
RESEARCH ARTICLE

A computational and machine learning

approach to identify GPR40-targeting agonists

for neurodegenerative disease treatment

Arif Jamal SiddiquiID
1*, Riadh BadraouiID

1, Mohammed Merae Alshahrani2,

Mejdi Snoussi1, Sadaf Jahan3, Maqsood Ahmed Siddiqui4, Andleeb Khan5,6, Abdel

Moneim E. Sulieman1, Mohd AdnanID
1

1 Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia, 2 Department of Clinical

Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia,

3 Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al

Majmaah, Saudi Arabia, 4 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi

Arabia, 5 Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan,

Saudi Arabia, 6 Department of Biosciences, Faculty of Science, Integral University, Lucknow, India

* arifjamal13@gmail.com, Ar.Siddiqui@uoh.edu.sa

Abstract

The G protein-coupled receptor 40 (GPR40) is known to exert a significant influence on neu-

rogenesis and neurodevelopment within the central nervous system of both humans and

rodents. Research findings indicate that the activation of GPR40 by an agonist has been

observed to promote the proliferation and viability of hypothalamus cells in the human body.

The objective of the present study is to discover new agonist compounds for the GPR40 pro-

tein through the utilization of machine learning and pharmacophore-based screening tech-

niques, in conjunction with other computational methodologies such as docking, molecular

dynamics simulations, free energy calculations, and investigations of the free energy land-

scape. In the course of our investigation, we successfully identified five unreported agonist

compounds that exhibit robust docking score, displayed stability in ligand RMSD and consis-

tent hydrogen bonding with the receptor in the MD trajectories. Free energy calculations

were observed to be higher than control molecule. The measured binding affinities of com-

pounds namely 1, 3, 4, 6 and 10 were -13.9, -13.5, -13.4, -12.9, and -12.1 Kcal/mol, respec-

tively. The identified molecular agonist that has been found can be assessed in terms of its

therapeutic efficacy in the treatment of neurological diseases.

1. Introduction

Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative disorder character-

ized by the decline of cognitive abilities and the impairment of memory retention. The con-

ventional pathological indicators of Alzheimer’s disease (AD) consist of extracellular amyloid

plaques composed of amyloid-β (Aβ), intracellular neurofibrillary tangles formed by hyper-

phosphorylated tau protein, and neuronal loss [1–5]. Research has demonstrated that muta-

tions in the amyloid protein precursor (APP) and presenilin-1/2 (PS 1/2) genes lead to
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abnormal production of Aβ, which is strongly linked to the development of early onset Alzhei-

mer’s disease (AD) [6, 7]. Furthermore, it has been observed that a decrease in Aβ production

resulting from a mutation in the APP gene is associated with a reduced risk of AD in humans

[8]. The overwhelming majority of Alzheimer’s disease (AD) cases are considered sporadic in

nature and tend to manifest at a significantly later stage in the progression of the disease [9].

There is a pressing need for a novel approach to Alzheimer’s disease (AD) therapy, given that

the existing therapeutic choices, such as memantine and cholinesterase inhibitors, solely

address the symptoms of the disease without targeting its fundamental causes of progression

[10, 11]. The activation of Free Fatty Acid Receptor 1, also known as G Protein-Coupled

Receptor 40 (GPR40), occurs primarily in pancreatic beta cells and is triggered by medium-

and long-chain free fatty acids [12]. According to the findings of the study conducted by

researchers, it was indicated that the activation of GPR40 has the potential to enhance insulin

secretion in a glucose-dependent manner [12]. Therefore, GPR40 has emerged as a promising

therapeutic target for the treatment of type 2 diabetes. Furthermore, it is worth noting that

GPR40 assumes a significant function in the process of neurogenesis and neurodevelopment

within the central nervous system of primates and rodents. This includes key regions such as

the hypothalamus, cortex, and hippocampus [13]. Kim JY demonstrated that the palmitic

acid-bovine serum albumin (PA-BSA) combination has the ability to boost the production of

APP and BACE1 by engaging with the GPR40 receptor on SK-N-MC cells and promoting pal-

mitic acid formation [14]. Moreover, previous studies have demonstrated [15] that the activa-

tion of GPR40 can enhance the phosphorylation of cyclic adenosine monophosphate response

element binding protein (CREB), leading to a significant increase in the expression of neuro-

logical factors. Additionally, it has been observed that the GPR40 agonist GW9508 can effec-

tively mitigate cognitive impairments in mouse models of Alzheimer’s disease induced by A1-

42 [16]. A more essential discovery is that GPR40 activation may enhance CREB’s degree of

phosphorylation, boosting the number of hippocampal neurons in mice [17]. Numerous cur-

rent research endeavors and investigations have provided substantial evidence regarding the

association between GPR40 and Alzheimer’s disease [15, 18–20]. GPR40 is also known to have

a significant impact on the process of memory formation and cognitive function [18]. Any

modification in the signaling of GPR40 could have substantial ramifications for the processes

of learning and memory formation that are impacted by Alzheimer’s disease [19]. There is a

substantial body of research indicating that insulin resistance in the brain plays a significant

role in the development of Alzheimer’s disease [21–23]. Despite the numerous studies, the pre-

cise role of GPR40 in the pathogenesis of Alzheimer’s disease continues to elude researchers.

There is still a requirement for the development of effective therapeutic strategies that specifi-

cally target GPR40 in the context of Alzheimer’s disease. Currently, individuals diagnosed with

Alzheimer’s disease receive treatment aimed at managing cognitive and behavioral symptoms

through the use of symptomatic drugs, which are administered with the intention of slowing

down the progression of the disease. Despite continuous endeavors to generate more effica-

cious pharmaceuticals, the significance of GPR40 in the pathophysiology of Alzheimer’s dis-

ease renders it a promising candidate for therapeutic discovery and development. Computer-

aided drug discovery (CADD) has emerged as a highly effective instrument in the field of drug

development, encompassing studies pertaining to Alzheimer’s disease [24–28]. CADD encom-

passes the utilization of computational methodologies and algorithms to discern possible drug

candidates, forecast their interactions with biological targets, and enhance their qualities

before doing experimental evaluations. Researchers can expedite the drug discovery process,

minimize expenses, and prioritize the most promising drug candidates for experimental vali-

dation by utilizing computational methodologies such as target discovery and validation, vir-

tual screening, ADME-Tox prediction, structure-based drug design (SBDD), drug
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repurposing, and network pharmacology. Therefore, CADD can assume a pivotal position

within the drug development process. Computational identification of potential therapeutic

candidates, followed by experimental validation, holds promise for the advancement of these

candidates to preclinical and clinical trials. This offers a newfound ray of hope for their poten-

tial utilization in individuals afflicted with Alzheimer’s disease. The objective of our ongoing

research is to ascertain possible agonist compounds that selectively bind to the agonist-binding

site of GPR40. The research employs a complex computational methodology that incorporates

pharmacophore modeling, virtual screening, molecular docking, molecular dynamics, and a

solvation-based scoring scheme. This approach aims to identify prospective compounds that

exhibit agonist activity on GPR40, as depicted in Fig 1.

2. Materials and methods

2.1. Computational structural analysis

Conducting structural investigations is crucial for comprehending the binding pattern and

shape of ligands. The conducted experiments facilitate the elucidation of the stability of crucial

residues implicated in the interaction between the ligand and the receptor. The structure of

the bound ligand with the GPR40 protein was documented in the study, and this information

was utilized to identify the crucial binding pocket. In our study, we selected the structures of

GPR40 bound to TAK-875 and MK8666 from the RCSB-PDB for our docking simulations.

Although TAK-875 and MK8666 are known to function as allosteric agonists, this choice was

made based on several key considerations. First, these structures are among the most well-

characterized GPR40-ligand complexes available, providing high-resolution data critical for

accurate docking simulations. Second, the binding sites of TAK-875 and MK8666 overlap sig-

nificantly with the orthosteric binding site, offering valuable insights into the receptor’s active

conformation and ligand-receptor interactions. Finally, utilizing these structures allows us to

leverage their detailed conformational dynamics and binding characteristics, which are essen-

tial for identifying potential agonists with similar binding modes. Therefore, despite their allo-

steric nature, TAK-875 and MK8666-bound structures are suitable and provide a robust

framework for our docking studies aimed at discovering new GPR40 agonists. Also, the GP40

PDB utilized was originally associated with type 2 diabetes mellitus research, due to limited

availability of GPR40 structures from the brain samples including neurological diseases. The

choice of this structure is justified by several factors. Firstly, the fundamental mechanism of

GPR40 activation and ligand binding is conserved across different physiological contexts,

including metabolic and neurological functions. Thus, the structural insights gained from type

2 diabetes mellitus research remain applicable to neurological studies. Secondly, the selected

PDB structures of TAK-875 and MK8666 provide high-resolution data essential for accurate

docking simulations, crucial for identifying potential agonists targeting GPR40. Lastly, by

leveraging these well-characterized structures, we ensure a robust and reliable framework for

our investigation into GPR40’s role in neurological diseases, facilitating the discovery of rele-

vant therapeutic agents despite the initial context of the PDB data. This binding pocket was

subsequently employed in computational approaches to facilitate the docking of ligands. Previ-

ous research have reported on the examination of structural binding in computational drug

design approaches, specifically focusing on the characterization of ligand binding modes

within the binding pocket [29–31].

2.2. Pharmacophore model generation and validation

The RCSB-PDB database had two inhibitors, specifically TAK-875 (PDBid-4PHU) and

MK8666 (PDBid-5TZR), that were reported to bind to the complex of GPR40 [32]. The
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compounds were employed for the creation of a pharmacophore following a meticulous struc-

tural study utilizing molecular dynamics (MD) investigations and trajectory analysis. The

Phase module of the Schrodinger software suite was employed to construct pharmacophore

hypotheses by analyzing the binding conformations of these drugs. The phase module has the

capability to do 3D database searching, structural alignment, and activity prediction. Confor-

mational sampling and a range of scoring methodologies are employed to discern prevalent

pharmacophore hypotheses. These hypotheses include the fundamental characteristics of

Fig 1. The image indicates the workflow employed for the studies.

https://doi.org/10.1371/journal.pone.0306579.g001
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three-dimensional chemical structures that are purportedly crucial for binding, when consid-

ering a collection of compounds that exhibit strong affinity towards a certain protein target.

Each hypothesis is accompanied with a set of aligned conformations that illustrate the probable

method in which the molecules will bind relative to each other.

2.3. Virtual screening

The researchers employed a ligand-based pharmacophore model to conduct a screening of the

natural product library accessible in the ZINC-15 database [33]. The NP library was obtained

and prepared using LigPrep, a ligand preparation feature of the Schrodinger software [34].

The LigPrep methodology encompasses a series of procedures aimed at transforming data, rec-

tifying structures, generating structural variations, eliminating redundant entities, and opti-

mizing molecular configurations. In our present operational process, we employed the Ionizer

module to generate ligands while ensuring the preservation of distinct chiralities of the mole-

cules. During the ligand preparation process, high energy ionization states were eliminated.

The library that was downloaded consisted of 224205 molecules. Each molecule within the

library had up to three distinct conformations, which were determined for each ligand using

the OPLS force field [35]. The hits were subsequently subjected to filtration using a structure-

assisted ligand-based pharmacophore model. Pharmacophore features were selected based on

structural studies and weights were applied to the specific features using the inferences derived

from structural studies. Distance constraints were applied to the features along with flexibility

to shortlist hit molecules by virtual screening. Only single conformation was shortlisted for

each hit molecule.

2.4. Machine learning modeling

Activity data for GPR40 protein was downloaded from the CHEMBL database [36]. The

downloaded data was processed by removing duplicates and entries having no defined EC50

activities. The "Rdkit" Python utility was utilized for the generation of various descriptors [37].

The detour algorithm is employed for the generation of descriptors, resulting in a reported

method that is twice as efficient as alternative approaches. An array of diverse descriptors was

computed for the activity data, encompassing descriptors of dimensions 1d, 2d, and 3d, as well

as several fingerprint-based descriptors such as pubchem, MACCS, and GraphOnly, for our

datasets. A considerable body of literature has been published regarding the utilization of

machine learning (ML) techniques in the field of computational drug discovery. The Scikit-

learn machine learning package was utilized in this study, employing Python version 3.10 [38,

39]. The dataset was partitioned into training and testing sets using the random shuffle and

train test split module provided by scikit-learn. The dataset was partitioned into training and

testing sets using an incremental approach, gradually adjusting the train-test ratio from 80/20

to 70/30. This iterative process aimed to maximize the model’s performance by maximizing

accuracy. A total of 29 distinct models were assessed in order to determine the optimal model

for our dataset based on various statistical criteria. The statistical criteria employed in the anal-

ysis included accuracy, receiver operating characteristic (ROC), area under the curve (AUC),

and F1 Score for each model. The highest-performing models were employed to evaluate the

results acquired from the pharmacophore-based screening of the ZINC database, which was

saved as the ZNHT database. The most optimal machine-learning model was employed to

conduct a screening of the ZNHT database, which was generated subsequent to the screening

of the ZINC database. Following the implementation of this dual screening strategy, we suc-

cessfully identified a considerable number of compounds that exhibit both a pharmacophore-

based profile and a machine learning-based signature pattern. Consequently, the selected hits
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were further subjected to a more rigorous computational screening procedure based on

docking.

2.5. Molecular docking

Molecular docking investigations were conducted using the crystal structure of GPR40 in asso-

ciation with the TAK-875 agonist [40]. The docking studies were conducted using the GLIDE

docking module of the Schrodinger software suite (version 2022–3) [41]. The Glide software

use a search algorithm to identify favorable interactions between ligand molecules and a recep-

tor molecule. These scores provide a quick and efficient means to screen large libraries of com-

pounds, identifying those with the best potential for binding. The Glide system has two

distinct docking modes, namely rigid and flexible. The flexible docking mode autonomously

generates conformations for any ligand provided as input. The concept of a ligand pose in flex-

ible docking refers to the specific arrangement of a ligand in terms of its position, orientation,

and conformation relative to the receptor. The ligand poses generated by Glide undergo evalu-

ation by a series of hierarchical filters that assess the interaction between the ligand and the

receptor. The energy-efficient positions are subsequently evaluated and assigned scores at the

conclusion. The extra-precision (XP) module of Glide was utilized for the docking process.

The XP mode of Glide integrates a rigorous sampling procedure with the utilization of a dis-

tinctive scoring function designed to detect ligand poses that are expected to possess unfavor-

able energies, drawing upon established principles of physical chemistry. The primary

objective of the redocking investigations was to optimize the parameters of the docking-based

screening methodology. The parameters include “inclusion of input partial charges” into the

scoring scheme, “utilization of partial atomic charges”, the method employed for “ligand sam-

pling”, the ability to “sample ring conformations” and “nitrogen inversion” during ligand sam-

pling, the consideration of “intra-molecular hydrogen bonds” as a rewarding factor, the

promotion of “planarity in the conjugation of Pi groups”, and the inclusion of “aromatic

hydrogen atoms” as potential donors. A grid area with a radius of 10 Å was utilized to build

the grid surrounding the ligand. In our investigations, the docking scores were generated

using a flexible search strategy in conjunction with XP mode. Several parameters were tuned

throughout the docking process in order to obtain a ligand pose that closely overlaps with the

binding pose observed in the crystal structure [42, 43]. The Blood Brain Barrier (BBB) penetra-

tion prediction of the aforementioned compounds was conducted using the ADMETlab 2.0

website [44].

2.6. Similarity index

In order to assess the similarity between the compounds and the ligands already documented

in the CHEMBL database [36], we employed the Tanimoto similarity index approach, utilizing

the Tanimoto 2d fingerprint [45]. The utilization of 2D fingerprints for similarity searching

across different compound activity classes consistently results in a higher number of identified

compounds compared to docking calculations. This approach offers computational efficiency

and has demonstrated its effectiveness in multiple comparative studies [46]. The Tanimoto

coefficient is a widely used metric in the field of molecular similarity analysis, employed to

assess the degree of similarity or dissimilarity between molecules. Todeschini et al. conducted

a benchmarking analysis wherein they examined 51 similarity coefficients. Their results offer

empirical support for the robustness of the Tanimoto coefficient [47]. Python scripts utilizing

the RDKIT library were employed to compute the similarity index of the most promising com-

pounds that were chosen following molecular docking investigations [48].

PLOS ONE Role of GPR40 in neurological disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0306579 October 8, 2024 6 / 25

https://doi.org/10.1371/journal.pone.0306579


2.7. Molecular Dynamics simulation and free energy calculations and

ADMET studies

Molecular Dynamics (MD) have the ability to determine the stability of ligands within the

binding groove of proteins. This knowledge can be utilized to aid in the discovery of novel

ligands that can act as either agonists or inhibitors. MD experiments for ligands [49] were con-

ducted using Gromacs version 2022.4. The GPR40 protein is classified as a transmembrane

protein. It is possible to investigate a transmembrane molecule through the application of MD

within a conventional solvation model, without the explicit inclusion of the molecule within a

membrane protein structure. In MD simulations, the lipid bilayer and the aqueous environ-

ment that surrounds a transmembrane molecule are commonly regarded as a cohesive entity

with averaged characteristics. This is done by the utilization of a normal solvation model, also

referred to as an implicit solvent model or continuum solvent model. When compared to

explicit membrane representations, this approach simplifies the simulation setup and has the

potential to reduce processing costs. In our studies, the CHARMM-27 force field was

employed [50]. Atomic partial charges and position restrain parameters for the ligand were

generated using the SWISSPARAM web server. The solvation of the complexes was carried

out by placing them in a cubic box with a 1 nanometer radius. The water model used for solva-

tion was an explicit simple-point-charge model. In order to neutralize the system, counterions

such as Na+ or Cl- were introduced. The long-range electrostatic interactions were computed

with the particle-mesh Ewald method. The evaluation of van der Waals interactions was con-

ducted utilizing the Lennard-Jones 6–12 potential. The bond lengths were constrained using

the Linear Constraint Solver approach. In order to resolve the steric clashes between atoms, an

extra energy minimization procedure was conducted employing the steepest-descent algo-

rithm for a total of 5,000 iterations. Subsequently, the system was subjected to equilibration

utilizing the NVT and NPT ensembles for 200 picosecond respectively, followed by a produc-

tion run lasting 200 nanoseconds. The trajectory analysis for different complexes was con-

ducted utilizing the built-in facilities in GROMACS, a widely-used molecular dynamics

simulation software. Additionally, the XMGRACE tool, available at [https://plasma-gate.

weizmann.ac.il/Grace/], was employed to generate graphical representations of the obtained

data. The solvation-based scoring of the ligands was performed by utilizing the trajectory of

the protein-ligand complex. This was achieved through the application of the widely recog-

nized MMPBSA approach, as described by Valdés-Tresanco et al in their influential publica-

tion from 2021 [51]. The software use the AMBER package to conduct the computation of the

Gibbs free energy for the protein-ligand complex [51]. The MM-PBSA approach has been

found to be more effective in drug discovery compared to conventional free energy estimates

[52]. This method takes into account not only the direct interactions between the ligand and

the receptor but also solvation effects and entropic contributions, offering a deeper under-

standing of the stability and energetics of the ligand-receptor complex. The Poisson-Boltz-

mann equation is commonly employed to approximate the electrostatic properties of

biological macromolecules, hence facilitating the investigation of ligand docking score to pro-

teins. The SASA (solvent accessible surface area) approach is employed to determine the

region encompassing the protein that is in touch with the solvent sphere through van der

Waals interactions. The binding free energy (ΔGbinding) is determined using equations 1, 2,

and 3 in this methodology as mentioned in the report [53]. The generation of a free energy

landscape was accomplished through the utilization of Python scripts. Initially, covariance was

calculated using in built gromacs tool “gmx covar”. The eigenvectors obtained from covariance

data were then used to plot the RMS fluctuation per atom on the two principal components

which cover more than 95% of the variance in the data. The first 2 principal components are
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the projections of a trajectory on the eigenvectors of its covariance matrix. gmx sham makes

multi-dimensional free-energy plot is generated from these principal components using the

gmx sham tool. The gmx sham plots the Gibbs free energy landscapes by inverting multi-

dimensional histograms. Further 3d plot was generated using matplotlib library of python.

ADMET studies were done using ADMETlab webserver [44].

3. Results and discussion

3.1. Computational structural analysis

A limited number of agonist ligand compounds, specifically two, have been described for the

GPR40 protein. One compound, TAK-875, had a crystal resolution of 2.332 Å as determined

by the Protein Data Bank (PDB) entry 4PHU. The other compound, MK-8666, displayed a res-

olution of 2.2 Å according to PDB entry 5TZR. Both ligands were shown to interact with the

identical allosteric binding site on GPR40, as depicted in Fig 2A–2D. The protein TAK-875

was targeted by agonists, which successfully progressed to phase II and phase III of clinical tri-

als. However, the agonist was ultimately removed during phase III due to the occurrence of

Fig 2. The image A indicates the ribbon view of protein and agonist binding bound cavity with bound ligand

TAK-875. A-D. Image B indicate the enlarged view of cavity, while the image C indicates the residues observed to be

interacting with ligand (orange color). Image D indicates the bound structure of MK-8666.

https://doi.org/10.1371/journal.pone.0306579.g002
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drug-induced liver injury. In comparison, MK-8666 had agonistic properties towards GPR40;

however, it was subsequently discontinued during the phase I clinical trials. Additionally, fol-

lowing alignment, both structures exhibited a significantly low root mean square deviation

(RMSD) value of 0.260 Å. The ligand-bound conformation of GPR40 with TAK-875 was cho-

sen for our research, with TAK-875 serving as the control molecule. The PDB entry with the

identifier 4PHU has a gap in the amino acid sequence, namely from residue 111 to residue

120. The residues were modeled with the SwissModel web server [54].

The model underwent energy minimization in order to eliminate undesirable interactions,

utilizing the "Protein preparation wizard" tool within the Schrodinger software. Extended

molecular dynamics (MD) simulations were conducted for a duration of 1 microsecond in

order to meticulously examine the time dependent stability of interaction between the protein

and ligand, as well as identify the crucial residues involved in the receptor contact. The interac-

tion between the agonist and specific residues, including Pro80, Val81, Ala82, Phe87, Tyr91,

Leu135, Leu138, Gly139, Phe142, Gly143, Leu168, Trp174, Ala179, Arg183, Tyr2240, and

Arg2258, was detected.

The stability of the system was determined through the analysis of its root mean square

deviation (RMSD), which exhibited a low value of 2.1 Å (Fig 3A). The stability of both the pro-

tein receptor and the ligand conformations was found to be significant. Furthermore, the

Fig 3. The image 3A indicates the RMSD plot of molecule TAK-875 in bound conformation with the receptor,

while the image 3B indicates the hydrogen bond pattern observed during the simulation time frame. A-C. Image

3C indicates the free energy landscape plot of the ligand.

https://doi.org/10.1371/journal.pone.0306579.g003
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molecule was often observed to form around 1–3 hydrogen bonds with the receptor during the

simulation, as depicted in Fig 3B. It is important to acknowledge that compounds that bind to

the agonist binding site of this receptor have the potential to boost downstream signaling

mediated by the GPR40 molecule, similar to the effects observed with TAK-875 and MK-8666.

The plot of the free energy landscape also demonstrates the presence of a single global mini-

mum for the molecule closely followed by another low energy conformation. Although, there

was minor change in conformation between the two conformations indicating high stability

(Fig 3C). Consequently, the molecular dynamics (MD) investigations have indicated the

potential for conducting additional computational studies, such as docking and pharmacologi-

cal modeling, on the binding site of the protein. Furthermore, the conformation of the agonist

can be utilized to construct a ligand-based pharmacophore by incorporating specific interac-

tions observed during simulation studies.

3.2. Pharmacophore model generation and validation

The crystal structures of the TAK-875 and MK-8666 bound receptor complexes were utilized in

order to gain insight into the crucial residue interactions that contribute to the stability of the

agonist within the binding groove of the GPR40 protein. The contact between the carboxylic

group and the Tyr2240 and Arg183 residues was detected, suggesting that the carboxylic group

could serve as an Acceptor group to establish crucial interactions with these residues. In a simi-

lar vein, it has been noted that the hydrophobic portion of TAK-875, when situated near the

hydrophobic groove of the protein, can serve as a hydrophobic characteristic. Furthermore, the

strategic positioning of an aromatic group in close proximity to a hydrophobic feature can

potentially enhance the preservation of pi-pi interactions with Tyr91 and Phe87. Consequently,

an aromatic characteristic was incorporated into the pharmacophore model. Two additional

aromatic features were incorporated into the model in order to maintain interactions with

Phe142 and Trp174. By integrating the aforementioned features and incorporating distance

constraints, we have developed a pharmacophore model consisting of five features. This model

will be utilized in our subsequent computational screening methodology. Distance constraints

were implemented on the pharmacophore model, accompanied by a tolerance range of 10–15%

for certain attributes. This was done to introduce flexibility in the search criteria throughout the

process of screening the database. The pharmacophore model consisted of three aromatic fea-

tures (R1, R2, and R3), one hydrophobic feature (Hy1), and one acceptor feature (A1) (see Fig

4). Three distinct variations of the pharmacophore model were developed by altering the toler-

ance and constraints parameters. Among the three models under consideration, it is seen that

model 2 exhibited the most elevated statistical values, as indicated in Table 1. The employed

model for screening purposes was a validated structure-guided approach.

3.3. Virtual screening

In the virtual screening technique, it was deemed necessary to evaluate four specific features,

whereas one feature was deemed optional for the evaluation of molecular pharmacophore fea-

tures. By applying the criteria, we successfully filtered out 3772 results from a total of over 0.20

million compounds in the natural product database. Given that the proportion of finds

accounted for a mere 0.0187% of the total search area, we proceeded to expose all identified

hits to a more rigorous screening approach. This involved evaluating the hits through the utili-

zation of the extra precision (XP) docking methodology of glide. The excluded search results

were converted into sdf file format and subsequently transformed into a ZNHT database using

the LigPrep module. The database underwent additional machine learning-based filtering, as

detailed in the section below.
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3.4. Machine learning modelling

CHEMBL id–CHEMBL4422 was used to download the activity data of GPR40 molecules. The

entire dataset is partitioned into training and test sets, with a gradual adjustment of the ratio

from 80/20 to 70/30, in order to improve the model and achieve the highest level of accuracy.

In our binary classification approach, compounds with an EC50 value of 1 μM or less were cat-

egorized as active, whereas molecules with an EC50 value above 1 μM were categorized as inac-

tive. The dataset was utilized to construct a binary classification model employing a selection

of prominent machine learning methods such as random forest, support vector machine, ada

boost classifier, extra tree classifier, decision tree classifier, bagging classifier, and others. Out

Fig 4. The image indicates the pharmacophore model developed by using extensive structural ligand studies.

https://doi.org/10.1371/journal.pone.0306579.g004

Table 1. This table summarizes the statistical parameters for pharmacophore models of GPR40 test database con-

taining active and decoy sets.

Parameters Model-1 Model-2 Model-3

Total no. of molecule s in database (D) 100 100 100

Total no. of active (A) 20 20 20

Total hits (Ht) 28 24 30

Active hits (Ha) 17 18 16

% yield of actives (H a / H t × 100) 60.09 75 53.33

% ratio of actives (H a / A × 100) 85 90 80

Enrichment factor (EF) 3.03 3.75 2.66

False positives (Ht—Ha) 9 6 14

False negatives (A—Ha) 3 2 4

Goodness of hit score (GH) 0.59 0.73 0.50

https://doi.org/10.1371/journal.pone.0306579.t001
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of the 29 distinct algorithms examined, LGBMC exhibited the highest levels of accuracy (0.87),

ROC (0.92), AUC (0.92), and F1 score (0.87). The XGBoost classifier and random forest classi-

fier were closely observed, as depicted in Fig 5A. The LGBMC classifier demonstrated a signifi-

cantly high cross-validation score of 0.865 when evaluated using a 20-fold cross-validation

technique (Fig 5B). The LGBMC classifier model that was chosen as the best performer had a

notable level of accuracy in both training and test phases, as seen by the confusion matrix (Fig

5C). The model demonstrated a high level of precision in accurately identifying inactive chem-

icals (0.804), with a slightly higher precision observed in the identification of active molecules

(0.896). The active compounds exhibited a memory value of 0.920, while the inactive mole-

cules had a slightly lower recall value of 0.804. The area under the receiver operating character-

istic (ROC) curve was determined to be 0.92 for both the active and inactive classes, as

depicted in Fig 5D. The LGBMC Classifier model was chosen for binary classification of the

ZNHT database, which was constructed from the virtual screening of the ZINC database using

a pharmacophore-based technique, based on the statistical characteristics. Following the utili-

zation of machine learning techniques for virtual screening of compounds, a total of 2432

active molecules were obtained.

Fig 5. a-d. The image “5a” indicates the accuracy plot of various ML models represented in the form of vertical bar plot. Image “5b” indicates the cross-

validation score of “LGBMC Classifier” model. Image “5c” indicates the confusion matrix of “LGBMC Classifier” model, which displayed the best accuracy.

Image “5d” indicates the ROC curve of “LGBMC Classifier” model.

https://doi.org/10.1371/journal.pone.0306579.g005
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These molecules had similarities in their descriptor-based data to molecules that have been

previously reported in the CHEMBL database, with an EC50 value below 1 μM. The database

was effectively decreased to 64.47% of its initial size. The compounds were preserved in the

ZNHT_2 database for subsequent computational investigations.

3.5. Molecular docking

The crystal structure of GPR40 complexed with the TAK-875 agonist, identified by the Protein

Data Bank (PDB) identifier 4PHU, was employed in our investigation of structural binding.

This crystal structure served as the basis for conducting docking investigations. The Glide XP

docking approach was employed to assess the docking score of compounds to the receptor

through docking. Various parameters were tuned in the glide tool to achieve the most optimal

redocking stance. The input partial charges were included into the scoring scheme, while par-

tial atomic charges were not utilized. Ligand sampling was done by including sample ring con-

formations only while the “nitrogen inversion” were not included. Intra-molecular hydrogen

bonds were not rewarded in scoring scheme and conjugate-Pi groups were made planar. Also,

the “aromatic hydrogen atoms” were selected as potential donors during redocking studies.

Upon meticulous optimization of the docking parameters, we successfully generated the

docking pose exhibiting a root-mean-square deviation (RMSD) of less than 0.14 Å. The

redocking stance exhibited a docking score of -12.1 Kcal/mol. Following the process of dock-

ing-based screening, it was revealed that a mere 10 molecules exhibited a superior docking

score compared to TAK-875. The compounds were subjected to meticulous analysis to assess

their potential for molecular interaction with the receptor, as depicted in Fig 6A–6E. The

observation was made that all compounds exhibited binding to the identical binding pocket of

the GPR40 protein, albeit with diverse binding conformations. The compound with the high-

est selection score displayed a docking score of -13.9 Kcal/mol, while molecule 2 exhibited a

docking score of -13.8 Kcal/mol. Compound 1 was observed to engage in hydrogen bonding

interactions with the backbone of residue Gly139, as well as with the side chains of residues

Arg183 and Arg420. It also displayed hydrophobic Interactions with residues namely Ala96

(3.9 Å), Val97 (4.2 Å), Leu151 (4.5 Å), Leu184 (4.6 Å), Phe100 (4.4 Å), Phe155 (4.7 Å). Com-

pound 3 exhibited hydrogen bonding interactions with the side chains of Arg183 and

Arg2258, as well as the backbone atoms of Pro80 and Leu138. Compound 4 exhibited the abil-

ity to engage in hydrogen bonding interactions with the side chains of Tyr91, Tyr2240, and

Arg183, as well as with the backbone of Pro93. Compound 6 exhibited interactions with cer-

tain residues in the protein backbone, including Pro80, Gly139, Leu140, and Gly143, as well as

with the side chains of Ty91, Arg183, and Arg2258. Compound 10 was observed to engage in

hydrogen bonding interactions with both the side chain of Arg183 and the backbone of Pro80.

Additionally, Pi-Pi stacking interactions were reported with residue Phe87. The binding affini-

ties and the details of the hydrogen and hydrophobic interactions of the top selected com-

pounds have been compiled and shown in Table 2. In summary, Hydrogen bond interactions

feature prominently with Arg183, often forming bonds with distances between 1.7 and 2.5 Å
and angles ranging from 99 to 148 degrees. Other significant hydrogen bonding residues

include Tyr91, Arg2258, and Tyr2240, demonstrating varying bond angles and distances. Resi-

dues such as Gly139 and Glu172 also appear frequently, indicating their role in stabilizing

ligand binding through hydrogen bonds. Hydrophobic interactions were predominantly

observed with residues Ala83, Val84, Leu138, Phe142, and Leu171, all showing frequent partic-

ipation with distances ranging from 3.2 to 4.9 Å. Notably, Phe87, Trp150, and Val141 also con-

tribute significantly. The prediction of the Blood Brain Barrier (BBB) for the compounds was

conducted using the ADMETlab 2.0 website. All the compounds had excellent blood-brain
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barrier (BBB) penetration values and demonstrated similar results to the TAK-875 inhibitor,

as shown in Table 3. The presented compounds exhibited similar or favorable blood-brain bar-

rier (BBB) penetration values across all molecules. The molecules underwent molecular

dynamics (MD) experiments, as outlined in the subsequent section.

3.6. Similarity index calculations

The RDKit module in Python was utilized to compute the chemical similarity index between a set

of known inhibitors described in CHEMBL that exhibit agonist action against the GPR40 protein.

It was observed that all compounds had a similarity index< 71% when compared to the reported

molecules, as measured by both the Tanimoto MACCS value and the Tanimoto MORGAN value.

Compounds that possess structural similarities typically exhibit a tendency to interact with pro-

teins that share comparable characteristics. Research conducted by Martin et al. has demonstrated

that there exists a 30% likelihood that a molecule exhibiting a resemblance of�0.85 to a previ-

ously reported compound will exhibit activity [55]. Therefore, all the compounds possess unique

structures and have not been previously documented as having activity against the GPR40 protein.

The molecular similarity data has been compiled and shown in Table 4.

Fig 6. The image 6A – 6E indicates the binding poses of the top selected molecules namely 1, 3, 4, 6 and 10 respectively. A-E.

https://doi.org/10.1371/journal.pone.0306579.g006
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3.7. Molecular Dynamics simulation and free energy studies

Additional compounds that were selected as potential candidates underwent molecular

dynamics (MD) simulations using the Gromacs 2022.4 software package. Upon conducting a

meticulous analysis of the trajectories of various molecules, it was observed that certain mole-

cules, which were included in the final selection, exhibited stable root mean square deviation

Table 2. Table 2 indicates the binding affinities as well as MMPBSA score of top selected molecules along with the summary of residues involved in the Hydrogen

and hydrophobic interactions. Distance was measured in Armstrong and angle was measured in degrees (˚) from donor to acceptor atoms for hydrogen bonds.

Sr.

No.

Code

Used

ZINC Code Glide Docking

Score

MMPBSA

Score

Hydrogen Bond (Distance,

Angle)

Hydrophobic Interactions (Distance)

1 1 ZINC000067913631 -13.9 -63.3 Arg183(1.7, 148); Arg2258(2.6,

124); Gly139(2.3, 104)

Ala83(3.9); Val84(4.2); Leu138(4.5); Leu171(4.6);

Phe87(4.4); Phe142(4.7)

2 2 ZINC000038238855 -13.9 -40.3 Arg183(1.9, 135); Glu172(2.6, 148) Ala83(3.8); Leu138(4.6); Leu171(4.7); Phe142(4.5)

3 3 ZINC000095919068 -13.5 -47.6 Arg183(2.0, 116);

Glu172(1.8, 129);

Arg2258(2.6, 130); Pro80(2.3,

115); Leu138(1.9, 104)

Ala83(4.5); Val84(4.3); Phe142(2.9); Leu138(4.2);

4 4 ZINC000067910850 -13.4 -59.9 Tyr91(2.8, 120);

Arg183(2.5, 120);

Tyr2240(2.2, 124);

Ala189(2.5, 106); Leu135(2.6,

114); Pro80(2.6, 100)

Phe142(4.2); Gly139(4.3); Val84(4.1)

5 5 ZINC000604377487 -13.4 -44.2 Tyr91(2.3, 107);

Arg183(1.7, 105);

Arg2258(2.1, 145):

Gly148(2.1, 135);

Ala83(4.2); Phe87(2.8); Leu138(4.4);Phe142(4.3)

6 6 ZINC000604377474 -12.9 -54.8 Arg183(1.7, 133); Tyr2240(2.7,

111); Gly139(3.0, 148)

Ala83(4.2); Trp150(3.2); Phe142(4.7)

7 7 ZINC000604377556 -12.7 -38.2 Tyr91(2.2, 120); Arg183(2.0, 109);

Tyr2240(2.7, 198); Arg2258(1.9,

96)

Ala83(4.0); Val84(4.8); Leu138(3.9)

8 8 ZINC000085625919 -12.3 -27.5 Arg183(1.8, 122); Ala83(1.9, 99);

Gly139(2.7, 108);

Ala179(2.7, 110)

Phe87(4.7); Val141(4.4); Ala182(4.0); Val84(4.7);

Leu138(4.9); Trp174(4.6); Leu171(4.7)

9 9 ZINC000085597495 -12.1 -28.8 Arg196(2.3, 113); Ala192(2.5, 109) Ala83(4.4); Val84(3.7); Leu138(4.2)

10 10 ZINC000085597488 -12.1 -45.2 Arg196(1.9, 112); Leu151(2.6, 104) Phe142(4.4); Phe87(4.4); Leu138(4.4); Ala182(4.3)

11 Control TAK-875 -12.1 -42.5

https://doi.org/10.1371/journal.pone.0306579.t002

Table 3. The table summarizes the ADMET values of various top shortlisted hit molecules after docking based evaluation.

Sr. No. ZINC DATABASE CODE Code used logP F30% BBB

Penetration

H-HT T 1/2

1 ZINC67913631 1 0.059 0.999 0.349 0.172 0.882

2 ZINC000038238855 2 -1.894 0.999 0.16 0.277 0.951

3 ZINC000095919068 3 3.695 1.0 0.008 0.613 0.915

4 ZINC000067910850 4 0.884 0.993 0.278 0.733 0.751

5 ZINC000604377487 5 -0.165 1.0 0.246 0.098 0.841

6 ZINC000604377474 6 -0.146 1.0 0.264 0.134 0.888

7 ZINC000604377556 7 0.16 1.0 0.252 0.081 0.869

8 ZINC000085625919 8 2.37 0.961 0.04 0.38 0.907

9 ZINC000085597495 9 2.608 0.995 0.049 0.597 0.863

10 ZINC000085597488 10 4.646 0.785 0.058 0.586 0.644

11 Control Control 2.286 0.878 0.873 0.986 0.848

https://doi.org/10.1371/journal.pone.0306579.t003
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(RMSD) plots with RMSD values below 3 Armstrong (as depicted in Fig 7A). The ligands, spe-

cifically 1, 3, 4, 8, and 9, demonstrated stable root mean square deviation (RMSD) plots

throughout the simulation. Minor conformational changes were observed, with RMSD values

below 3 Å, demonstrating the ligands’ significant stability in their poses during the simulation

(Fig 7B). During the course of a 200 ns molecular dynamics (MD) simulation, compounds 2,

6, and 10 were observed to adopt stable conformations. Compounds 5 and 7 exhibited a lack

of stability in achieving a stable conformation during the molecular dynamics (MD) simula-

tion, suggesting a low level of pose stability. During the simulation investigations, the chemi-

cals designated as 1, 3, 4, 8, and 10 were observed to establish 5, 4, 6, 3, and 3 hydrogen bonds,

respectively, with the receptor, as depicted in Fig 7C–7D. It is noteworthy that compound 6,

upon attaining a stable conformation at around 120 nanoseconds, established a maximum of

eight hydrogen bonds with the receptor during the duration of the simulated investigations.

During the molecular dynamics (MD) simulation, it was observed that the formation of hydro-

gen bonds in molecules 2 and 9 was rather infrequent. The ligand-receptor complex typically

maintains a minimum distance of less than 2.5 Å, suggesting a high likelihood of non-covalent

interactions. This is consistent with the general observation that non-covalent interactions pre-

dominantly occur within 4 Å, as depicted in Fig 7E–7H. Additionally, the measured number

of connections approached approximately 4000 for molecules 1, 4, 5, 6, 7, and 10, suggesting

the presence of extremely favorable interactions among these molecules. Furthermore, it was

noted that there were no significant changes in the free energy of solvation for all the ligands

that were bound (Fig 7I, 7J). This suggests that there were no substantial alterations in the

binding orientation of the molecules throughout the simulations. Also, mostly protein residues

involved in binding displayed similar root mean square fluctuations in presence of different

residues except for ligand 7 (Fig 7K, 7L). During our observation on molecular trajectories, it

was seen that molecules 1, 3, and 6 exhibited stable hydrogen bond interactions with both

Arg183 and Arg2258. Compound 4 and 10 were found to exhibit stable hydrogen bonds with

Arg183, as reported previously [56, 57].

The results of the MMPBSA calculations revealed that six compounds had a greater solva-

tion based binding affinity compared to the control molecule TAK-875. The compounds, spe-

cifically molecules 1, 3, 4, 5, 6, and 10, exhibited solvation-based binding affinities with values

of -63.3, -47.3, -59.9, -44.2, -54.8, and -45.2, respectively. The complete details of various ener-

getic components have been summarized in Fig 8 and Table 4. In the analysis of the molecular

dynamics (MD) simulations, our focus was on evaluating the stability and interaction patterns

of the ligand-receptor complexes. We observed stable root mean square deviation (RMSD)

Table 4. The table summarizes the Tanimoto similarity index of all selected top molecules.

Sr. No. Compounds Name/code Tanimoto-MACCS Tanimoto-MORGAN

1 ZINC000067913631 0.479452 0.128205

2 ZINC000038238855 0.586957 0.170732

3 ZINC000095919068 0.555556 0.284211

4 ZINC000067910850 0.559322 0.270968

5 ZINC000604377487 0.5 0.284615

6 ZINC000604377474 0.666667 0.443114

7 ZINC000604377556 0.487805 0.285714

8 ZINC000085625919 0.652174 0.296875

9 ZINC000085597495 0.675 0.383333

10 ZINC000085597488 0.707317 0.37963

11 TAK-875 Control Control

https://doi.org/10.1371/journal.pone.0306579.t004
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Fig 7. A-L. The image 7A and 7B indicates the RMSD plots of the ligands conformations when bound to receptor. The image 7C and 7D indicates the

hydrogen bond plots of the molecules. Image 7E and 7F indicate the total number of contacts observed between the protein and the ligands during

simulation. Image 7G and 7H indicate the minimum distance observed between the protein and the ligands during MD. Image 7I and 7J indicate the free

energy of solvation of the ligand molecules observed during MD studies. Image 7K and 7L indicate the RMSF of the residues in the presence of the ligands.

https://doi.org/10.1371/journal.pone.0306579.g007
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plots for several compounds, indicative of their robust binding to the receptor. Notably, com-

pounds 1, 3, 4, 8, and 9 displayed consistent RMSD values below 3 Å, suggesting minimal con-

formational changes and significant stability in their poses throughout the simulation period

(Fig 7A). Similarly, compounds 2, 6, and 10 demonstrated stable conformations, albeit with

minor fluctuations, over the course of the 200 ns simulation. Compound 6 after initial devia-

tions, indicated stable pose throughout the simulation. Conversely, compounds 5 and 7 exhib-

ited a lack of stability, failing to achieve a stable conformation. Hydrogen bond analysis

revealed varying degrees of interaction between the ligands and the receptor. Notably, com-

pounds 1, 3, 4, 8, and 10 established multiple hydrogen bonds with the receptor, while com-

pound 6 exhibited a remarkable increase in hydrogen bond formation over time, peaking at

eight bonds during the simulation. However, compounds 2 and 9 showed infrequent hydrogen

bond formation. Per residue decomposition analysis of the residues in the MD trajectory indi-

cated residues namely His137, Glu172, Arg183, Arg2258 contributing majorly in non-covalent

interaction with the protein in most of the ligands (Fig 9A–9E). Overlapping of the protein-

ligand conformations from time frame 50ns, 100ns, 150ns and 200ns also indicated the ligands

1, 3, 4, 6 and 10 indicated stable poses with low deviations in the binding pocket (Fig 10A–

10B). For compounds namely 2, 5, 7, 8 and 9, the overlapped conformations of the ligands

were highly divergent indicating low stability. Although, we highlighted the presence of a sin-

gle prominent global minimum in the free energy landscape (FEL) plots for compounds 1, 3,

4, 6, and 10, as depicted in Fig 11. While the identification of a global minimum suggests stabil-

ity, it is not the sole criterion for assessing complex stability and binding affinity. Factors such

as the free energy level of the most stable state, conformational entropy, and conformational

diversity also play crucial roles in determining binding affinity. We also carried out ADMET

studies of top selected molecules using ADMETlab webserver.

The results have been summarized in Table 5. Based on a meticulous examination of the

RMSD plots, in conjunction with an assessment of the hydrogen bonding pattern and a water-

Fig 8. The image summarizes the MM-PBSA calculation energy terms for various ligands.

https://doi.org/10.1371/journal.pone.0306579.g008
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based scoring scheme, it is possible to deduce that five specific molecules, namely 1, 3, 4, 6, and

10, exhibit characteristics that warrant prioritization for subsequent evaluation.

4. Conclusion

This paper introduces a robust computational model for the purpose of rationalizing the

design of GPR40 protein agonists. By utilizing a substantial collection of protein-ligand crystal

structures, we successfully elucidated the distinctive features of the protein’s allosteric binding

site. This region encompasses a cavity that assumes a pivotal function in the binding of ago-

nists. Our computational structural analysis identified critical residues, such as Arg183,

Tyr402, and Phe87, which are crucial for the stability and binding affinity of agonists within

the GPR40 binding site. Hydrogen bond interactions with Arg2240 were also noted, which

were not previously documented in literature, indicating new potential targets for enhancing

binding affinity. The developed pharmacophore model consists of five features: three aromatic

features (R1, R2, and R3), one hydrophobic feature (Hy1), and one acceptor feature (A1). By

employing a screening methodology that utilizes a structural ligand-based pharmacophore, we

successfully eliminated a mere 0.01867% of hit compounds from an extensive library. Further-

more, we successfully identified ten compounds that have a higher docking score compared to

TAK-875. Glide Docking Scores provide a quick assessment of binding affinity by evaluating

Fig 9. A-E. The image 9A to 9E indicates the per residue decomposition analysis of the compounds namely 1, 3, 4, 6, 10.

https://doi.org/10.1371/journal.pone.0306579.g009
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the fit within the binding site, whereas MMPBSA Scores offer a detailed evaluation of binding

free energy, accounting for solvation effects and entropic contributions. Furthermore, struc-

tural modifications in agonist design may increase potency for molecules, especially, by incor-

porating a carboxylic group to establish critical interactions with Arg183 and Tyr2240.

Positioning aromatic groups to enhance pi-pi interactions with residues like Tyr91 and Phe87,

and ensuring a hydrophobic pocket near the hydrophobic goove of GPR40 to enhance bind-

ing. The stability of the top five molecules (1, 3, 4, 6, and 10) was seen in their interactions with

the receptor in the binding groove during the MD studies, suggesting strong solvation based

binding affinity compared to the TAK-875. All of the aforementioned compounds exhibited a

single prominent global minimum in the free energy landscape plot, suggesting that they may

have attained a stable conformation with the receptor. This suggests that their strong affinity

to the receptor can be attributed to their increased interactions with the receptor through

hydrogen bonding and other non-covalent interactions. The compounds shortlisted through

the approach can be further analyzed in order to assess their potential therapeutic effects on

the GPR40 protein. Validation of these compounds will be conducted in our next investiga-

tions through the utilization of a cell line-based evaluation. Once validated, these compounds

have the potential to be utilized as primary candidates for optimization studies or subsequent

in vivo investigations. Regarding the future of this work, we plan to broaden our scope to

include other drug targets related to metabolic and neurological diseases. The computational

methodology developed in our research can be adapted to facilitate the discovery of previously

unidentified agonist compounds for various targets beyond GPR40. This approach may be

applied to various molecular databases, thereby enhancing the likelihood of identifying novel

molecules with therapeutic potential for targeting GPR40. However, this study has limitations.

The computational predictions need to be validated experimentally to confirm the biological

Fig 10. A-E. The image 10A to 10E indicates the overlapped poses of the 50ns, 100ns, 150ns and 200ns time frames of the compounds namely 1,

3, 4, 6, 10.

https://doi.org/10.1371/journal.pone.0306579.g010
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activity of the identified compounds. Additionally, our model relies on the accuracy of avail-

able crystal structures, and the dynamic nature of protein-ligand interactions might not be

fully captured. Future work will involve integrating more dynamic simulations and experi-

mental validation to address these limitations. By refining our model and incorporating more

comprehensive datasets, we aim to improve the predictive power of our computational

approach, thereby advancing the field of drug discovery.

Fig 11. a-e. The image 11a to 11e indicates the free energy landscape plots of the compounds namely 1, 3, 4, 6, 10 when bound to receptor.

https://doi.org/10.1371/journal.pone.0306579.g011

Table 5. The table summarize the various variables which are used for calculating ΔG value. GMX MMPBSA score was calculated using last 50 ns trajectory of the

MD simulation file.

MOLECULE ΔVDWAALS ΔEEL ΔEGB ΔESURF ΔGGAS ΔGSOLV ΔTOTAL

1 -65.71 -46.92 59.63 -10.30 -112.63 49.34 -63.29

2 -44.26 -26.04 37.07 -7.04 -70.29 30.04 -40.26

3 -55.26 -21.45 34.37 -8.84 -57.67 29.07 -47.60

4 -53.93 -55.64 57.82 -8.12 -109.58 49.70 -59.87

5 -56.76 -19.40 40.30 -8.31 -76.16 31.99 -44.17

6 -54.69 -71.14 80.23 -9.18 -125.83 71.05 -54.77

7 -50.97 -17.73 38.13 -7.66 -68.70 30.47 -38.24

8 -41.37 -6.33 25.58 -5.41 -47.70 20.17 -27.53

9 -47.59 -6.12 31.13 -6.21 -53.70 24.92 -28.78

10 -62.65 -20.85 47.13 -8.79 -83.50 38.34 -45.16

Control -53.54 -23.06 41.58 -7.43 -76.60 34.15 -42.45

https://doi.org/10.1371/journal.pone.0306579.t005
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