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Abstract

The utilization of satellite images in conservation research is becoming more prevalent due

to advancements in remote sensing technologies. To achieve accurate classification of wild-

life habitats, it is important to consider the different capabilities of spectral and spatial resolu-

tion. Our study aimed to develop a method for accurately classifying habitat types of the

Himalayan ibex (Capra sibirica) using satellite data. We used LISS IV and Sentinel 2A data

to address both spectral and spatial issues. Furthermore, we integrated the LISS IV data

with the Sentinel 2A data, considering their individual geometric information. The Random

Forest approach outperformed other algorithms in supervised classification techniques. The

integrated image had the highest level of accuracy, with an overall accuracy of 86.17% and

a Kappa coefficient of 0.84. Furthermore, to delineate the suitable habitat for the Himalayan

ibex, we employed ensemble modelling techniques that incorporated Land Cover Land Use

data from LISS IV, Sentinel 2A, and Integrated image, separately. Additionally, we incorpo-

rated other predictors including topographical features, soil and water radiometric indices.

The integrated image demonstrated superior accuracy in predicting the suitable habitat for

the species. The identification of suitable habitats was found to be contingent upon the con-

sideration of two key factors: the Soil Adjusted Vegetation Index and elevation. The study

findings are important for advancing conservation measures. Using accurate classification

methods helps identify important landscape components. This study offers a novel and

important approach to conservation planning by accurately categorising Land Cover Land

Use and identifying critical habitats for the species.

Introduction

Satellite imagery is filled with intricate details and plays a substantial role in the distribution of

geographical information [1]. The application of satellite and remote sensing imagery offers a
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range of quantitative and qualitative data, facilitating the efficiency of fieldwork and shorten-

ing the research time [2]. The significance of effective analysis and processing of remote sens-

ing images has been on the rise in response to the exponential expansion of remote sensing

data [3]. Remote sensing image classification has increasing garnered attention in both

research and development because of its wide-ranging potential applications in several

domains, including geography, ecology, city planning, forest monitoring, and the military [4].

Nowadays, there has been an increase in the availability of many forms of multispectral data.

Multispectral remote sensing data stands out because it combines narrow spectral bands with

a comparatively wider bandwidth. This makes it easier to look at the spatial properties of

ground substances [5]. Nonetheless, there are constraints associated with depending solely on

a single source of satellite data for the precise extraction of ground objects. These limits are a

result of similarities in spectral characteristics between various objects or the close proximity

of objects in space. Therefore, in order to improve the accuracy of data evaluation, it is neces-

sary to correctly analyse the properties of objects, including their configuration and spatial

interconnections, along with their spectral response [5]. In recent years, image fusion has

gained increasing importance in image-processing applications due to the wide variety of

available acquisition methods [6]. Comprehension of digital image fusion techniques facilitates

the interpretation of multiresolution and multi-sensor data, leading to the production of

enhanced images that are suited for both human perception and seamless computer analysis

tasks, including feature extraction, segmentation, and object recognition [7,8]. This approach

has proven advantageous in enhancing the quality of low-resolution data and providing addi-

tional information from the same geographical location, complementing data obtained from a

single sensor [6]. The domain of image fusion technology has been broadened by the integra-

tion of spatial and spectral attributes of remote-sensing images [9]. Nowadays, a notable

increase in the interest regarding the utilisation of multi-sensor data fusion for land cover land

use (hereafter, LCLU) classification. This surge is mostly driven by the potential to enhance

the accuracy of land cover classifications through the assimilation of data from diverse remote

sensing sensors that possess varying resolutions [9]. The increasing need for enhanced accu-

racy in image and data analysis has spurred investigations into the utilisation of multiresolu-

tion and multisensor data, along with the development of enhanced techniques for accessing

remote sensing data with higher resolutions [10]. Several studies have utilized various data

sources, such as radar aperture, hyperspectral and multispectral, to develop LCLU maps [11–

18]. The classification of LCLU types frequently entails the application of machine learning

algorithms [19–21]. This approach offers significant contributions in evaluating the dynamics

of land use, identifying ecosystem services, comprehending the impacts of global climate

change, and developing effective land use policies [22–27]. Furthermore, the aim of the study

was to assess the performance of different satellite images, including the integrated LISS IV

and Sentinel 2A images, in a pilot landscape located in the Jispa valley of the Lahaul and Spiti

district, Himachal Pradesh within the Trans-Himalayan region that supports a good popula-

tion of Himalayan ibex. Our analysis involved comparing the LCLU classifications attained

from these abovementioned images. Furthermore, we used the combination of LISS IV’s high

spatial resolution and Sentinel 2A’s high spectral resolution to achieve a precise classification

of land uses. The mountainous terrain has experienced multifaceted challenges in recent

times, particularly in terms of land alteration. These changes have had an impact on the local

wildlife, including the Himalayan ibex, which is a "Near Threatened" mammalian species [28].

This species is one of the largest in the genus Capra and a member of the Bovidae family [29].

It is native to the Southern Palearctic zone and can be found in a variety of habitats, including

as high elevation regions with rocky outcrops, steep slopes, and rough terrain, as well as cold

deserts and the foothills of Southern and Central Asia [30]. However, it is mostly limited to
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mountainous regions of India, such as Himachal Pradesh, Ladakh, and Jammu & Kashmir

[29,31,32]. Himalayan ibex have a crepuscular activity pattern, however, this rhythm can be

altered by changes in temperature [29,33]. The Asiatic ibex is a sociable species that usually

assembles in herds of 6 to 40 animals [29,34–36]. Males and females ibex are sexually dimor-

phic as well as the body size and horn size and shape also differ in sexes [29]. During the sum-

mer, Himalayan ibex migrate to higher elevations, whereas in the winter they travel to lower

plains due to the snow covering and limiting their access to food sources [37]. Furthermore,

habitat destruction, rapid urbanization, poaching and hunting pose alarming threats to Hima-

layan ibex [38–40]. Additionally, it has been categorised as a Schedule I species under the

Indian Wildlife (Protection) Act, 1972. As a result, the preservation of the habitat of the Hima-

layan ibex has become a priority in conservation efforts. It is evident that, human-centric

development has an impact on the existence of this species in this study landscape. Accord-

ingly, our another objective is to identify the potential suitable habitat for the Himalayan ibex

with the help of the classified images and compare the image-derived habitat suitability mod-

els. Therefore, we have used Species Distribution Models (hereafter, SDM), which have

become a valuable conservation tool, enabling conservation managers to prioritize areas based

on species presence and their environmental associations. SDMs help formulate conservation

policies, evaluate species richness, estimate the extent of invasion, and predict the probable

habitat of a species [41]. SDMs are highly relevant in quantitative ecology [41], which is based

on Hutchinson’s ecological niche theory [42]. SDMs do this by carefully looking at how a spe-

cies interacts with biotic and abiotic factors in a certain area. These models consider factors

such as dietary resources, vegetation types, elevation profiles, and climatic elements that influ-

ence species interactions within their ecological context [43,44]. The ensemble modeling, uses

multiple SDM models instead of a single modelling technique, enhances the accuracy of pre-

dicting a species’ geographic range [45–47]. Due to the ambiguity in choosing one strategy

from numerous alternatives, ensemble modeling proves to be more effective [48–51]. Subse-

quently, we utilized the LCLU information from the classified images to model the suitable

habitat of the Himalayan ibex in the study area. This study represents the first of its kind to

employ SDM at a fine scale, showcasing the potential of image fusion techniques in conserva-

tion planning for threatened species. By integrating remote sensing data and SDM, we aimed

to gain valuable insights for effective conservation strategies and habitat management of the

Himalayan ibex in this region.

Materials and methods

Ethical statement

The research was conducted after obtaining research authorization from the Principal Chief

Conservator of Forest and Chief Wildlife Warden, Government of Himachal Pradesh, vide let-

ter no. WL/Research Study/WLM/2291 dated 23/07/2018. While the current study does not

involve any animal handling, we have exclusively utilised cameras trap data, direct sightings,

indirect evidences those are obtained in a non-invasive manner. Therefore, the present study

does not necessitate ethical approval.

Study area

The study was carried out in the Jispa valley, which is located in the eastern region of the

Lahaul valley within the administrative district of Lahaul and Spiti in the state of Himachal

Pradesh, India (Fig 1). The study region spans a total area of 559 km2 and falls under the Trans

Himalaya Ladakh Mountains (1A) of the Indian biogeographic zones. This region is character-

ised by its unique geomorphology, which includes high mountains, inclining slopes, and
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limited vegetation. The major forest types include coniferous forests, alpine and subalpine veg-

etation, and grassland [52]. The mammalian fauna in the area includes the Himalayan Wolf

(Canis lupus), Snow leopard (Panthera uncia), Red Fox (Vulpes vulpes), Himalayan Marmot

(Marmota himalayana), Himalayan ibex (Capra sibirica), mountain weasel (Mustela altaica),

Pika (Ochotona roylei), Himalayan thar (Hemitragus jamlahicus), and others [53]. The Lahaul

valley is primarily inhabited by the Lahaulas, ethnic groups in Lahaul valley [54]. The majority

of the population in the study area follow Buddhism and a significant portion of the popula-

tion belongs to the Schedule Tribe. The region exhibits distinct climatic patterns characterised

Fig 1. Position of the present study area map. Map showing the position of the study area in India on the upper left and the position of the study area in the

Lahaul and Spiti district on the lower left. The presence locations of the Himalayan ibex with the elevation profile of the study area (Jispa Valley, Lahaul,

Himachal Pradesh) are shown in the upper right.

https://doi.org/10.1371/journal.pone.0306917.g001
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by two major seasons: dry summers and intense winter with snowfall. Farming serves as a pri-

mary source of income, with commercial crops like potatoes, peas, cauliflower, and cabbage

being cultivated only in the summer. The presence of the river Bhaga intersects this region,

and it holds significant importance due to its support for various cash crops, biodiversity, pas-

ture, and its aesthetic natural environment.

Data acquisition and processing of these images

In this study, data from two separate satellite sources, namely Linear Imaging Self-Scanning

Sensor (LISS) IV and Sentinel 2A, were employed. The LISS IV is a multi-spectral sensor that

captures data in three distinct spectral bands with high resolution, viz. B2 (ranging from

0.52 μm to 0.59 μm), B3 (ranging from 0.62 μm to 0.68 μm), and B4 (ranging from 0.77 μm to

0.86 μm) with spatial resolution of 5 metres. On the contrary, Sentinel 2A is an optical multi-

spectral imaging mission characterised by its extensive coverage and superior level of resolu-

tion. The multispectral optical equipment is equipped with 13 spectral bands, including

Visible, Near-Infra-Red, and short-wave Infra-Red. Different spectral bands have different

spatial resolutions (10 metres, 20 metres, and 60 metres). The LISS IV imagery was obtained

through the Bhoonidhi portal, whereas the Sentinel 2A Level-1C multispectral sensor scenes

were acquired from the United States Geological Survey (https://earthexplorer.usgs.gov/)

(Table 1).

Ensuring better image classification necessitates the meticulous geometric correction and

registration of the two images [55]. The Sentinel 2A data underwent pre-processing using the

Sentinel Application Platform (SNAP Desktop, Version 6.0.0) in order to improve the resolu-

tion of the bands. This was achieved by utilising the highest resolution among the other bands

[56]. The bands of the satellite image were stacked using the layer stacked method within the

ArcGIS 10.6 environment. The process of image fusion encompasses two primary procedures:

(a) the geometric registration of the geometry of two datasets on an image-to-image basis, and

(b) the amalgamation of spectral and spatial data to generate a novel dataset that is enhanced

and distinct from the original datasets [57]. Image-to-image geometric registration refers to

the procedure of aligning and overlaying images that depict the identical scene but were

recorded at different times, angles, or using diverse sensors [58]. The satellite images under-

went the use of the image-to-image geometric registration approach in order to execute a pre-

cise fusion procedure. The approach involved utilising the QGIS Coregistration plugin [59],

with the LISS IV image serving as the reference image and the Sentinel 2A image as the target

image.

Integration of the two different satellite images

The nearest neighbour resampling method [60] was utilised in order to mitigate the loss of

spectral information in the Sentinel 2A images obtained from SNAP. This approach aimed to

attain a spatial resolution of 5 metres, which is comparable to that of the LISS IV images. We

utilized ten bands with resolutions of 10 meters and 20 meters for Sentinel 2A. Consequently,

we selected the 10 bands with the exception of B1, B9, and B10 from the available 13 bands of

Table 1. Data type and acquisition details for the two satellite imagery.

Satellite/Sensor Product type Sensing orbit number Row Path Date of acquisition Resolution (meter) Tile No / Product ID (LISS IV)

Sentinel 2A L1C 105 ---- ---- 2021-10-06 10, 20, 60 T43SFS

Sentinel 2A L1C 105 ---- ---- 2021-10-06 10, 20, 60 T43SGS

LISS IV ---- ---- 048 095 2020-09-02 5 221881311

https://doi.org/10.1371/journal.pone.0306917.t001
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Sentinel 2A bands and composited them for the purpose of Sentinel 2A image classification. In

contrast, the LISS IV utilized all three available bands. However, for the integration of the

image, we combined the three spectral bands of LISS IV with the seven bands of Sentinel 2A.

The Sentinel 2A bands were utilised for integration was B2, B5, B6, B7, B8A, B11 and B12.

Given that LISS IV consists of bands B2, B3, and B4, representing the Green, Red, and Near-

Infrared wavelengths respectively, and Sentinel 2A possesses bands B3, B4, and B8 with com-

parable spectral resolutions, so the substitution was feasible. Consequently, the integrated

image contains a total of ten bands, thereby offering improved spatial and spectral resolution,

as well as an augmented band count.

Image classification

The extraction of relevant information from satellite images necessitate the implementation of

a robust and streamlined statistical methodology. The process of image classification entails

the assignment of appropriate labels to distinct land cover themes by categorising each pixel in

an image or raw data acquired from remote sensing satellites [61,62]. The present study

involved the classification of images (namely, LISS IV, Sentinel 2A, and the integrated image)

through the application of five supervised machine learning classification techniques: Maxi-

mum Likelihood (ML), K-nearest neighbour (KNN), Support Vector Machine (SVM), Gauss-

ian mixed model (GMM), and Random Forest (RF) method. The images were classified into

nine distinct classes representing different LCLU types. These classes include agriculture land,

sparse vegetation, barren ground, scrubland, juniper patch, settlements, permafrost, water

bodies, and roadways. A concise overview of the classes is provided below:

Agricultural land includes cash crops such as peas, potatoes, cabbage, and cauliflower,

which are cultivated by villagers. The sparse vegetation includes Poa sp., Rumex sp., Primula
sp., and other shrub species. Barren ground characterised by a scarcity of vegetation, a sub-

strate primarily consisting of rocks, and a lack of fertile soil. Scrubland composed of woody

plants, which includes species from wild Rosaceae family, which characterised by the presence

of thorns. The composition of juniper species (such as Juniperus macropoda, Juniperus commu-
nis), which are typically found growing in close proximity to one another, forming clusters,

designated as juniper patch. Consisting of villages, house made of concrete or sometime mud

and other human infrastructure, designated as settlements. High elevated areas, characterised

by the accumulation of snow maximum period of the year, designated as permafrost. The

Bhaga River serves as the primary water source for this landscape, which also intersects the val-

ley. Waterfalls were included in the water body class. The utilisation of road infrastructure for

the purpose of vehicular transportation, predominantly constructed using asphalt materials,

considered as roadways.

A comprehensive set of 336 polygons was collected during the field survey and then

employed in the analysis of all three images. However, some of the obtained geographical coor-

dinates, which were collected during the field survey, are subsequently utilized to generate

polygons inside Google Earth Pro using satellite imagery. The collected training dataset

included of eight LCLU classes, with the exception of permafrost. During the field survey, a

collection of sample points was obtained for accuracy estimation. For each land cover type, a

minimum of 90 samples locations were recorded, however, for permafrost we collected sample

points by imposing Google earth pro imagery.

The objective of this study was to assess the efficacy of different satellite images, and to

determine the accuracy of mapping quantification by applying remote sensing data to actual

ground-truth data. Furthermore, the evaluation of accuracy for each class was conducted

using an error matrix, which involved comparing the map information with reference data.
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Moreover, the quality assessment of the three classified images (LISS IV, Sentinel 2A, and the

integrated image) was conducted using different accuracy assessments using various metrics,

including overall accuracy (OA), Kappa coefficients (κ), and F-measure [63,64]. To evaluate

the improvements in the image classification a comparison was made between the integrated

image, LISS IV and Sentinel 2A images. The classification of these three images was conducted

using the dzetsaka classification tool, the SCP tool in QGIS, and ArcGIS 10.6 [65–67].

Habitat suitability modelling for Himalayan ibex

Occurrence locations of the Himalayan ibex. During the field study conducted between

2019 and 2022, the occurrence of Himalayan ibex was documented through several methods,

including camera traps, trail sampling, direct observation, and questionnaire surveys. We

deployed 27 camera traps, surveys 46 trails, and directly observed Himalayan ibex 36 times.

Additionally, we recorded 131 indirect sightings, which included pallet groups, horns, hoof

marks, and information gathered from local residents and herders. The necessity of represen-

tative sample was underscored by the challenging topography, characterised by harsh terrain,

steep slopes, high mountains, and unpredictable weather conditions within the study area. A

total of 167 presence locations were documented, and spatial uncorrelated locations were

selected after performing the spatial autocorrelation at a distance of 400 meters, based on the

daily movement patterns of Himalayan ibex [32]. Finally, a subset of 82 locations were chosen

for the final analysis.

Variables preparation and selection. In the context of SDM, the meticulous selection of

variables played a pivotal role in ensuring their relevance to the existence of the Himalayan

ibex. The Digital Elevation Model (DEM) data obtained from Alos Palsar, at a spatial resolu-

tion of 12.5 metres, this was also employed to calculate the slope and aspect. LCLU classes

were derived from the classified images with a high level of accuracy. Furthermore, the calcula-

tion of radiometric indices pertaining to soil, vegetation, and water was performed using Senti-

nel 2A images in the SNAP platform. The data underwent rasterization and resampling

processes, ensuring a uniform spatial scale of 5 metres, which performed using the spatial ana-

lyst extension tool within the ArcGIS 10.6. Moreover, a total of 19 ecologically relevant vari-

ables were initially prepared. However, during the final phase of model construction, only

variables that exhibited a Pearson correlation coefficient (r) greater than 0.8 and were not cor-

related with each other were chosen.

Selection of modelling techniques and assessment of model performance. The relation-

ship between environmental factors and species is complex and diverse, indicating that single

modelling approach is not universally superior [47]. In this study, we employed a range of model-

ling algorithms, classifying them into three categories: Classification models, Regression models,

and Complex models. Specifically, we utilized Multivariate Adaptive Regression Splines (MARS)

and Generalized Linear Model (GLM) from the Regression models, Boosted Regression Trees

(BRT) from the Classification models, and Maximum Entropy Model (MaxEnt) and Random

Forest (RF) from the Complex models. Each model was subjected to 10-fold cross-validation

[68,69]. To develop the modelling workflow, we utilized the SAHM module and the VisTrails

pipeline, enabling the models to select the most relevant predictors for optimal performance

[70,71]. A continuous value ranging from 0–1, derived from each performing model, which, rep-

resenting the potential habitat suitability for each pixel in the study area. These estimates use to

interpreted the potential suitable habitat. Binary maps were employed to determine the predicted

habitat suitability, with the minimal training occurrence as the threshold [68].

Three ensemble distribution modelling of Himalayan ibex were predicted utilising the

LCLU data derived from the three different sourced classified maps (viz. LISS IV, Sentinel 2A,
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and integrated images) and various topographic and radiometric variables with similar spatial

resolutions. The SDM prediction utilizing different sourced images have their respective spa-

tial scale. Final ensemble maps were generated by averaging the binary outcome (0 or 1) of the

participating models. Furthermore, the count surface illustrated the level of agreement

between the participatory models, with a score of 0 indicating no agreement and a score of 5

representing total agreement, in relation to suitability estimation [69]. In order to assess the

efficacy of SDMs, several metrics were employed, namely the area under the receiver operating

characteristic curve (AUC), Cohen’s Kappa, True Skill Statistic (TSS), Proportion Correctly

Classified (PCC), sensitivity, and specificity. The metrics were utilised in a thorough manner

to evaluate the performance of the five models [72–76]. The AUC proved to be highly advanta-

geous as a threshold-independent metric for the evaluation of models [77–80]. Furthermore,

we utilised the minimal training presence threshold to evaluate the specificity and sensitivity

metrics, which are reliant on the chosen threshold [81]. The selection of the ensemble model

was determined by establishing a criterion that required the AUC value of the cross-validation

(CV) dataset to exceed 0.75. In order to evaluate the significance of variables, we computed the

average AUC, which quantifies the ratio of AUC values to the total number of model iterations

for each individual model [69].

Result

Classification of Land class and Land use

Using five different supervised classification algorithms for each image, the classification

results of the three images came up with nine LCLU classes (Fig 2). Extracting these LCLUs

from LISS IV data, with its fine resolution, was challenging as it fails to discriminate different

classes simultaneously. However, the integrated image (LISS IV and Sentinel 2A) provided us

with an improved classification with better accuracy in the identification of LCLUs features.

The classification accuracy was found to be better among the other two different satellite

images. The results indicate that the classification accuracy of the LISS IV image was not satis-

factory, with no classifying algorithm performing well. The SVM algorithm achieved the high-

est overall accuracy i.e., 60 and κ statistic of 0.56, while the GMM algorithm performed the

poorest with an overall accuracy value of< 50, however, both achieving moderate accuracy as

per Landis and Koch 1977 (Table 2 and S1 Table). In addition, the ML, RF, and GMM classi-

fier, the overall accuracy scores were found to be below 60, indicating suboptimal perfor-

mance. Similarly, the κ statistic values were also observed to be unsatisfactory (Table 2). For

Sentinel 2A imagery, the RF model exhibited the highest OA i.e., 80.24 and κ statistic score

0.78, while the KNN algorithm illustrate the lowest performance, showing substantial agree-

ment (Table 2, Fig 2, S1 Table). Other algorithms, namely SVM, ML, and GMM, demonstrated

OA scores exceeding 70, along with κ statistic scores beyond 0.7, suggesting a substantial accu-

racy (Table 2, Fig 2, S1 Table). Interestingly, the integrated image demonstrated higher classifi-

cation accuracy compared to the individual LISS IV and Sentinel 2A images (Table 2, Fig 2, S1

Table). Furthermore, the integrated image classified by the KNN and RF algorithms achieved

OA scores� 80 as well as a κ statistic� 0.80, which was the best among all other classifications

(Table 2, Fig 2 and S1 Table). The SVM, ML, and GMM classifiers predicted OA scores of

76.79, 71.72, and 67.77, respectively, and κ statistic scores of 0.74, 0.68, and 0.64, respectively,

on the integrated image (Table 2, Fig 2, S1 Table). However, to identify each feature class accu-

racy, we calculated, F-measure [82], which show the class classification error (Table 3). Fur-

thermore, the best feature classification achieved by the RF classification on the integrated

image and the GMM classification achieved a lesser accuracy level on the LISS IV. The classifi-

cation accuracy of the Barren, Scrub, Settlement, road, and Permafrost classes is the lowest in
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Fig 2. Classified maps from LISS IV, Sentinel 2A and Integrated images using ML (Maximum Likelihood), GMM

(Gaussian mixed model), KNN (K-nearest neighbour), SVM (Support Vector Machine) and RF (Random Forest)

classifier algorithms.

https://doi.org/10.1371/journal.pone.0306917.g002
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the GMM classification on the LISS IV than the others, which made this map least accurate

map (Table 3).

Habit suitability ensemble model. The final SDM model was built separately using

uncorrelated variables from three image derived LCLU variables, topographic and radiometric

variables (S2 Table) (S1 Fig). The AUC values of five different modelling algorithms ranged

from 0.77 to 0.92 when using LCLU classes derived from the LISS IV classified image, from

0.77 to 0.91 when using LCLU classes from the Sentinel 2A classified image, and from 0.77 to

0.92 when using LCLU classes from the integrated classified image for training data sets, indi-

cating excellent model performance (Table 4, Fig 3). Other performance metrics, such as TSS,

PCC, Cohen’s Kappa, specificity, and sensitivity, also showed good performance by the models

(Table 4) (S2 and S3 Figs). We developed the final ensemble model and ensemble count maps

considering each participation model that met the AUC requirement of 0.75 and above (Figs 3

and 4). The model with integrated image derived LCLU combined with other variables

resulted in 78.42 km2, which is the highest predicted suitable area, followed by 72.42 km2 pre-

dicted using the Sentinel-2A driven LCLU along with other variables and 34.77 km2 is the

common area where all the image derived models predict suitability (Table 5, Fig 4, S6 Fig).

The performance of all models using different images is similar, as the radiometric (SAVI) var-

iable tops among the all variables in the maximum models (S4 Fig). Furthermore, the SDM

using RF classified integrated image derived LCLU, which demonstrated the Juniper patch,

elevation, aspect, and settlement as significant factors (S4 Fig). In the same way, the SDM

using RF classified Sentinel 2A image derived LCLU, which showed that similar variables were

important, like the SDM using integrated image derived LCLU (S4 Fig). However, in the case

of SDM, utilizing SVM classified LISS IV image derived LCLU shows the influence of eleva-

tion, water, aspect, Juniper patch, and slope variables (S4 Fig). Different LCLU variables exhib-

ited varying degrees of significance in the three types of images, with water class being more

significant in the LISS IV image and Juniper patches showing greater significance in the Senti-

nel 2A and integrated image derived models (S4 Fig). When analysing response curves for

these variables, we observed high peaks in areas with prevalent Himalayan ibex occurrences,

and the likelihood values decreased as the distance from these areas increased (S5 Fig). This

result suggests that these variables perform crucial role in shaping the Himalayan ibex suitable

habitats (S5 Fig).

Discussion

The LCLU classification derived from remotely sensed data has been excessively explored in

the domain of image analysis. Researchers have utilized various satellite sensors and classifica-

tion algorithms to extract valuable information from satellite imagery for land cover mapping

and monitoring [83,84]. High-resolution sensors like LISS IV and multispectral sensors like

Table 2. Accuracy assessment of the three different sourced classified images. LISS IV, Sentinel 2A and Integrated images classified by five supervised classifiers,

namely, ML (Maximum Likelihood), GMM (Gaussian mixed model), KNN (K-nearest neighborhood), SVM (Support Vector machine) and RF (Random Forest). The

evaluation metrics are Overall accuracy, Kappa (κ) statistic.

Accuracy Assessment Image type ML GMM KNN SVM RF

Overall accuracy LISS IV 57.41 48.77 55.31 60.62 56.42

Sentinel 2A 73.08 71.35 70.24 76.54 80.24

Integrated 71.73 67.78 81.85 76.79 86.17

Kappa (κ) statistic LISS IV 0.52 0.42 0.50 0.56 0.51

Sentinel 2A 0.70 0.68 0.67 0.74 0.78

Integrated 0.68 0.64 0.80 0.74 0.84

https://doi.org/10.1371/journal.pone.0306917.t002
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Sentinel 2A have been broadly employed for LCLU classification due to their capabilities to

capture detailed spectral and spatial information [82,85]. The analysis of land cover classifica-

tion deal with a major challenge which is the accurate discrimination of different land cover

classes, especially in complex landscapes with heterogeneous land cover types [86]. Previous

studies have highlighted the limitations of using individual satellite images for LCLU classifica-

tion due to their varying spatial and spectral resolutions of different sensors [57]. This limita-

tion can lead to misclassification and reduced overall accuracy. To address this challenge,

image fusion techniques evolve to integrate images of different sensors which improve the

accuracy of land cover classification [57]. Image fusion involves combining spectral and spatial

data from multiple images to create a new dataset that benefits from the strengths of each sen-

sor. This aspect holds significance in the context of biodiversity monitoring as it facilitates the

differentiation of various ecosystems, vegetation categories and geomorphological structures

[87]. In our study, the integration of LISS IV and Sentinel 2A images allowed for improved

classification accuracy, as demonstrated by the higher overall accuracy and κ statistic values

compared to the individual images. In total, fifteen images were compared with each other by

qualitative measures (Tables 2 and 3). Moreover, the choice of classification algorithms also

Table 3. Class accuracy metrics of three different sourced classified images. Using F-measure LISS-IV, Sentinel 2A and Integrated classified image class accuracy

evaluated.

LCLU Class LISS-IV Sentinel 2A Integrated LCLU Class LISS-IV Sentinel 2A Integrated

Random forest Agriculture 53 75 85 Maximum Likelihood Agriculture 48 67 67

Sparse vegetation 50 78 84 Sparse vegetation 63 55 49

Barren 60 76 80 Barren 66 71 72

Scrub 49 86 80 Scrub 51 68 61

Juniper patch 50 74 85 Juniper patch 52 73 72

Settlement 44 78 85 Settlement 28 65 65

Permafrost 88 99 100 Permafrost 89 100 99

Water 76 94 98 Water 82 96 95

Road 16 57 80 Road 29 60 63

LCLU Class LISS-IV Sentinel 2A Integrated LCLU Class LISS-IV Sentinel 2A Integrated

Gaussian mixed model Agriculture 46 66 63 K-nearest neighbour Agriculture 50 57 74

Sparse vegetation 36 58 51 Sparse vegetation 59 74 83

Barren 55 67 64 Barren 58 72 83

Scrub 44 70 63 Scrub 48 78 76

Juniper patch 48 72 74 Juniper patch 56 65 76

Settlement 12 65 57 Settlement 16 43 72

Permafrost 78 99 98 Permafrost 87 99 100

Water 69 94 94 Water 78 92 96

Road 4 41 34 Road 4 31 75

LCLU Class LISS-IV Sentinel 2A Integrated

Support Vector Machine Agriculture 54 51 54

Sparse vegetation 62 74 76

Barren 72 86 83

Scrub 52 78 78

Juniper patch 51 74 72

Settlement 38 64 63

Permafrost 89 98 98

Water 83 94 95

Road 41 70 73

https://doi.org/10.1371/journal.pone.0306917.t003
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significantly influences the accuracy of LULC mapping [88]. The mentioned classifier algo-

rithms have been widely used in the field of remote sensing applications and have shown vary-

ing levels of accuracy [88–90]. The study findings illustrate a significant enhancement in

classification accuracy when employing the RF, on the integrated image (Tables 2 and 3) (Fig

2). Previous studies highlighted that RF algorithm can classify images most effectively with

great accuracy, as well as with less noise [82,91,92]. The accurate classification of LCLU is vital

for many applications, including ecological assessments, urban planning, and management of

natural resources [83,87,93]. Accurate information of land cover is essential for monitoring

changes in the landscape, understanding habitat fragmentation, and identifying critical habi-

tats for endangered species [94]. Hence, the present results, with improved classification accu-

racy using integrated images, contribute to the existing knowledge of image analysis and its

application in land cover mapping. Furthermore, it is essential to consider some limitations

and challenges in land cover classification. Image classification is subject to uncertainties aris-

ing from sensor calibration, atmospheric effects, and class confusion due to spectral similarity

[83]. Additionally, ground truthing data for accurate model validation and evaluation can be

challenging to obtain, especially in remote and inaccessible areas [95]. Addressing these chal-

lenges and further refining classification techniques will enhance the accuracy and reliability

of LCLU mapping using remotely sensed data. We demonstrated the usefulness of integration

image in improving the accuracy of the LCLU. The integration of LISS IV and Sentinel 2A

images, coupled with a range of classification algorithms, results in more accurate land cover

maps. These findings align with existing research on the benefits of image integration in

remote sensing applications. The improved land cover information obtained through this

Table 4. Evaluation metrics to evaluate the efficiency of the participating distribution models for Himalayan ibex in the study landscape. Participating models are

BRT (Boosted Regression Tree), GLM (Generalized Linear Model), MARS (Multivariate adaptive regression splines), MAXENT (Maximum Entropy Model), RF (Random

Forest) and the efficiency of the models evaluated by AUC (area under the receiver operator curve), PCC (Proportion Correctly Classified), sensitivity, specificity, Cohen’s

kappa and TSS (True Skill Statistic). CV mean (Cross Validation) data used for model evaluation and train split used for the model, which was assessed by model evalua-

tion. Three data type used for SDM are, LISS IV derived LCLU used for this model building, Sentinel 2A derived LCLU used for this model building and Integrated image

derived LCLU used for this model building.

Utilising the LISS IV derived LCLU classes

Model AUC PCC Sensitivity Specificity Kappa TSS

BRT 0.92 84.67 0.85 0.84 0.69 0.69

GLM 0.78 68.1 0.65 0.71 0.36 0.36

MARS 0.9 80.37 0.8 0.8 0.61 0.61

MAXENT 0.9 83.95 0.84 0.84 0.68 0.68

RF 0.77 70.55 0.7 0.71 0.41 0.41

Utilising the Sentinel 2A derived LCLU classes

Model AUC PCC Sensitivity Specificity Kappa TSS

BRT 0.91 82.32 0.8 0.84 0.65 0.65

GLM 0.81 74.39 0.74 0.74 0.49 0.49

MARS 0.82 75 0.74 0.76 0.5 0.5

MAXENT 0.91 85.28 0.85 0.85 0.71 0.71

RF 0.77 70.73 0.71 0.71 0.41 0.41

Utilising the Integrated image derived LCLU classes

Model AUC PCC Sensitivity Specificity Kappa TSS

BRT 0.89 78.53 0.78 0.79 0.57 0.57

GLM 0.8 69.94 0.69 0.71 0.4 0.4

MARS 0.87 81.6 0.81 0.82 0.63 0.63

MAXENT 0.92 87.04 0.89 0.85 0.74 0.74

RF 0.77 69.94 0.69 0.71 0.4 0.4

https://doi.org/10.1371/journal.pone.0306917.t004
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Fig 3. AUC plots. AUC plots of the five algorithms on different sourced images to predict species distribution model.

https://doi.org/10.1371/journal.pone.0306917.g003
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approach has significant implications for ecological monitoring, conservation planning, and

sustainable land use management.

The classification provides valuable data on the distribution of different LCLU types, which

is essential for understanding the habitat preferences of the wild species and, in the present

case the Himalayan ibex. This information is a fundamental component of the SDM, as it

allows for the identification of the different land cover types that the species prefers or avoids.

The habitat suitability model for the Himalayan ibex, obtained through the utilisation of the

Fig 4. Probability (model agreement maps) maps and binary maps. The maps are derived from three different sourced images generated LCLU to predict

species distribution model of Himalayan ibex.

https://doi.org/10.1371/journal.pone.0306917.g004

Table 5. Area of suitable habitat of Himalayan ibex. Calculation from different classified image (viz. LISS IV, Senti-

nel 2A and Integrated image) and the predicted suitable common area between the three-classified image. The area cal-

culated from the highest model agreement (units in km2).

LISS-IV Sentinel 2A Integrated

LISS-IV 63.80 41.51 44.92

Sentinel 2A 41.51 72.42 54.14

Integrated 44.92 54.14 78.42

https://doi.org/10.1371/journal.pone.0306917.t005
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most effective classification algorithm on three images, indicates a discernible alteration in the

suitable habitat (Table 5, Fig 4 and S6 Fig). Based on the findings of this study, it can be

inferred that within this challenging topographical environment, the species exhibit a multifac-

eted relationship with their habitat. The species preference within the environment is not

solely determined by land classes, but is also significantly influenced by the physical character-

istics of the terrain (S4 and S5 Figs). SAVI, Juniper Patch, Elevation, Aspect, water, and settle-

ment are the common variables that have the most influence in the prediction of suitable

habitat utilizing three different sourced images (S4 Fig). In addition to these variables, the

sparse vegetation and barren LCLU classes have a significant impact when the model is run

using the LCLU obtained from the integrated image, which is the most accurately classified

image (S4 Fig). However, studies have revealed that the most important characteristic for the

habitat of Himalayan ibex is terrain geomorphometry, which includes factors like as slope, ele-

vation, and ruggedness [96–99]. This finding illustrates that in this study landscape, the topo-

graphical features of the terrain play a crucial role, with the SAVI (Soil Adjusted Vegetation

Index) which exerting a significant influence on the prediction of the habitat for Himalayan

ibex. However, the SDM evaluation matrices show similar results for all three image derived

images. One possible explanation for this could be a thorough examination of the variables’

relative importance. The most important variables are SAVI, elevation, water, aspect, juniper

patch, and slope in the SDM using the poorly classified LISS IV derived LCLU and other vari-

ables (S4 Fig). The result illustrates the topographical variables play a crucial role to build the

SDM while using the LISS IV classified LCLU. Therefore, the poorly classified image also gives

similar predictions like best classified images. SAVI is used to adjust the NDVI in areas with

sparse vegetation to account for the influence of soil reflectance. The LISS IV image, which has

been misclassified, depicts the region with the least suitability, followed by the classified image

from Sentinel 2A (Table 5) (Fig 4 and S6 Fig). Himalayan ibex habitat selection is significantly

influenced by elevation and slope with barren areas, as these factors provide escape routes

from predators [96], these variables also play important role in our suitable habitat prediction

model for Himalayan ibex in this present study area (S4 Fig). The predicted suitable area of the

Himalayan ibex mainly governed by topographical features and the vegetation [97,98]. Fur-

thermore, the vegetation is distributed differently in different aspect and slope patterns in this

rugged terrain, and the selection of the habitat by Himalayan ibex heavily depends on that

association [97,98].

However, previous findings on satellite image fusion illustrate that this enhances the species

and ecosystem monitoring, as well as it can identify potential risks to biodiversity [100–107].

The best-classified image proves to be particularly useful in the SDM for several reasons.

Firstly, a well-classified image provides precise and reliable information on the distribution of

different LCLU types, and secondly, this accurate LCLU mapping is crucial for creating an

effective model that can distinguish suitable and unsuitable habitat areas for the Himalayan

ibex. The improved precision of the best-classified image ensures that the resulting SDM pre-

dictions are more reliable and can better inform conservation efforts.

Conclusion

In this study, we conducted an extensive comparative analysis of three distinct satellite images,

viz. LISS IV, Sentinel 2A, and an integrated image, using five classification algorithms to

enhance LCLU analyses and predict the Himalayan ibex suitable habitat. Our primary aim was

to determine the most effective image and classification approach for accurate habitat mapping

in the challenging and diverse landscape of the study area. The complexity of the varied envi-

ronment can often make it challenging to differentiate between classes. However, the
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utilisation of the RF method on the integrated image greatly improved the accuracy of class

mapping. The F-measure reveals that the classification of LCLU classes in LISS IV and Sentinel

2A images exhibits poor accuracy scores, furthermore, the implementation of integration tech-

niques has been shown to enhance their accuracy. In a nutshell, the integrated image presented

higher levels of accuracy compare to other two satellite imagery. In terms of both visual and

qualitative examination of those classified images, RF exhibited the most accurate outcomes

on integrated image, while the GMM classification performed the least effectively on the LISS

IV image. However, it is apparent that the Sentinel 2A image has satisfactory performance in

classifying ground objects. On the other hand, the LISS IV image could not be effectively clas-

sified by any classifier method.

Moreover, this study provides additional support for the effectiveness of ensemble SDM

modelling in the prioritisation of conservation methods and management. It is advisable to

employ an ensemble model rather than relying solely on a single modelling technique, espe-

cially when dealing with species that inhabit intricate habitats. The incorporation of topo-

graphic and radiometric variables in addition to LCLU data proved indispensable for

accurately predicting the species’ suitable habitat, considering the diverse geomorphological

characteristics of the study area. The Himalayan ibex holds great importance as a crucial eco-

system modifier, as exemplified by its function as a primary food source of the snow leopard,

the apex predator in the Trans Himalayan region [108,109]. Furthermore, like other browsers,

this species can remove vegetation by trampling which creates wide spaces that help in germi-

nation with less competition, additionally, their pallets act as natural fertilizer, enriching the

soil with nutrients for seedlings [110,111]. Large herbivores (body mass more than or equals to

100 kilogram) considered as ecological engineers and keystone species due to their enormous

role in ecological processes and these processes arouse by their size, behaviour and abundance

[112]. They have crucial roles in shaping landscapes, as they have nourished and maintained

ecologically diverse and productive ecosystems for thousands of years [113,114]. Furthermore,

the cultural value of the Himalayan ibex is deeply rooted in the beliefs and traditions of the

indigenous communities residing in the present study landscape. Hence, it can be inferred

from the present study that the integration of two satellite images can accurately classifying

LCLU, thereby facilitating SDM for the assessment of a species’ suitable habitat. The result

from such integrated images can be of great use in conservation planning and management of

ecosystem with reference to species specific habitat for the long-term viability of wildlife

species.
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