
RESEARCH ARTICLE

Epidemiological survey of anterior segment diseases in Japanese isolated island using a portable slit-lamp device in home-based cases in Miyako Island

Eisuke Shimizu^{1,2,3*}, Kazuhiro Hisajima⁴, Shintaro Nakayama^{1,3}, Hiroki Nishimura^{1,2,3}, Rohan Jeetendra Khemlani^{1,2}, Ryota Yokoiwa¹, Yusuke Shimizu¹, Masato Kishimoto⁴, Keigo Yasukawa^{4,5}

1 OUI Inc., Tokyo, Japan, **2** Yokohama Keiai Eye Clinic, Kanagawa, Japan, **3** Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan, **4** Dr. Gon Kamakura Clinic, Kanagawa, Japan, **5** Dr. Gon Clinic, Okinawa, Japan

* ophthalmolog1st.acek39@keio.jp

OPEN ACCESS

Citation: Shimizu E, Hisajima K, Nakayama S, Nishimura H, Khemlani RJ, Yokoiwa R, et al. (2024) Epidemiological survey of anterior segment diseases in Japanese isolated island using a portable slit-lamp device in home-based cases in Miyako Island. PLoS ONE 19(11): e0306845. <https://doi.org/10.1371/journal.pone.0306845>

Editor: Jiro Kogo, Akita University: Akita Daigaku, JAPAN

Received: June 24, 2024

Accepted: October 3, 2024

Published: November 25, 2024

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: <https://doi.org/10.1371/journal.pone.0306845>

Copyright: © 2024 Shimizu et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: There are ethical restrictions on sharing the minimal data for this study publicly, because they contain potentially

Abstract

The ophthalmic diseases often affect the elderly and require proper diagnosis, treatments, and follow ups. However, many cases lack adequate eye care due to limited resources and decreased daily living activities among individuals. Despite the importance of ophthalmic home care, epidemiological research in this area has been lacking. This study utilized portable ophthalmological equipment to conduct an epidemiological research of anterior segment diseases in patients receiving home-based medical care in Japanese isolated island “Miyako island”. A retrospective examination was conducted on home visit cases from a single facility in Miyako island (Dr. Gon Clinic). Data from 147 cases were collected and analyzed which the data are all recorded by the home care doctors and send the data to the cloud in order to make a diagnosis by the ophthalmologists. Findings included various anterior segment eye diseases such as Ptosis, meibomian gland dysfunction, conjunctival chalasis, corneal opacity, conjunctival hyperemia, pterygium, and cataract. Notably, over half of the cases (51.67%) had not undergone cataract surgery although the average age are notably high (85.69 ± 12.11 age of years). Among those without surgery, all showed signs of moderate to severe cataracts, with severity increasing with age. Additionally, a shallow anterior chamber depth was observed in one-third of these cases (33.63%) which considerable to receive a surgery to prevent the acute glaucoma attack. From our study, to ensure that patients in remote islands as Miyako island do not miss opportunities for eye care, there is an urgent need for the establishment of a supportive medical system.

Introduction

Japan, a developed country, has a significantly higher ratio of ophthalmologists compared to the global average. However, there is a notable disparity in the provision of ophthalmic care between urban and rural areas, with a significant shortage of specialists in rural regions [1]. Ophthalmic diseases frequently affect the elderly population, necessitating proper diagnosis,

identifiable participant information. Data are available upon request from Yu Matsumoto, Keigankai Yokohama Keiai Eye Clinic information manager, via email (info@keigankai.com) for researchers who meet the criteria for access to confidential data.

Funding: This work was supported by the Japan Agency for Medical Research and Development, Uehara Memorial Foundation, Hitachi Global Foundation, Kondo Memorial Foundation, Eustylelab, Kowa Life Science Foundation, Keio University Global Research Institute, The Asahi Glass Foundation, The Okawa Foundation, Suzuken Memorial Foundation, Yakult bioscience Foundation and Daiwa Securities Foundation. No other funding statement to declare including company and patent. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: E.S. is a founder of OUI Inc. OUI Inc. has the patent for the Smart Eye Camera (Patent No. JP; 6627071, USA; 16/964822, EU; 19743494.7, China; 201980010174.7, India; 202017033428, VN; 1-2020-04893, and Africa; AP/P2020/012569. Patent pending EU; 2175926.2, US; 17/799043). There are no other relevant declarations relating to this patent. OUI Inc. did not have any role in the funding, study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors declare no competing interest associated with this manuscript.

treatment, and follow-up. However, many cases lack adequate eye care due to resource constraints and decreased activity levels among individuals, particularly in rural areas and developing regions such as Africa [2, 3]. The lack of robust epidemiological data on pediatric eye disorders in Ethiopia impedes the planning and evaluation of preventive and curative services for children with ocular morbidity [4]. Additionally, there is a critical need for epidemiological studies to investigate the risk factors for cataract development, which are essential for planning and implementing effective global preventive programs, especially in developing countries [5]. Global estimates and projections of vision impairment highlight major obstacles, including the lack of epidemiological data in developing countries, which hampers the effective delivery of eye care services [6]. Despite the importance of ophthalmic home care, epidemiological research in this area is limited due to the polarization of ophthalmological resources [7].

Historically, epidemiological studies on ophthalmic diseases have predominantly used population-based examinations, common in cohort studies. However, there has been a lack of focus on home-visit cases, particularly for patients who face challenges in attending hospital appointments [8].

This study aims to address this gap by conducting an extensive epidemiological survey. We screened home-visit patients from a single institution using portable ophthalmological devices [9–16], with diagnoses subsequently confirmed by ophthalmologists via telemedicine. The objective of this research is to screen the anterior segment of the eyes using a portable slit-lamp microscope in a cohort of patients receiving home care in the Miyako Island area and to investigate the prevalence and characteristics of ophthalmologic diseases in this cohort.

Materials and methods

Study design

This retrospective study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Review Committee of the Kobawa Medical Corporation (Committee No.: 21000056, No. 20230501). As all data were anonymized and collected retrospectively, written informed consent was not obtained; instead, an opt-out procedure was employed. The study involved analyzing anterior segment videos recorded using a portable slit-lamp microscope (Smart Eye Camera: SEC, OUI Inc., Tokyo, Japan) at a non-ophthalmic institution, Dr. Gong Clinic (Okinawa, Japan). These videos were then evaluated by ophthalmologists at Yokohama Keiai Clinic (Kanagawa, Japan). The inclusion criteria were: (1) all patients who received a visit by a doctor at Dr. Gong Clinic from November 2021 to March 2022, and (2) patients whose anterior segment was captured using the SEC on the same day. The exclusion criteria included: (1) cases where the patient had difficulty imaging the anterior segment, such as inability to open the eyelids or severe body movements, and (2) cases where the patient refused imaging due to dementia or insufficient understanding and cooperation. Based on these criteria, 147 cases (294 eyes) were selected for anterior segment video analysis by ophthalmologists remotely. We did access to the database from 2024 April 1st to May 31st in order to access for research purposes. Moreover, authors only accessed to de-identification data which data can specify individuals.

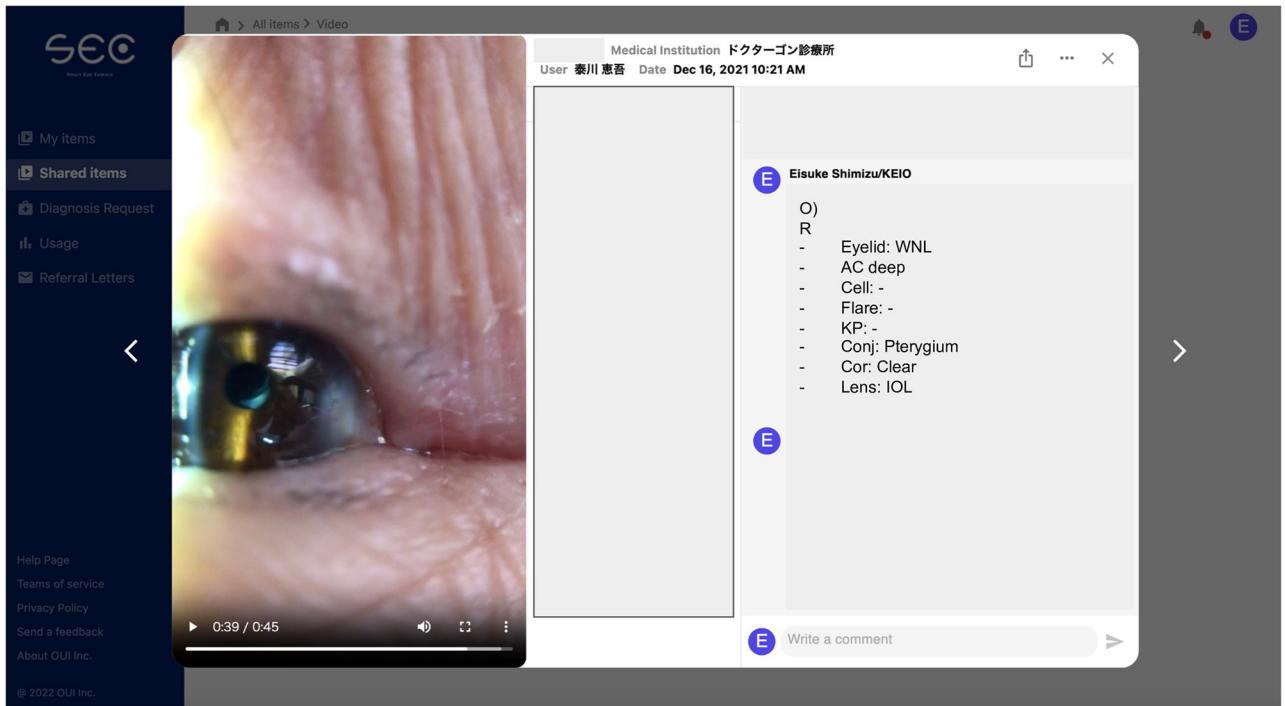
Portable slit-lamp microscope

The SEC, a smartphone attachment medical device used as a portable slit-lamp microscope, was utilized in this study. Previous animal studies [9] and several clinical studies [10–16] have demonstrated the SEC's diagnostic capabilities comparable to conventional slit-lamp microscopes in Japanese, Indian, Indonesian, and Italian objects. The SEC can emit slit light at 0.1 to 0.3 mm when observing the lens in a mydriatic and non-mydriatic status [10, 11]. Additionally, the SEC

can record moving images of the anterior segment, allowing the collection of extensive video and image data. Image resolution is set at 720×1280 pixels to 1080×1920 pixels, with frame rates of 30 or 60 frames per second. An iPhone 7 (Apple Inc., Cupertino, CA, USA) was used for recording. Non-ophthalmologists at Dr. Gong Clinic performed a minimum of 10 seconds of anterior segment imaging for each eye using the SEC (Fig 1).

Anterior segment assessments

Ophthalmologists evaluated the anterior segment videos recorded by the SEC using a SEC cloud-based image filing system (Fig 2). The anterior segment of the eyes was divided into seven regions: eyelid, eyelashes, conjunctiva, cornea, anterior chamber, iris, and lens, with each region evaluated separately. For the eyelids, the presence or absence of ptosis, chalasis, entropion, and meibomian gland dysfunction (MGD) were assessed. Eyelashes were evaluated for the presence or absence of entropion and trichiasis. The conjunctiva was examined for hyperemia, papillae, follicles, and chalasis. The cornea was assessed for opacity and keratic precipitates (KP). The anterior chamber was evaluated for depth, cells, and flare. The iris was assessed for pupil, damage or atrophy, and pseudoexfoliation (PE). For the lens, the presence of an intraocular lens (IOL) or cataracts or aphakia were evaluated using the Emery-Little classification (NS1-5) [17]. Multiple ophthalmologists (E.S. and Y.S.) evaluated all anterior segment videos.


Data and statistical analysis

The cross-sectional study targeted homebound patients residing on Miyako Island. Given the retrospective nature of the study, defining a precise target sample size in advance was challenging. Consequently, data that met the inclusion criteria were aggregated over a defined period.

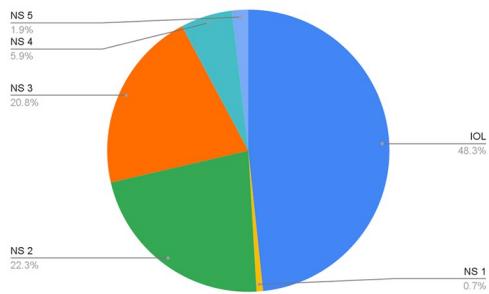
Fig 1. Anterior segment imaging. Anterior segment imaging captured using the Smart Eye Camera (left), showcasing the device's capability in delivering high-quality diagnostic images for ophthalmic evaluation. On the right, a co-author demonstrates the practical application of the Smart Eye Camera at the Dr. Gong Clinic, highlighting its portability and ease of use in a clinical setting for the assessment of anterior segment conditions.

<https://doi.org/10.1371/journal.pone.0306845.g001>

Fig 2. Teleophthalmology assessment. Online assessment of findings in the anterior segment of the eyes using the Smart Eye Camera (SEC) cloud-based image filing system. This system allows clinicians to upload and store high-resolution images securely, facilitating remote evaluations, consultations, and collaborative decision-making. The cloud-based platform enhances accessibility and ensures efficient management of patient data, enabling real-time monitoring and comprehensive assessments from various locations.

<https://doi.org/10.1371/journal.pone.0306845.g002>

The prevalence of ophthalmologic conditions was calculated based on the number of observable eyes exhibiting specific findings. All analyses were conducted using Google Spreadsheets (Google LLC, Mountain View, CA, USA).


Results

Basic characteristics and prevalence of anterior segment diseases

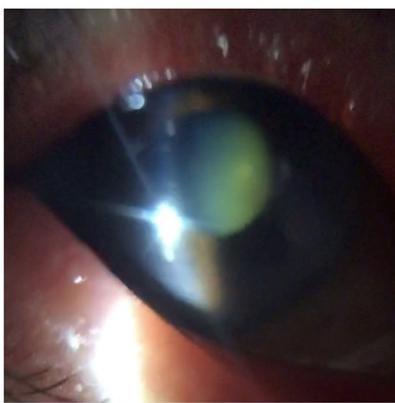
Anterior segment videos were collected from 294 eyes of 147 patients. The mean age of the patients was 85.69 ± 12.11 years, with a male-to-female ratio of 55:92 (Fig 3). The most common eyelid abnormality was MGD, present in 83.76% of patients, followed by blepharochalasis (2.16%) and ptosis (1.08%). Abnormalities in the eyelashes included trichiasis in 0.35% of patients. Conjunctival abnormalities were observed as follows: conjunctival chalasis in 23.44%, hyperemia in 14.08%, follicles in 2.67%, and pterygium in 6.74% of cases. Corneal abnormalities included corneal opacity in 10.99% and band keratopathy in 1.06% of cases. Findings in the anterior chamber showed 84.36% of patients had a deep anterior chamber depth, while 15.64% had a shallow anterior chamber depth. Iris findings indicated that 97.83% had a normal pupil, 2.17% had an irregular pupil, and 1.08% had iris damage or atrophy. Regarding lens findings, 48.33% of patients had an intraocular lens (IOL), and no cases of aphakia were identified. All patients exhibited cataracts, with the following distribution: 0.74% in NS1, 22.30% in NS2, 20.82% in NS3, 5.95% in NS4, and 1.86% in NS5 (Fig 3). Other findings included eyelid papilloma (0.36%), lower eyelid nevus (0.36%), pinguecula (2.22%), cornea dermoid (0.41%), small pupil (0.73%), IOL donesis (1.48%), and IOL dislocation (0.74%) (Fig 4).

Age	85.69±12.11
Gender	
Male	55
Female	92

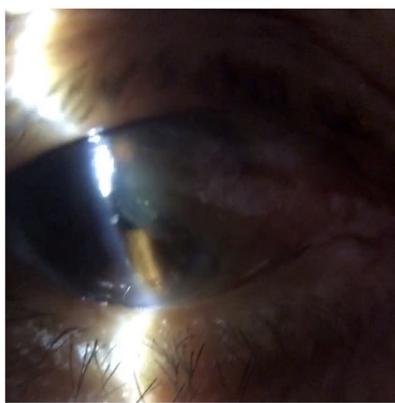
Lens findings

MGD: meibomian gland dysfunction, KP: keratic precipitates, PE: pseudoexfoliation, IOL: intraocular lens, NS: nuclear sclerosis.

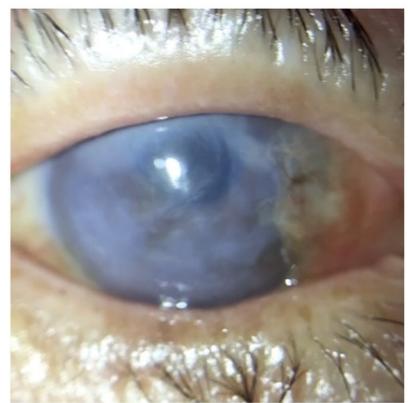
	%		%
Eyelids		Anterior chamber	
Ptosis	1.08%	Deep	84.36%
Chalasis	2.16%	Shallow	15.64%
Entropion	0.00%	Cell	0.00%
MGD	83.76%	Flare	0.00%
Eyelashes		Pupil	
Entropion	0.00%	Round	97.83%
Trichiasis	0.35%	Not round	2.17%
Conjunctiva		Damaged	
Hyperemia	14.08%	PE	4.69%
Papilla	0.00%	Lens	
Follicle	2.67%	IOL	48.33%
Chalasis	23.44%	NS 0	0.00%
Pterygium	6.74%	NS 1	0.74%
Cornea		NS 2	22.30%
Opacity	10.99%	NS 3	20.82%
KP	0.00%	NS 4	5.95%
Bank keratopathy	1.06%	NS 5	1.86%


Fig 3. Characteristics and prevalence of anterior segment findings in the study population. The average age was 85.69 ± 12.11 years, with a male-to-female ratio of 55:92. The most common eyelid abnormality was meibomian gland dysfunction. Other findings included conjunctival chalasis, and corneal opacity. Cataracts were present in all patients, with 48.33% having an intraocular lens.

<https://doi.org/10.1371/journal.pone.0306845.g003>


Severity distribution in lens findings

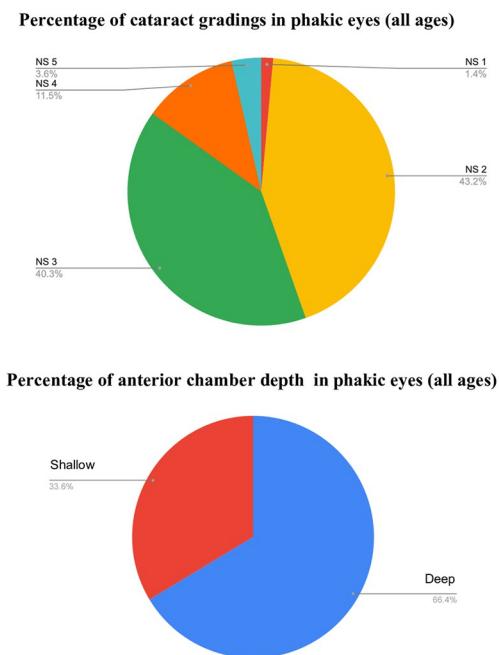
Lens findings were observable in 269 out of 294 eyes (91.50%). Of these, 48.33% were pseudo-phakic eyes (with IOLs), and no aphakic eyes were identified. The remaining 51.67% were evaluated as phakic eyes. The nuclear sclerosis classification of cataracts in the phakic eyes,


93 years of age, Male
Left Eye, Cataract

88 years of age, Female
Right Eye, Pterygium

96 years of age, Male
Right Eye, Bullous keratopathy

Fig 4. Representative cases. Slit-lamp photographs of anterior segment findings. Left: 93-year-old male with cataract in the left eye. Center: 88-year-old female with pterygium in the right eye. Right: 96-year-old male with bullous keratopathy in the right eye.


<https://doi.org/10.1371/journal.pone.0306845.g004>

based on the Emery-Little classification, was as follows: 0.00% for NS0, 1.44% for NS1, 43.17% for NS2, 40.29% for NS3, 11.51% for NS4, and 3.60% for NS5 (Fig 5). Among the phakic eyes, 33.63% were found to have a shallow anterior chamber (Fig 5). A comparison of lens and anterior chamber findings across different age groups revealed that the incidence of higher NS values (indicating stronger nuclear sclerosis) increased with age. Additionally, the prevalence of shallow anterior chambers also increased with advancing age (Fig 5). Furthermore, a comparison between phakic and pseudophakic eyes indicated that the proportion of pseudophakic eyes increased in patients older than 90 years of age (Fig 5).

Discussion

This cross-sectional study, conducted on Miyako Island, aimed to investigate the prevalence and severity of anterior segment diseases in patients receiving home-based care. The anterior segment of the eyes were imaged using a portable slit-lamp microscope by primary care physicians, and the findings were remotely evaluated by the ophthalmologists. All patients required home visits due to a decline in activities of daily living. The average age of the study subjects was comparable to the average life expectancy in Japan (Male: 81.1 years of age, Female: 87.1 years of age), and the cohort was predominantly female [18]. In this study, non-specialists used the SEC as a portable slit-lamp microscope, and specialists diagnosed the images remotely. Telemedicine using the SEC has been effectively utilized in other remote islands and for consultations between specialists, suggesting a high accuracy of doctor-to-doctor telemedicine [13].

A significant finding in this study was the extremely high prevalence of MGDs. The prevalence of MGD is typically reported to range from 11% to 63%, but the results in this study

	All ages	50 years of age or under	51-60 years of age	61-70 years of age
NS 0	0.00%	NS 0 0.00%	NS 0 0.00%	NS 0 0.00%
NS 1	1.44%	NS 1 0.00%	NS 1 33.33%	NS 1 0.00%
NS 2	43.17%	NS 2 100.00%	NS 2 33.33%	NS 2 80.95%
NS 3	40.29%	NS 3 0.00%	NS 3 16.67%	NS 3 19.05%
NS 4	11.51%	NS 4 0.00%	NS 4 16.67%	NS 4 0.00%
NS 5	3.60%	NS 5 0.00%	NS 5 0.00%	NS 5 0.00%
Deep	66.37%	Deep 100.00%	Deep 66.67%	Deep 78.95%
Shallow	33.63%	Shallow 0.00%	Shallow 33.33%	Shallow 21.05%
Phakia	51.67%	Phakia 66.67%	Phakia 66.67%	Phakia 90.48%
Psudophakia	48.33%	Psudophakia 33.33%	Psudophakia 33.33%	Psudophakia 9.52%

	71-80 years of age	81-90 years of age	91-100 years of age	101 years of age or older
NS 0	0.00%	NS 0 0.00%	NS 0 0.00%	NS 0 0.00%
NS 1	0.00%	NS 1 0.00%	NS 1 0.00%	NS 1 0.00%
NS 2	45.45%	NS 2 47.06%	NS 2 21.74%	NS 2 0.00%
NS 3	36.36%	NS 3 37.25%	NS 3 60.87%	NS 3 0.00%
NS 4	18.18%	NS 4 11.76%	NS 4 13.04%	NS 4 50.00%
NS 5	0.00%	NS 5 3.92%	NS 5 4.35%	NS 5 50.00%
Deep	75.00%	Deep 72.55%	Deep 69.57%	Deep 50.00%
Shallow	25.00%	Shallow 27.45%	Shallow 30.43%	Shallow 50.00%
Phakia	54.55%	Phakia 52.58%	Phakia 44.23%	Phakia 20.00%
Psudophakia	45.45%	Psudophakia 47.42%	Psudophakia 55.77%	Psudophakia 80.00%

Fig 5. Prevalence of the lens and anterior chamber findings. Pseudophakic eyes accounted for 48.33%, and 51.67% were phakic. Nuclear sclerosis (NS) grades increased with age, with NS2 and NS3 being the most common. Shallow anterior chambers were present in 33.63% of phakic eyes, and the proportion of pseudophakic eyes increased in patients over 90 years old.

<https://doi.org/10.1371/journal.pone.0306845.g005>

exceeded these values [19]. Previous studies have noted that MGD increases or worsens with age. Aging is known to contribute to the pathogenesis of hyposecretory MGD, and recent MGD practice guidelines identify aging and menopause as risk factors [20]. The high prevalence of MGD in this study is understandable given the predominantly elderly and female cohort. Conjunctival findings revealed conjunctival hyperemia in approximately 16.6% of patients and conjunctival chalasis in 23.4%. Conjunctival chalasis, seen in many elderly patients, is characterized by the separation of the conjunctiva from the sclera, possibly caused by dilated subconjunctival lymph vessels or effusion. Dilated lymphatic vessels have been identified in 90% of such cases [21]. Reports on the prevalence of conjunctival hyperemia are limited due to its various causes, including bacterial or viral infections, allergies, and autoimmune conditions. Allergic conjunctival disease, which has a high prevalence of 48.7%, may also be influenced by seasonal and regional factors [22]. The prevalence of pterygium in this study was 6.74% (Fig 3). Ultraviolet light (UV) is considered a major cause of pterygium [23]. The Kumejima Island Study reported a pterygium prevalence of 30.8% [24], while a Taiwanese study reported a prevalence of 2.14% and 3.48% in those over 40 years old [25]. The prevalence observed in this study likely falls between the results of these previous studies due to the geographic location of Miyakojima Island, which is situated between the two regions under comparison. Corneal opacity was present in 10.99% of cases, comparable to the 7.96% prevalence reported in a Taiwanese study of individuals aged 65 or older [23].

A notable finding was the high prevalence of cataracts, expected given the average age of over 85 years. However, more than half of the cases had not undergone cataract surgery, with many exhibiting moderate to severe cataracts.

A comparison of untreated cataracts in developing countries reveals significant disparities in cataract surgery coverage. In Ghana, 55% of the population aged 60–69 has undergone cataract surgery [26]. However, in our study, only 9.52% of individuals within the same age group received the surgery (Fig 5). Cataract surgery coverage varies significantly across regions, with Western Europe and North America achieving coverage rates ten times higher than those in Africa [27]. This regional variability complicates direct comparisons. In contrast, data from developed nations such as Australia show that 30–45% of individuals aged 79–84 have already undergone cataract surgery [28, 29]. Similarly, in the United Kingdom, 42.3% of the population aged 80 and above has undergone cataract surgery [30]. In the current study, the proportion of individuals who had not received cataract surgery was 1.2 to 1.5 times higher, likely due to increased rates of bedridden status and reduced activities of daily living (Fig 5).

The high prevalence is attributed to both age and Miyako Island's location at 24 degrees north latitude, resulting in higher UV exposure. UV exposure has been implicated in the development and progression of nuclear cataracts [31]. Currently, more than 1 million cataract surgeries are performed annually in Japan due to advancements in minimally invasive techniques [32]. However, the subjects in this study, living on a remote island and requiring home visits, may have limited access to ophthalmic care, including surgery [33]. About one-third of the patients with lenses had shallow anterior chamber depths, a known risk for angle closure, potentially leading to acute glaucoma attacks [34]. Previous reports indicate approximately 1.3% of Japanese over 40 years have angle closure. Although anterior chamber depth was not accurately measured in this study, a higher frequency of shallow anterior chambers was identified compared to previous reports. Risk factors for angle closure include abnormal lens position, increased lens thickness due to cataract progression, and overmatured cataracts [35]. This study's limitations include its retrospective nature and cross-sectional observational design, which did not examine treatments implemented for diagnosed cases or collaboration with ophthalmology specialists. Further research is needed on collaborative treatment with local ophthalmologists. Given that ophthalmology is a diagnostic imaging-focused specialty,

similar collaborative efforts between local non-ophthalmologists and remote ophthalmologists can be conducted in various regions [36, 37]. The study highlights the potential for telemedicine to bridge the gap in ophthalmic care in remote areas. By utilizing portable imaging devices and remote specialist consultations, high-quality care can be delivered to populations that are otherwise underserved due to geographic and resource limitations. This model could be replicated in other regions, improving access to ophthalmic care for home-bound and elderly populations. This study provides valuable insights into the prevalence and severity of anterior segment diseases among elderly home-bound patients in Miyako Island. The high prevalence of MGD, conjunctival chalasis, pterygium, corneal opacity, and cataracts underscores the need for enhanced ophthalmic care in this demographic.

The findings advocate for the integration of telemedicine and portable diagnostic tools in routine ophthalmic practice to ensure comprehensive care for patients with limited access to traditional healthcare facilities.

Conclusions

This study identified a significant presence of untreated anterior segment diseases, primarily cataracts, among patients receiving home-visit care on Miyako Island. These patients, residing on remote islands, are at risk of missing essential ophthalmologic care opportunities. Therefore, there is a critical need to establish a robust medical care support system to ensure these patients receive adequate ophthalmologic evaluation and treatment, encompassing both public and private sectors. Given the limitations of medical resources, the integration of information and communications technology -based telemedicine and diagnostic support systems, such as the SEC used in this study, should be strongly considered to enhance the accessibility and quality of ophthalmologic care for this vulnerable population.

Author Contributions

Conceptualization: Eisuke Shimizu, Yusuke Shimizu.

Data curation: Kazuhiro Hisajima, Shintaro Nakayama, Hiroki Nishimura, Rohan Jeetendra Khemlani.

Formal analysis: Eisuke Shimizu, Shintaro Nakayama.

Funding acquisition: Eisuke Shimizu.

Investigation: Kazuhiro Hisajima, Hiroki Nishimura, Rohan Jeetendra Khemlani, Yusuke Shimizu.

Methodology: Eisuke Shimizu, Shintaro Nakayama, Ryota Yokoiwa, Yusuke Shimizu, Keigo Yasukawa.

Project administration: Eisuke Shimizu, Ryota Yokoiwa.

Resources: Shintaro Nakayama, Hiroki Nishimura, Rohan Jeetendra Khemlani, Ryota Yokoiwa, Keigo Yasukawa.

Software: Shintaro Nakayama.

Supervision: Masato Kishimoto, Keigo Yasukawa.

Validation: Kazuhiro Hisajima, Shintaro Nakayama, Hiroki Nishimura, Rohan Jeetendra Khemlani, Ryota Yokoiwa, Yusuke Shimizu, Masato Kishimoto, Keigo Yasukawa.

Visualization: Ryota Yokoiwa, Masato Kishimoto.

Writing – original draft: Eisuke Shimizu.

Writing – review & editing: Kazuhiro Hisajima, Shintaro Nakayama, Hiroki Nishimura, Rohan Jeetendra Khemlani, Ryota Yokoiwa, Yusuke Shimizu, Masato Kishimoto, Keigo Yasukawa.

References

1. Nakaya T, Hanibuchi T. Geographic disparities in health. In: Brunner E, Cable N, Iso H, editors. *Health in Japan: Social Epidemiology of Japan since the 1964 Tokyo Olympics*. Oxford: Oxford Academic; 2020. <https://doi.org/10.1093/oso/9780198848134.003.0017> [cited 2024 Jun 6].
2. Abdi S, Spann A, Borilovic J, et al. Understanding the care and support needs of older people: a scoping review and categorisation using the WHO international classification of functioning, disability and health framework (ICF). *BMC Geriatr*. 2019; 19:195. <https://doi.org/10.1186/s12877-019-1189-9> PMID: 31331279
3. van Vuuren J, Thomas B, Agarwal G, et al. Reshaping healthcare delivery for elderly patients: the role of community paramedicine; a systematic review. *BMC Health Serv Res*. 2021; 21:29. <https://doi.org/10.1186/s12913-020-06037-0> PMID: 33407406
4. du Toit R, Faal HB, Etya'ale D, et al. Evidence for integrating eye health into primary health care in Africa: a health systems strengthening approach. *BMC Health Serv Res*. 2013; 13:102. <https://doi.org/10.1186/1472-6963-13-102> PMID: 23506686
5. Kidane YT, Teshome AW. Eye disorders spectrum: a tertiary hospital pediatric ophthalmology clinic based in Ethiopia. *BMC Ophthalmol*. 2022; 22:120. <https://doi.org/10.1186/s12886-022-02336-8> PMID: 35279123
6. Mukesh BN, Le A, Dimitrov PN, Ahmed S, Taylor HR, McCarty CA. Development of cataract and associated risk factors: the Visual Impairment Project. *Arch Ophthalmol*. 2006; 124(1):79–85. <https://doi.org/10.1001/archophth.124.1.79> PMID: 16401788.
7. Grzybowski A, Kanclerz P, Tsubota K, et al. A review on the epidemiology of myopia in school children worldwide. *BMC Ophthalmol*. 2020; 20:27. <https://doi.org/10.1186/s12886-019-1220-0> PMID: 31937276
8. Tay YL, Abu Bakar NS, Tumiran R, et al. Effects of home visits on quality of life among older adults: a systematic review protocol. *Syst Rev*. 2021; 10:307. <https://doi.org/10.1186/s13643-021-01862-8> PMID: 34872589
9. Shimizu E, Ogawa Y, Yazu H, et al. “Smart Eye Camera”: An innovative technique to evaluate tear film breakup time in a murine dry eye disease model. *PLOS ONE*. 2019; 14. <https://doi.org/10.1371/journal.pone.0215130> PMID: 31071120
10. Yazu H, Shimizu E, Okuyama S, et al. Evaluation of nuclear cataract with smartphone-attachable slit-lamp device. *Diagnostics (Basel)*. 2020; 10. <https://doi.org/10.3390/diagnostics10080576> PMID: 32784828
11. Shimizu E, Yazu H, Aketa N, et al. A study validating the estimation of anterior chamber depth and iridocorneal angle with portable and non-portable slit-lamp microscopy. *Sensors (Basel)*. 2021; 21:1436. <https://doi.org/10.3390/s21041436> PMID: 33669487
12. Yazu H, Shimizu E, Sato S, et al. Clinical observation of allergic conjunctival diseases with portable and recordable slit-lamp device. *Diagnostics (Basel)*. 2021; 11:535. <https://doi.org/10.3390/diagnostics11030535> PMID: 33802736
13. Shimizu E, Yazu H, Aketa N, et al. Smart Eye Camera: A validation study for evaluating the tear film breakup time in human subjects. *Transl Vis Sci Technol*. 2021; 10:28. <https://doi.org/10.1167/tvst.10.4.28> PMID: 34004005
14. Handayani AT, Valentina C, Suryaningrum IGAR, et al. Interobserver reliability of tear break-up time examination using “Smart Eye Camera” in Indonesian remote areas. *Clin Ophthalmol*. 2023; 17:2097–2107. <https://doi.org/10.2147/OPTH.S412233> PMID: 37521149
15. Andhare P, Ramasamy K, Ramesh R, et al. A study establishing sensitivity and accuracy of smartphone photography in ophthalmologic community outreach programs: review of a smart eye camera. *Indian J Ophthalmol*. 2023; 71(6):2416–2420. https://doi.org/10.4103/IJO.IJO_292_23 PMID: 37322651
16. Borselli M, Toro MD, Rossi C, et al. Feasibility of tear meniscus height measurements obtained with a smartphone-attachable portable device and agreement of the results with standard slit lamp examination. *Diagnostics (Basel)*. 2024; 14(3):316. <https://doi.org/10.3390/diagnostics14030316> PMID: 38337832

17. Miyata K, Nagamoto T, Maruoka S, et al. Efficacy and safety of the soft-shell technique in cases with a hard lens nucleus. *J Cataract Refract Surg.* 2002; 28(9):1546–50. [https://doi.org/10.1016/s0886-3350\(02\)01323-8](https://doi.org/10.1016/s0886-3350(02)01323-8) PMID: 12231308
18. Tsugane S. Why has Japan become the world's most long-lived country: insights from a food and nutrition perspective. *Eur J Clin Nutr.* 2021; 75(6):921–928. <https://doi.org/10.1038/s41430-020-0677-5> PMID: 32661353
19. Tomlinson A, Bron AJ, Korb DR, et al. The international workshop on meibomian gland dysfunction: report of the diagnosis subcommittee. *Invest Ophthalmol Vis Sci.* 2011; 52(4):2006–2049. <https://doi.org/10.1167/iovs.10-6997f> PMID: 21450918
20. Amano S. Meibomian gland dysfunction: recent progress worldwide and in Japan. *Invest Ophthalmol Vis Sci.* 2018; 59(14):DES87–DES93. <https://doi.org/10.1167/iovs.17-23553> PMID: 30481811
21. Watanabe A, Yokoi N, Kinoshita S, et al. Clinicopathologic study of conjunctivochalasis. *Cornea.* 2004; 23(3):294–8. <https://doi.org/10.1097/00003226-200404000-00013> PMID: 15084864
22. Miyazaki D, Takamura E, Uchio E, et al. Japanese guidelines for allergic conjunctival diseases 2020. *Allergol Int.* 2020; 69(3):346–355. <https://doi.org/10.1016/j.alit.2020.03.005> PMID: 33211650.
23. Chen N, Huang TL, Tsai RK, et al. Prevalence and causes of visual impairment in elderly Amis aborigines in Eastern Taiwan (the Amis Eye Study). *Jpn J Ophthalmol.* 2012; 56(6):624–30. <https://doi.org/10.1007/s10384-012-0178-8> PMID: 22961342
24. Shiroma H, Higa A, Sawaguchi S, et al. Prevalence and risk factors of pterygium in a southwestern island of Japan: the Kumejima Study. *Am J Ophthalmol.* 2009; 148(5):766–771.e1. <https://doi.org/10.1016/j.ajo.2009.06.006> PMID: 19664753.
25. Lin YH, Sun CC, Yeung L, et al. Epidemiologic study of pterygium in Taiwan. *Jpn J Ophthalmol.* 2019; 63(4):297–303. <https://doi.org/10.1007/s10384-019-00670-x> PMID: 31104166
26. Ackuaku-Dogbe EM, Yawson AE, Biritwum RB. Cataract surgical uptake among older adults in Ghana. *Ghana Med J.* 2015; 49(2):84–89. <https://doi.org/10.4314/gmj.v49i2.4> PMID: 26339091
27. Taryam MO, Rabiu MM, Muhammad N, Oladigbolu K, Abdurrahman H. Prevalence and causes of blindness and visual impairment; and cataract surgical services in Katsina state of Nigeria. *Br J Ophthalmol.* 2020; 104(6):752–756. <https://doi.org/10.1136/bjophthalmol-2019-314572> PMID: 31488429
28. Hambisa MT, Dolja-Gore X, Byles J. Application of Andersen-Newman model to assess cataract surgery uptake among older Australian women: findings from the Australian Longitudinal Study on Women's Health (ALSWH). *Aging Clin Exp Res.* 2022; 34(7):1673–1685. <https://doi.org/10.1007/s40520-022-02091-2> PMID: 35184260
29. Hambisa MT, Dolja-Gore X, Byles JE. A longitudinal analysis of factors associated with age-related cataract among older Australian women: a cohort study of 7851 older Australian women 79–90 years. *Ir J Med Sci.* 2023; 192(3):1525–1536. <https://doi.org/10.1007/s11845-022-03130-7> PMID: 35976544
30. Whillans J, Nazroo J. Equal access, (Un)equal uptake: a longitudinal study of cataract surgery uptake in older people in England. *BMC Health Serv Res.* 2014; 14:447. <https://doi.org/10.1186/1472-6963-14-447> PMID: 25269521
31. Hayashi LC, Hayashi S, Yamaoka K, et al. Ultraviolet B exposure and type of lens opacity in ophthalmic patients in Japan. *Sci Total Environ.* 2003; 302(1–3):53–62. [https://doi.org/10.1016/s0048-9697\(02\)00320-0](https://doi.org/10.1016/s0048-9697(02)00320-0) PMID: 12526897
32. Kawamoto K, Yamashita Y, Kono M, et al. Efficacy and complications of simultaneous bilateral cataract surgery and postoperative management by visiting remote islands. *J Jpn Assoc Rural Med.* 2010; 59(4):493–499. Japanese.
33. Dolar-Szczasny J, Barańska A, Rejdak R. Evaluating the efficacy of teleophthalmology in delivering ophthalmic care to underserved populations: a literature review. *J Clin Med.* 2023; 12(9):3161. <https://doi.org/10.3390/jcm12093161> PMID: 37176602
34. Qian C, Jiang Y, Soh ZD, et al. Smartphone-acquired anterior segment images for deep learning prediction of anterior chamber depth: a proof-of-concept study. *Front Med (Lausanne).* 2022; 9:912214. <https://doi.org/10.3389/fmed.2022.912214> PMID: 35814744
35. Salvetat ML, Pellegrini F, Spadea L, et al. Pharmaceutical approaches to normal tension glaucoma. *Pharmaceuticals (Basel).* 2023; 16(8):1172. <https://doi.org/10.3390/ph16081172> PMID: 37631087
36. Shimizu E, Kamezaki M, Nishimura H, Nakayama S, Toda I. A case of traumatic hyphema diagnoses by telemedicine between a remote island and the mainland of Tokyo. *Cureus.* 2024; 16(7):e65153. <https://doi.org/10.7759/cureus.65153> PMID: 39176324
37. Nishimura H, Khemukani RJ, Yokoishi R, Nakayama S, Shimizu E. Primary angle closure observed during a house visit: A case treated with laser iridotomy. *Cureus.* 2024; 16(8):e66321. <https://doi.org/10.7759/cureus.66321> PMID: 39246965