascular robots destroyed in the human body at this time,

here K = 20%. Since the robot’s operators do not work again until after 7 days of maintenance

[17]. Therefore, the number of operators under maintenance in week 1 is greater than equal to

four times the number of machines in the hospital’s operational demand in week 1 minus the

number of operators discarded in that week minus the number of macrophages hit, i.e.

Nm
Oi ⩾Ri� 1 � ODi � K � Nu

Oi� 1
ð17Þ

Since the newly purchased vessel boats cannot start working until after a week of commis-

sioning, there is: the number of vascular robots required by the hospital in week i must be less

than the sum of the total number of vessel boats owned in week i − 1 minus the number of ves-

sel boats discarded in week i and the number of vessel boats destroyed in week i − 1, which can

be expressed mathematically as:

Ri < NCi� 1 � CDi � K � Nu
Ci� 1

; i > 1

Ri < NC0 � CDi ; i ¼ 1

(

ð18Þ

where NC0 indicates the number of original container boats. Now we need to consider the

probability of hitting a macrophage resulting in the complete destruction of the vascular robot,

while changing the upper limit of how much each skilled operator can instruct a new operator

to learn from G to 20. At this time, 10% of the vascular robots in the human body are
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destroyed, and the total number of vessel boats and operators changes each week as the

amount of destruction changes, and the total number of vessel boats and operators can be

expressed recursively as:

NCi ¼ NCi� 1 þ CBi � CDi � K � Nu
Ci� 1 ð19Þ

NOi ¼ NOi� 1 þ OBi � ODi � K � Nu
Oi� 1 ð20Þ

The number of operators in maintenance is equal to four times the number of machines in

the hospital’s operational requirements in week i-1 minus the number of operators discarded

in that week minus the number of macrophages hit, i.e.

Nm
Oi ⩾ 4Ri� 1 � ODi � K � Nu

Oi� 1
ð21Þ

Where K indicates the percentage of vascular robots destroyed in the human body at this time,

here K = 10%, while the upper limit of what each skilled operator can instruct new operators

to learn G changes to 20 [18].

And for vessel boats, the number of vascular robots needed to have week i hospitals must be

less than the sum of the total number of vessel boats owned in week i − 1 minus the number of

vessel boats discarded in week i and the number of vessel boats destroyed in week i − 1. The

inequality can be expressed as:

Ri < NCi� 1 � CDi � K � Nu
Ci� 1

; i > 1

Ri < NC0 � CDi ; i ¼ 1

(

ð22Þ

Where NC0 denotes the number of original vessel boats and K denotes the percentage of vascu-

lar robots destroyed in the human body at this time, here K = 10%. The specific analytical

thought process is shown in the following Fig 1.

2.2.2 ARIMA sequences and seasonal sequence forecasting. In this section, this paper

predicts the demand for the use of vascular robots from 105–112 weeks by ARIMA time series

[19]. Time series analysis refers to a set of random variables ordered by time. The main idea of

the model is to make dynamic predictions of unknown data based on inter-observations by

Fig 1. Model analysis of optimization strategies for vascular robots.

https://doi.org/10.1371/journal.pone.0306990.g001
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dependence and correlation. This time model is used to forecast the 105–112 week demand by

building this time model, and the implementation of the ARIMA model consists of the follow-

ing five main steps.

Step 1: Perform data processing, for the mean value of the number of vascular robots used

in weeks 1–104 in Annex II y(t) can be expressed as [20]:

Y ¼
1

n

Xn

t¼1

yðtÞ ð23Þ

The sample value of the new sequence obtained after its differential processing can be

expressed as:

xðtÞ ¼ yðtÞ � Y ð24Þ

Generally for d-order difference can be expressed as follows: (rd is called the d-order dif-

ference operator) [21].

rdXt ¼ ð1 � BÞdXt ð25Þ

The number of differences is determined by the parameter d in the ARIMA (p,d,0) model,

i.e., one difference is made, d = 1, i.e., two differences are made, d = 2, i.e., no difference is

made, at which point the model structure is changed to ARIMA (p).

Step 2: Parameter estimation: Recursive least squares with forgetting factors can be used for

parameter estimation.

The forgetting factor enhances the effect of current observations on parameter estimation

while weakening the effect of previous observations. The inclusion of the forgetting factor in

recursion can take into account the time-varying nature of the model parameters, and the

ARIMA (p) model for the sequence y(t) can be expressed as [20]:

yðtÞ ¼ φTðtÞθ þ eðtÞ ð26Þ

φTðtÞ ¼ ½yðt � 1Þ; yðt � 2Þ; � � � ; yðt � pÞ� ð27Þ

θ ¼ ½a1; a2; � � � ; ap�
T

ð28Þ

Recursive parameter estimation by substituting φT, θ into a recursive least squares formula-

tion with a forgetting factor.

Step 3: Forecasting algorithm: the Astrom forecasting method based on the linear mini-

mum variance forecasting principle which can better solve the random geodesic problem in

forecasting is used for forecasting, and the ARIMA (p,d,q) process can be expressed as:

AðBÞrdyðtÞ ¼ CðBÞeðtÞ ð29Þ

where y(t), e(t) denote the original sequence and the white noise sequence, respectively.

AðBÞ ¼ 1 � a1B � a2B2 � � � � � apBp ð30Þ

CðBÞ ¼ 1 � c1B � c2B2 � � � � � cpBp ð31Þ
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B denotes the back-shift operator is:

BnyðtÞ ¼ yðt � nÞ; n ¼ 1; 2; � � � ð32Þ

Minimum variance predictor is:

bY t þ ktð Þ ¼
GðBÞ
CðBÞ

y tð Þ ð33Þ

Step 4: model check: this is achieved by checking whether the error series between the origi-

nal time series and the established model is stochastic; if the model check fails, the model is

rebuilt.

Step 5: Export the appropriate prediction model and perform the actual prediction

analysis.

3 Improved genetic algorithm based on greedy and simulated

annealing ideas

In order to solve the difficult problem of training and working with vascular robots, this paper

builds a model and then formulates a comprehensive algorithm based on the greedy idea of

using simulated annealing to improve the genetic algorithm to solve this problem. Genetic

algorithm [22] is a computational model that simulates the mechanism of natural selection

and inheritance in biological evolution according to the law of biological evolution. This algo-

rithm seeks the optimal solution by simulating the natural evolutionary process. That is, the

process of seeking optimal solutions is transformed into the process of chromosome crossover

and gene mutation in biological evolution. When solving more complex combinatorial optimi-

zation problems, better optimization results can often be obtained faster than traditional opti-

mization algorithms.

Simulated annealing algorithm [23] is a generalized stochastic algorithm whose idea is a

probabilistic algorithm derived from the process of annealing a solid. A solid at a sufficiently

high temperature is slowly cooled and the particles become ordered from disorder. The

approximate solution is continuously optimized as the temperature is reduced. The cooling

process is controlled in this problem by simulated annealing ideas combined with a genetic

algorithm in order to facilitate global optimization. The specific steps of the annealing idea in

the genetic algorithm are as follows. The flowchart of the hybrid genetic algorithm combining

simulated annealing and greedy methods is shown in Fig 2.

Step 1: Set the initial temperature, T, the temperature change coefficient s, and the equilibrium

temperature t.

Step 2: Calculate the objective function values and individual fitness and competitive superior-

ity, and perform optimal solution substitution when a solution that better meets the

requirements appears. To converge to the global optimum as much as possible, whenever a

more optimal solution appears, the current temperature is warmed up to increase the num-

ber of iterations and search breadth [24]. The warming function is T = T + 0.5ln(T − 1).

Step 3: Multiple mating and mutation of the parents after roulette selection to produce off-

spring, with the range of mutation depending on the current temperature.

Step 4: Add the offspring to the current optimal solution and reduce the current temperature,

T = T × s, where s is the cooling coefficient. If the current temperature is not reduced to the

termination temperature, repeat Step 2 to Step 4. The termination temperature set in this

paper is 0.01. When the experimental temperature is reached, the experiment is terminated.
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Step 5: Output the global optimal solution at this point after the current temperature is lower

than the termination temperature.

Algorithm 1: Improved Genetic Algorithm Based on Greedy and Simulated Annealing
Input: v, number of operators and boats purchased, cumulative price

impacts from these purchases
Output: Optimal solution
1 sum  0 // Total cost of the current solution
2 v  0 // Total volume of operations for the current solution
3 label  0 // Label of the current solution
4 Function Greedy(v, number of operators, number of boats, price

impacts):
5 for i  1 to m do
6 label  k // k is the number of robots
7 if sum > sumb then
8 while sum > sumb do
9 min  inf // Minimum cost
10 for j  1 to n do

// Adjust the number of operators and boats
// Update the cost and the number of operations

11 if sum < min then
12 min  sum m  k
13 Function Heat(T, best, f):
14 if f < best then
15 T  T × 1.1 // Warm up
16 best  f
17 Function Crossover(parent, T):

// Select two parents and perform crossover and mutation
18 return child
19 Function Update(T, child, best):

// Update solution and temperature

Fig 2. Flowchart of hybrid genetic algorithm combining simulated annealing and greedy methods.

https://doi.org/10.1371/journal.pone.0306990.g002
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20 while T > 0.01 do
// Roulette selection, mating, and mutation
// Warm up, update solution

// Output the optimal solution

The two algorithms are combined in this problem in order to solve the global optimal solu-

tion more accurately and with higher confidence. The flow of the genetic algorithm based on

the simulated annealing idea after optimization is shown below:

Greedy algorithms [25] refer to solving a problem by always making the choice that seems

best at the moment. That is, the algorithm obtains a locally optimal solution under the relevant

constraints without considering the overall optimality. In this paper, we adopt the greedy idea

of minimum cost, from a feasible solution that satisfies the hospital’s treatment volume, we

continuously reduce the number of robot parts purchased, in order to achieve the purpose of

cost reduction, and we hope that we can finally obtain the optimal solution of the problem

through the greedy choice of the number of robots purchased each time. In addition, consider-

ing that the data is too cumbersome and belongs to the NP problem, the time complexity of

linear programming is too high, so it is considered that the initial optimal solution can be

obtained through the greedy idea first, and the preliminary optimal solution obtained by this

greediness is used as the initial solution in the genetic algorithm based on the simulated

annealing idea. Algorithm 1 embodies the ideas and solutions of the greedy algorithm and the

genetic algorithm improved by simulated annealing. In this paper, we adopt a greedy algo-

rithm that aims to minimize costs by continuously reducing the number of robot parts pur-

chased from a feasible solution that satisfies the hospital’s treatment volume. The greedy

algorithm terminates when a feasible solution is obtained. This preliminary optimal solution

serves as the initial solution for the genetic algorithm based on the simulated annealing idea,

which further optimizes the solution.

By restructuring and optimizing the algorithm, we conduct a series of experiments on the

improved algorithm. Ultimately, it can be concluded that our algorithm has superior perfor-

mance and accuracy for such application scenarios.

4 Experiments and discussions

4.1 Experiments

The initial optimal solution is first solved by Matlab using the greedy algorithm, and then the

initial optimal solution is passed to the genetic algorithm based on the idea of simulated

annealing as its initial solution, and then the solution is solved [26]. Specific purchase data are

shown in Tables 1 and 2. When only the constants corresponding to the prices of the pur-

chased robot parts are changed in Matlab, and the same genetic algorithm based on the idea of

simulated annealing after optimization is used to solve the problem, the solution results are the

498 container boats and 2308 operators purchased in weeks 1–104 will both satisfy the treat-

ment and minimize the cost, with the minimum cost being: 409,360 yuan.

On the genetic algorithm based on the idea of simulated annealing, instead of solving the

preliminary optimal solution by the greedy algorithm and then solving it by the genetic algo-

rithm, the algorithm can be used to solve the problem directly as stated earlier. This approach

is cost effective and it prepares for the subsequent supply of skilled operators at week 104.

Fig 3 is a schematic diagram of the relevant curves in the genetic algorithm based on the

idea of simulated annealing after optimization, including the way the objective function

change curve, the competitiveness curve of the offspring in the genetic algorithm, and the

quenching temperature curve in the idea of simulated annealing to help iterate the genetic

algorithm.
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Fig 4 shows the end iterations of the objective function for solving the problem with the

greedy algorithm followed by the genetic algorithm.

Obviously, the number of solution iterations of the genetic algorithm is greatly reduced by

performing greedy processing first and then performing the genetic algorithm.

Fig 5 shows the images of changes in the variables associated with vessel boats, operators,

and weekly costs as a function of.

When changed the purchase price and the strategy of judging whether to “throw away”,

that is, the value of the constant and greedy strategy, the main constraints and objective func-

tion did not change significantly. Fig 6 shows a schematic diagram of the relevant curves in the

genetic algorithm based on the idea of simulated annealing after optimization.

Fig 7 shows that the initial optimal solution is first obtained by the greedy algorithm, and

this temporary optimal solution is used as the initial solution in the genetic algorithm model,

and then the end iteration of the objective function for solving the problem by improving the

genetic algorithm based on the idea of simulated annealing is schematically shown below.

Obviously, greedy processing before the initial optimal solution, and then this solution fur-

ther into the genetic algorithm model for calculation will reduce the number of iterations will

be greatly reduced.

Table 1. Result by using GA with a greedy algorithm, including specific week, number of vessel boats purchased, number of operators purchased, number of opera-

tors maintained, number of vessel boats maintained, number of operators involved in training (including “skilled” and “novice” workers) and total cost.

Weekly Number of vessel

boats purchased

Number of

operators

purchased

Number of

operators

maintained

Number of vessel

boats maintained

Number of operators involved in training

(including “skilled” and “novice”

workers)

Total Cost

(Unit: Yuan)

Week 12 3 8 39 6 9 (“ripe”: 1 “new”: 8) 11580

Week 26 0 0 99 11 0 (“cooked”: 0 “new”: 0) 39400

Week 52 0 116 83 21 122 (“ripe”: 6 “new”: 116) 96100

Week 78 0 0 221 11 0 (“cooked”: 0 “new’”: 0) 194350

Week 101 0 54 356 1 57 (“ripe”: 3 “new”: 54) 398130

Week 102 23 0 409 23 0 (“cooked”: 0 “new’”: 0) 404385

Week 103 0 27 379 16 27 (“ripe”: 2 “newr”: 25) 409360

Week 104 0 0 0 0 0 (“cooked”: 0 “newr”: 0) 409360

Weeks

1–104 (total)

498 2308 16714 1079 2442 (“cooked”: 134 “New”: 2308) 409360

https://doi.org/10.1371/journal.pone.0306990.t001

Table 2. Result by using GA without the greedy algorithm, including specific week, number of vessel boats purchased, number of operators purchased, number of

operators maintained, number of vessel boats maintained, number of operators involved in training (including “skilled” and “novice” workers) and total cost.

Weekly Number of vessel

boats purchased

Number of

operators

purchased

Number of

operators

maintained

Number of vessel

boats maintained

Number of operators involved in training

(including “skilled” and “novice”

workers)

Total Cost

(Unit: Yuan)

Week 12 3 8 39 6 9 (“ripe”: 1 “new”: 8) 11760

Week 26 0 0 117 11 0 (“cooked”: 0 “new”: 0) 41065

Week 52 18 114 S3 18 120 (“cooked”: 6 “new”: 114) 99575

Week 78 10 20 200 11 23 (“ripe”: 2 W: 21) 203670

Week 101 1 38 356 1 40 (“ripe”: 2 “new”: 38) 425960

Week 102 7 0 392 7 0 (“cooked”: 0 “new”: 0) 425960

Week 103 16 44 361 16 47 (“ripe”: 4 “new”: 43) 439425

Week 104 0 0 0 0 0 (“cooked”: 0 “new”: 0) 439425

Weeks

1–104 (total)

498 2290 15749 779 2413 (“cooked”: 141 “New”: 2290) 439425

https://doi.org/10.1371/journal.pone.0306990.t002
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The above graphs reflect the difference in time complexity between calculating the initial

optimal solution by the greedy algorithm and solving it directly by the genetic algorithm,

which reflects the necessity and importance of the greedy algorithm in solving the model in

this paper.

Then, a time series analysis of the demand for the use of vascular robots from 1–104 weeks

was conducted, and the final model type selected was ARIMA(3,1,4) Table 3. The ARIMA

(3,1,4) model built on the original data was run, and the results are shown in Fig 3.

From the above table, the coefficients of AR and MA are -1.016, -0.877, -0.860 versus

-1.323, -.718, 0.324, respectively.

Since the ACF and PACF plots are fluctuating, it is reasonable to choose ARIMA(3,1,4) in

this paper. The results of the model are:

Xt ¼
Xp

i¼1

giyt� 1 þ �t þ
Xq

i¼1

yi�t� 1 ð34Þ

Where, γ = [−1.016, −0.877, −0.860], θ = [−1.323, −0.718, 0.324].

Fig 3. Schematic diagram of simulated annealing and genetic correlation curves.

https://doi.org/10.1371/journal.pone.0306990.g003

Fig 4. Schematic diagram of the end iterations of the genetic solution after the calculation of the greedy algorithm.

https://doi.org/10.1371/journal.pone.0306990.g004
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Finally, the goodness-of-fit analysis was performed as Fig 8 on ACF and PACF plots of the

residuals.

The model fit R2 =0.987, which is close to 1, indicating a good fit and a good fitting effect,

and the fitted prediction graph is shown as Fig 9.

4.2 Discussions

In the field of healthcare robotics and resource allocation, several algorithms and approaches

have been proposed to address similar optimization problems. This section provides a compar-

ative analysis of our proposed algorithm with respect to existing methods, highlighting the

advantages and contributions of our approach.

4.2.1 Traditional methods. To demonstrate our method’s efficacy, we conducted com-

parative analyses with several state-of-the-art approaches, including those by Zhang et al. [27],

Yu et al. [26], and Deng et al. [28]. For accuracy, we retrained the models from these studies

using the same dataset as ours, evaluating both the number of iterations and total cost. Table 4

indicates that our algorithm significantly surpasses these methods in convergence speed and

final cost efficiency.

Fig 5. Function image of changes in relevant variables, including capacity boat purchase, operator purchase,

operator maintenance, capacity boat maintenance, all operators participating in training, and costs.

https://doi.org/10.1371/journal.pone.0306990.g005

Fig 6. Schematic diagram of simulated annealing and genetic correlation curves.

https://doi.org/10.1371/journal.pone.0306990.g006
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In healthcare resource allocation, traditional heuristics, such as greedy algorithms and rule-

based policies, have been prevalent. While these methods offer intuitive and computationally

efficient solutions, they generally fall short in identifying globally optimal solutions. By con-

trast, our method employs systematic exploration of the solution space through mathematical

optimization techniques, yielding robust, near-optimal results. Therefore, to validate the accu-

racy and robustness of our method, we compare it with other swarm optimization algorithms,

including PSO [29], CGWO [30], GA [22], and AOA [31]. Since they require simultaneous

iterations, this experiment will compare their convergence speed and accuracy. The results of

the comparison are shown in Fig 10.

Analysis of the images reveals that the enhanced genetic algorithm, which integrates greedy

search and simulated annealing, surpasses competing algorithms in convergence speed and

accuracy. This superiority stems from the initial application of the greedy search to rapidly

identify a near-optimal solution, which is subsequently refined by the genetic algorithm. This

strategy effectively circumvents the issue of entrapment in local optima, a common pitfall in

swarm algorithms (e.g., in PSO, AOA curves). Additionally, the greedy search’s expedited dis-

covery of an approximate optimal solution, followed by the precision-enhancing simulated

annealing, results in the improved genetic algorithm’s superior performance in terms of both

convergence speed and accuracy.

4.2.2 Machine learning approaches. Machine learning techniques, including neural net-

works and reinforcement learning, have been applied to resource allocation problems in

Fig 7. Schematic diagram of the end iteration of the genetic solution after the calculation of the greedy algorithm.

https://doi.org/10.1371/journal.pone.0306990.g007

Table 3. ARIMA model parameters.

Estimate Standard Error t Significance

Demand for robots square root Constants .076 .026 2.934 .004

AR Delay 1 -1.016 .054 -18.729 .000

Delay 2 -.877 .056 -15.674 .000

Delay 3 -.860 .048 -17.883 .000

Differential 1

MA Delay 1 -1.323 .095 -13.954 .000

Delay 2 -.718 .108 -6.661 .000

Delay 3 .324 .060 5.362 .000

https://doi.org/10.1371/journal.pone.0306990.t003

PLOS ONE Improved genetic algorithm based on greedy and simulated annealing ideas for vascular robot ordering strategy

PLOS ONE | https://doi.org/10.1371/journal.pone.0306990 February 20, 2025 14 / 19

https://doi.org/10.1371/journal.pone.0306990.g007
https://doi.org/10.1371/journal.pone.0306990.t003
https://doi.org/10.1371/journal.pone.0306990


healthcare [32]. While these methods can adapt to complex patterns and dynamic environ-

ments, they often require substantial amounts of data for training and may not provide inter-

pretable solutions. In contrast, our approach relies on transparent mathematical models,

allowing for better understanding and control of the optimization process.

Fig 8. ACF and PACF plots of the residuals. If the ARIMA model has captured all important information about the

data, the ACF and PACF plots should resemble white noise.

https://doi.org/10.1371/journal.pone.0306990.g008

Fig 9. ARIMA model fitted prediction graph.

https://doi.org/10.1371/journal.pone.0306990.g009
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Some recent approaches combine optimization and machine learning components to

address resource allocation challenges. While hybrid methods can leverage the strengths of

both paradigms, they may introduce additional complexity and computational overhead [33].

Our algorithm offers a balance by providing efficient optimization while maintaining transpar-

ency and ease of implementation. However, we also believe that machine-learning approaches

have tremendous potential and room for optimization in the medical field.

5 Conclusion

This research have addressed the pressing challenges of optimizing robotic operator and vessel

boat acquisition strategies within the dynamic healthcare environment. Our research

Table 4. Comparison with SOTA model in number of iterations and final cost.

Method Weeks 1–104 (total cost) # Number of iterations #

Zhang et al. [27] 436540 299631

Yu et al. [26] 680080 149639

Deng et al. [28] 474520 196542

Ours 403960 146784

https://doi.org/10.1371/journal.pone.0306990.t004

Fig 10. Investigation on the accuracy and convergence speed of different swarm optimization algorithms.

https://doi.org/10.1371/journal.pone.0306990.g010
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objectives, including the development of a robust buying strategy model, adaptability to mac-

rophage attacks, consideration of skilled operator variations, and the creation of a comprehen-

sive framework, have all been successfully achieved. This study significantly contributes to

healthcare robotics by bridging existing gaps in the literature and offering practical solutions

that enhance cost-effectiveness, treatment efficiency, and resource allocation. The potential

impact of our research on medical treatment, particularly in vascular diseases and virus

removal, is substantial. While this work represents a significant advancement, future research

can explore real-world implementation and further incorporate advanced technologies for

even greater adaptability and prediction accuracy. Overall, our study marks a pivotal step in

the evolution of healthcare robotics, with far-reaching implications for patient care and well-

being.
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