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Abstract

State of energy (SOE) is an important parameter to ensure the safety and reliability of lith-

ium-ion battery (LIB) system. The safety of LIBs, the development of artificial intelligence,

and the increase in computing power have provided possibilities for big data computing.

This article studies SOE estimation problem of LIBs, aiming to improve the accuracy and

adaptability of the estimation. Firstly, in the SOE estimation process, adaptive correction is

performed by iteratively updating the observation noise equation and process noise equa-

tion of the Adaptive Cubature Kalman Filter (ACKF) to enhance the adaptive capability.

Meanwhile, the adoption of high-order equivalent models further improves the accuracy and

adaptive ability of SOE estimation. Secondly, Long Short-term Memory (LSTM) is intro-

duced to optimize Ohmic internal resistance (OIR) and actual energy (AE), further improving

the accuracy of SOE estimation. Once again, in the process of OIR and AE estimation, the

iterative updating of the observation noise equation and process noise equation of ACKF

were also adopted to perform adaptive correction and enhance the adaptive ability. Finally,

this article establishes a SOE estimation method based on LSTM optimized ACKF. Validate

the LSTM optimized ACKF method through simulation experiments and compare it with indi-

vidual ACKF methods. The results show that the ACKF estimation method based on LSTM

optimization has an SOE estimation error of less than 0.90% for LIB, regardless of the SOE

at 100%, 65%, and 30%, which is more accurate than the SOE estimation error of ACKF

alone. It can be seen that this study has improved the accuracy and adaptability of LIB’s

SOE estimation, providing more accurate data support for ensuring the safety and reliability

of lithium batteries.

1. Introduction

With the environmental pollution caused by the combustion of fossil fuels, the development of

green and sustainable energy storage devices is of great significance for the utilization of
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renewable energy. As a new type of energy storage equipment that provides electricity for the

world, lithium batteries have received more and more attention [1–4].

State of energy (SOE) is an important parameter of battery management system (BMS),

which is the ratio of remaining available energy to the maximum available energy [5, 6], and is

one of the most critical parameters in BMS. In order to improve the performance of electric

vehicle BMS, a high-precision SOE estimation algorithm is needed [7].

However, accurate SOE estimation is challenging because of erratic battery dynamics and

SOE variation with current, temperature, operating conditions, etc. In recent years, Cubature

Kalman Filter (CKF) has been widely used in SOE estimation of LIBs due to its good dynamic

tracking ability. Arasaratnam and Haykin [8, 9] first proposed a CKF method of volume Kal-

man filtering based on Cubature integral transformation. The research of CKF in LIBs state

estimation is mainly divided into two directions(as shown in Fig 1): one is to optimize the

parameters of CKF; The second is to optimize the noise effect of CKF.

In terms of parameter optimization, the first step is to optimize matrix decomposition. Li

et al. [10] proposed an improved CKF algorithm, which implements the diagonalization

decomposition of the covariance matrix and a strong tracking filter. In Ref. [11], three typical

matrix decomposition strategies, namely, singular value decomposition (SVD), UR decompo-

sition, and LU decomposition are introduced, to replace the Cholesky decomposition in the

traditional CKF.

In terms of parameter optimization, the second research direction is to correct the parame-

ters of LIBs. In Ref. [12], forgetting factor recursive least squares (FFRLS), optimal bounding

ellipsoid (OBE), and linear Kalman filter (LKF) are discussed, and the OBE algorithm is more

suitable. In Ref. [13], an efficient method of parameter identification for LIBs using CKF and

least square with gradient correction is proposed. Li et al. [14] introduced the constraint condi-

tion of the pneumatic principle to replace the temperature correction coefficient, which can

realize the fast convergence of SOC. Li et al. [15] the vector forgetting factor recursive least

squares method is utilized for model parameter online identification.

Finally, intelligent technology is integrated into the parameter optimization process. Wang

et al. [16] combined the H1 filter with SVD-CKF to solve the problem of decreased SOC esti-

mation accuracy caused by temperature changes. Ma et al. [17] used the generalized maximum

correlation criterion and fixed-point iteration method to enhance the robustness of the filter

and better adapt to various complex situation. Fu et al. [18] introduced a new type of weighted

multi-innovation Cubature Kalman filter (WMICKF). This filter can innovate vector weight-

ing calculations based on error distribution and time distribution, thereby achieving SOC esti-

mation. Compared to traditional methods, WMICKF has higher estimation accuracy and

better robustness, and can effectively handle SOC estimation problems in complex and ever-

changing environments. Song et al. [19] proposed a new joint support vector machine- cuba-

ture Kalman filter method.

Fig 1. SOE estimation method.

https://doi.org/10.1371/journal.pone.0306165.g001
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In order to study the noise effect of CKF optimization, the noise matrix is modified first.

Liu et al. [20] found that the Sage-Husa estimator can timely grasp the statistical characteristics

of process and measurement noise, and make corrections to them. Experiments have shown

that this algorithm has strong robustness to the initial error of SOC. Wang et al. [21] proposed

a novel state noise matrix self-tuning CKF algorithm based on the optimal model. The experi-

mental results show that this improved CKF algorithm performs well in tracking the minimum

SOC envelope of parallel battery module. During the voltage plateau period, the estimated

SOC error remains stable within 1.2%, and at the end of discharge, it remains stable within

4.3%. These data fully demonstrate the effectiveness of the proposed method. Wang et al. [22]

proposed a novel variable forgetting factor recursive least square (VFFRLS) noise adaptive

CKF algorithm based on the VFFRLS algorithm to cope with changes in model parameters. In

Ref. [23], Adaptive noise recognition combined with dual Kalman filters to achieve higher

robustness and computational efficiency.

In the same way as parameter optimization, intelligent technology is also incorporated in

noise optimization. In Ref. [24], the second-order resistor capacitor equivalent circuit model

and the VFFRLS online parameter identification method were adopted, and a fuzzy adaptive

controller was proposed based on this. The purpose of this controller is to improve the conver-

gence speed of SOC estimation for steady-state Kalman filter. Tian et al. [25] elaborates on a

method of integrating long- short term memory LSTM networks with ACKF to estimate bat-

tery state more accurately and stably.

In summary, the integration of intelligent technology and CKF has become a development

trend in the future. The integration of intelligent technology and CKF will further improve the

accuracy and adaptive characteristics of SOE estimation.

Validate the LSTM optimized ACKF method through simulation experiments and compare

it with individual ACKF methods. The results indicate that the proposed method can signifi-

cantly improve the estimation accuracy of SOE.

State of energy estimation of LIBs based on long short-term memory optimization ACKF

has been proposes in the paper, and the superiority of method is verified. There are three origi-

nal contributions as follows:

1. In the process of SOE estimation, the observation noise equation and process noise equa-

tion of ACKF are updated iteratively to make adaptive correction and enhance the adaptive

ability.

2. The LSTM is introduced to optimize the Ohmic internal resistance (OIR) and actual energy

(AE), and further improve the accuracy of SOE estimation.

3. In the process of OIR and AE estimation, the observation noise equation and process noise

equation of ACKF are updated iteratively to make adaptive correction and enhance the

adaptive ability.

2. Estimation model of SOE

2.1. SOE

The SOE of LIB: the ratio of the remaining energy to the nominal energy, namely:

Sekþ1 ¼ Sek �
UkDt
E
ik ð01Þ

where, Sek, ik, and Uk are the SOE, current, and working voltage of a LIB at k time in discrete

state; E is nominal energy of a LIB; Δt is the sampling period.
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2.2. SOE estimation model based on TRCEM

In order to simulate the charge and discharge characteristics of lithium-ion batteries more

accurately, in the process of selecting the equivalent circuit model, not only the polarization of

lithium-ion batteries, but also the complexity and practicability of the equivalent model should

be considered. Based on the consideration of accuracy, complexity, and practicability, third-

order resistor-capacitance equivalent model (TRCEM) is chosen in this paper.

In Fig 2, Uoc, UL, iL, and R0 are the open circuit voltage (OCV), working voltage, charge/dis-

charge current, and Ohmic internal resistance of LIB; R1, R2, and R3 is the Ohmic polarization

Fig 2. The TRCEM of SOE estimation.

https://doi.org/10.1371/journal.pone.0306165.g002
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resistance, electrochemical polarization internal resistance, and the internal resistance of con-

centration difference polarization; C1, C2, and C3 is the Ohmic polarization capacitance, elec-

trochemical polarization capacitance, and concentration differential polarization capacitance;

U1, U2, and U3 are the voltages at both ends of capacitor C1, C2, and C3 respectively; τ1 = R1C1,

τ2 = R2C2, τ3 = R3C3, time constant.

According to Fig 2, the discrete state equation of LIB’s TRCEM is as follows:
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According to Fig 2, the discrete observation equation of LIB’s TRCEM is as follows:

Uk ¼
dðUocðSeÞÞ
dSe

jSe¼Sek � 1 � 1 � 1

� �

�

Sek
UR1C1

k

UR2C2

k

UR3C3

k

2

6
6
6
6
4

3

7
7
7
7
5
� ikR0 ð03Þ

As

Ak ¼

1 0 0 0

0 exp �
Dt
t1

� �

0 0

0 0 exp �
Dt
t2

� �

0

0 0 0 exp �
Dt
t3

� �

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

; Bk ¼

�
UkDt
E

R1 1 � exp �
Dt
t1

� �� �

R2 1 � exp �
Dt
t2

� �� �

R3 1 � exp �
Dt
t3

� �� �

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

; xk ¼

Sek
UR1C1

k

UR2C2

k

UR3C3

k

2

6
6
6
6
4

3

7
7
7
7
5
;

uk ¼ ik;Ck ¼
dðUocðSeÞÞ
dSe

jSe¼Sek � 1 � 1 � 1

� �

:

So

f ðxk; ukÞ ¼ Akxk þ Bkuk ð04Þ

gðxk; ukÞ ¼ Ckxk � R0;kuk ð05Þ

where, UR1C1

k ; UR2C2

k ; UR3C3

k , and UR1C1

kþ1 ; U
R2C2

kþ1 ; U
R3C3

kþ1 are the estimated voltage values of R1, R2,

R3 at k and k+1 time in discrete state; qk, γk are independent system noises; Uoc(Se) is the OCV

of a LIB corresponding to the SOE value of a LIB at the k time in discrete state.
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2.3. Model parameter identification

The UL, iL, and UOC of the LIB collected through the charge/discharge test using test equip-

ment (BTS20). Model parameter identification based on the least square method is not

repeated in this article because the method is described in detail in Refs. [26]. Both UOC and R0

adopt the off-line identification method [6, 26]. The initial values of parameters identified in

this paper are shown in Table 1.

3. SOE estimation

In this article, ACKF is used to carry out SOE estimation research based on the TRCEM, and

the estimation accuracy and adaptability characteristics are compared and analyzed [27].

3.1. SOE estimation based on ACKF

From Formulas (04) and (05), the state and observation formulas:

xkþ1 ¼ f ðxk; ykÞ þ qk ð06Þ

ykþ1 ¼ gðxk; uk; ykÞ þ gk ð07Þ

where, θk = [R0,k, Ek]T, R0,k and Ek are the state variable OIR and AE; uk and yk are the input

and observation variables of the system, which are the current and the working voltage of a

LIB. qk and γk are the zero-mean Gaussian white noise; the error covariance matrices of qk and
γk are Qk and Rk.

The ACKF algorithm flow:

Step 1: Initialize xk:

x̂0 ¼ Eðx0Þ ð08Þ

P̂0 ¼ E½ðx0 � x̂0Þðx0 � x̂0Þ
T

ð09Þ

Step 2: Time update of xk:
Cubature Points,

Sk� 1 ¼

ffiffiffiffiffiffiffiffiffi

P̂k� 1

q

ð10Þ

wik� 1
¼ x̂k� 1 þ Sk� 1xi ð11Þ

wik ¼ f ðw
i
k� 1
Þ þ qk� 1; i ¼ 1; 2; . . . ;m ð12Þ

State prediction,

xk ¼
1

m

Xm

i¼1

wik ð13Þ

Where xi ¼
ffiffiffi
m
2

p
½1�i; i ¼ 1; 2; . . . ;m ¼ 2n; oi ¼ 1

m ; i ¼ 1; 2; . . . ;m ¼ 2n.

Table 1. The initial values of parameters of identification.

R0/O R1/O R2/O R3/O C1/F C2/F C3/F t/s E/wh

0.0011 0.0022 0.0058 0.0036 541.87 1029.76 795.50 3400 192

https://doi.org/10.1371/journal.pone.0306165.t001
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[1] indicates that n is the set of points in u space, i.e.:
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State prediction covariance:

Pk ¼
1

m

Xm

i¼1

wikðw
i
kÞ
T
� xkðxkÞ

T
þ Qk� 1 ð14Þ

Step 3: Measurement update of yk:
Cubature Points,

Sk ¼
ffiffiffiffiffi
Pk

p
ð15Þ

ŵ ik ¼ xk þ Skxi ð16Þ

yik ¼ hðŵ
i
kÞ þ gk; i ¼ 1; 2; . . . ;m ð17Þ

Observation prediction:

ŷk ¼
1

m

Xm

i¼1

yik ð18Þ

The Kalman gain is as follows:

Py;k ¼
1

m

Xm

i¼1

ðyik � ŷkÞðy
i
k � ŷkÞ

T
þ Rk ð19Þ

Pxy;k ¼
1

m

Xm

i¼1

ðŵ ik � xkÞðy
i
k � ŷkÞ

T
ð20Þ

Kk ¼ Pxy;kP
� 1

y;k ð21Þ

The optimal estimation of state variables is as follows:

x̂k ¼ xk þ Kk½yk � ŷk� ð22Þ

The optimal estimate of the covariance is as follows:

P̂k ¼ Pk � KkPy;kK
T
k ð23Þ

State error and observation error:

εx;k ¼ x̂k � xk ð24Þ

εy;k ¼ ŷk � yk ð25Þ
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Step 4: Process noise covariance equation is as follows:

qk ¼ ð1 � dkÞqk� 1 þ dkεx;k ð26Þ

Qk ¼ ð1 � dkÞQk� 1 þ dk½Kkεy;kε
T
y;kK

T
k þ Pk � Ak� 1P̂k� 1A

T
k� 1
� ð27Þ

Step 5: Observation noise covariance equation is as follows:

gk ¼ ð1 � dkÞgk� 1 þ dkεy;k ð28Þ

Rk ¼ ð1 � dkÞRk� 1 þ dkεy;kε
T
y;k � CkPy;kC

T
k � ð29Þ

where dk ¼ 1� b
1� bk

, k = 1,2,� � �,n, b is the forgetting factor,0<b<1; xk, yk, and Pk are the estimation

of the state, estimation of observation value variable, and estimation of the error covariance;

x̂k; ŷk, and P̂k are optimal estimation of the state variable, actual observation value variable,

and optimal estimation of the error covariance.

According to Eqs (2), (3), (13),

x̂k ¼

Ŝek
Û R1C1

k

Û R2C2

k

Û R3C3

k

2

6
6
6
6
4

3

7
7
7
7
5

ð30Þ

where Ŝek is the optimal value of SOE based on ACKF.

3.2. OIR and AE estimation based on ACKF

The state and observation formulas of the system with the newly added state parameters:

ykþ1 ¼ yk þ qy;k ð31Þ

zkþ1 ¼ gðxk; uk; ykÞ þ gy;k ð32Þ

where qθ,k is the noise on the input variable, and it is the zero-mean Gaussian white noise; γθ,k
is the noise on the output variable, and it is the zero-mean Gaussian white noise; the error

covariance matrices of qθ,k and γθ,k are Qθ,k and Rθ,k; the state variable θ is estimated based on

ACKF algorithm, and the estimated values of the LIB’s OIR and actual energy (AE) are calcu-

lated. In order to improve the accuracy, the error between the actual value and the estimated

value of the working voltage is optimized.

The ACKF algorithm flow:

Step 1: Initialize θk:

ŷ0 ¼ Eðy0Þ ð33Þ

Py;0 ¼ E½ðx0 � x̂0Þðx0 � x̂0Þ
T
� ð34Þ

Step 2: Time update of θk:
Cubature Points,

Sy;k� 1 ¼

ffiffiffiffiffiffiffiffiffiffiffi

P̂y;k� 1

q

ð35Þ
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wi
y;k� 1
¼ ŷk� 1 þ Sy;k� 1xy;i ð36Þ

wi
y;k ¼ f ðw

i
y;k� 1
Þ þ qy;k� 1; i ¼ 1; 2; . . . ;m ð37Þ

State prediction,

yk ¼
1

m

Xm

i¼1

wi
y;k ð38Þ

Where xy;i ¼
ffiffiffi
m
2

p
½1�i; i ¼ 1; 2; . . . ;m ¼ 2n; oy;i ¼

1

m ; i ¼ 1; 2; . . . ;m ¼ 2n.

State prediction covariance:

Py;k ¼
1

m

Xm

i¼1

wi
y;kðw

i
y;kÞ

T
� ykðykÞ

T
þ Qy;k� 1 ð39Þ

Step 3: Measurement update of Dk:
Cubature Points,

Sy;k ¼
ffiffiffiffiffiffiffi
Py;k

q
ð40Þ

ŵ i
y;k ¼ yk þ Sy;kxy;i ð41Þ

zik ¼ gðŵ
i
y;kÞ þ gy;k; i ¼ 1; 2; . . . ;m ð42Þ

Observation prediction:

ẑk ¼
1

m

Xm

i¼1

zik ð43Þ

The Kalman gain is as follows:

Py;y;k ¼
1

m

Xm

i¼1

ðzik � ẑ kÞðz
i
k � ẑkÞ

T
þ Ry;k ð44Þ

Py;xy;k ¼
1

m

Xm

i¼1

ðŵ i
y;k � ykÞðz

i
k � ẑkÞ

T
ð45Þ

Ky;k ¼ Py;xy;kP
� 1

y;y;k ð46Þ

The optimal estimation of state variables is as follows:

ŷk ¼ yk þ Ky;k½zk � ẑk� ð47Þ

The optimal estimate of the covariance is as follows:

P̂y;k ¼ Py;k � Ky;kPy;y;kK
T
y;k ð48Þ
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State error and observation error:

εy;k ¼ ŷk � yk ð49Þ

εz;k ¼ ẑk � zk ð50Þ

Step 4: Process noise covariance equation is as follows:

qy;k ¼ ð1 � dy;kÞqy;k� 1 þ dy;kεy;k ð51Þ

Qy;k ¼ ð1 � dy;kÞQy;k� 1 þ dy;k½Ky;kεz;kε
T
z;kK

T
y;k þ Py;k � Ak� 1P̂y;k� 1A

T
k� 1
� ð52Þ

Step 5: Observation noise covariance equation is as follows:

gy;k ¼ ð1 � dy;kÞgy;k� 1 þ dy;kεz;k ð53Þ

Ry;k ¼ ð1 � dy;kÞRy;k� 1 þ dy;kεz;kε
T
z;k � CkPz;kC

T
k � ð54Þ

where dk ¼
1� by

1� by;k
, k = 1,2,� � �,n, bθ is the forgetting factor,0<bθ<1; θk, zk, and Pθ,k are the esti-

mation of the state, estimation of observation value variable, and estimation of the error

covariance; ŷk; ẑ k, and P̂y;k are optimal estimation of the state variable, actual observation

value variable, and optimal estimation of the error covariance.

3.3. Optimize OIR and AE based on LSTM

In order to further improve the SOE estimation accuracy, this paper adopts LSTM to optimize

OIR and AE in the Kalman filter process [28]. The memory cell structure of LSTM is demon-

strated in Fig 3.

fk ¼ sðbf þ of ;ŷ ŷk� 1 þ of ;yykÞ ð55Þ

ik ¼ sðbi þ oi;ŷ ŷk� 1 þ oi;yykÞ ð56Þ

~ck ¼ tanhðoc;yyk þ oc;ŷ ŷk� 1 þ bcÞ ð57Þ

ck ¼ ck� 1∗fk þ ik∗~ck ð58Þ

ok ¼ sðbo þ oo;ŷ ŷk� 1 þ oo;yykÞ ð59Þ

ŷk ¼ ok∗tanhðckÞ ð60Þ

where θk and ck are the input data and status of the memory cell at t time step, ŷk denotes the out-

put data at the previous time step. fk, ik, and ok represent forget gate, input gate, and output gate,

respectively. This process defined above is repeated at each time step. Additionally, σ and * are the

sigmoid function and element-wise product. ω and b are the weight matrices and bias vectors.

In this paper, the main parameters of the LSTM model are as follows: 3 input layer vari-

ables; 3 output layer variables; 150 hidden layer units; 1 hidden layer; 200 epochs; and an

adjustable parameter, batch_size, of 128.
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3.4. SOE estimation based on ACKF and LSTM

SOE estimation flow chart of LIB based on ACKF is shown in Fig 3.

4. Simulation and discussion

4.1. Experiment

The experimental equipment is shown in Fig 4. BTS20 is used to charge and discharge the LIB

(as shown in Table 2). First of all, the LIB is charged, and after full, the LIB is discharged several

times, and different discharge currents are used. Finally, simulation verification and analysis

are carried out based on MATLAB R2023a.

To verify the adaptive characteristics of LSTM optimization ACKF algorithm, a test experi-

ment was carried out on a fully charged LIB, starting from SOE of 100% to ending at SOE of

25%. In this article, the initial SOE values were changed to 100%, 65%, and 30% separately,

and the adaptive and error curves were observed and analyzed.

In the process of simulation verification, the estimated values of SOE were calculated based

on LSTM optimization ACKF algorithm, and the actual values were acquired by BTS20.

Fig 3. SOE estimation flow chart.

https://doi.org/10.1371/journal.pone.0306165.g003
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According to Eq (30), the formula for error is as follows.

The SOE error of LSTM optimization ACKF formula:

SOE error of ACKF ¼ Ŝek � Sactual ð61Þ

where, Sactual is the value acquired by the test equipment.

Fig 4. Battery testing system. (a) The lithium-ion battery. (b) The charge/discharge experiment (BTS20).

https://doi.org/10.1371/journal.pone.0306165.g004

Table 2. Parameters of the experiment.

Items Parameter Remarks

Capacity of LIB 60 Ah Ampere hour

Nominal voltage of LIB 3.2 V Volt

Rated power of LIB 192 W Wallter

Working voltage of LIB 2.5 V to 3.65 V

Charging time 3 h hour

Charging current 20 A Ampere

Data recording time 1 S Second

Discharging current 30 A Ampere

Charging/discharging temperature 25˚C

https://doi.org/10.1371/journal.pone.0306165.t002

PLOS ONE State of energy estimation of lithium-ion battery

PLOS ONE | https://doi.org/10.1371/journal.pone.0306165 July 10, 2024 12 / 19

https://doi.org/10.1371/journal.pone.0306165.g004
https://doi.org/10.1371/journal.pone.0306165.t002
https://doi.org/10.1371/journal.pone.0306165


4.2. SOE starts at 100%

The simulation comparison validation curve of SOE at 100% startup is shown in Fig 5.

The SOE error curve and SOE adaptive estimation curve of LIB are shown in Fig 5A, which

were generated through ACKF and LSTM optimized ACKF (ACKF+LSTM). According to

Table 5 and Fig 5, the SOE error range based on ACKF ranges from 0% to 0.82%; The SOE

error range of ACKF+LSTM is from 0% to 0.83%.

The observation noise covariance (ONC) and process noise covariance (PNC) curves of

LIB are shown in Fig 5B. The following figure shows the curve of PNC, and the above figure

shows the curve of ONC. Based on the observation and processing of the variation trend of the

noise covariance curve, this algorithm has convergence.

Fig 5. The simulation comparative validation curve when SOE starts at 100%. (a) Estimation and error curves of SOE,

(b) ONC and PNC.

https://doi.org/10.1371/journal.pone.0306165.g005
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4.3. SOE starts at 65%

The simulation comparison validation curve of SOE at 65% startup is shown in Fig 6.

The SOE estimation curve of LIB is shown in Fig 6A. The following figure shows the SOE

error curve, and the above figure shows the SOE adaptive estimation curve. As shown in

Table 3 and Fig 6, based on ACKF, the SOE error is -0.79% to 0.91%. Based on ACKF+LSTM,

the SOE error is -0.78% to 0.85%.

The ONC and PNC curves of LIB are shown in Fig 6B. The following figure shows the

curve of PNC, and the above figure shows the curve of ONC. Based on the observation and

processing of the variation trend of the noise covariance curve, this algorithm has convergence.

Table 5. Statistical error of methods.

Error error of ACKF error of ACKF+LSTM

SOE = 100% MSE 4.4094×10−5 4.4064×10−5

MAE 2.5358×10−6 2.5226×10−6

RMSE 0.0066404 0.0066304

SD 0.2036 0.2033

SOE = 65% MSE 0.0045549 0.0045449

MAE 3.4453×10−5 3.1569×10−5

RMSE 0.06749 0.06629

SD 0.1034 0.0999

SOE = 30% MSE 0.0096851 0.0096751

MAE 4.0816×10−5 3.6813×10−5

RMSE 0.098413 0.098113

SD 0.0926 0.0864

The estimation method based on ACKF+LSTM is superior to using ACKF alone in terms of prediction accuracy and stability. By using ACKF+LSTM, the accuracy of

SOE estimation has been significantly improved, which is of great significance for real-time battery management systems.

https://doi.org/10.1371/journal.pone.0306165.t005

Table 3. Estimation error of LIB’s parameters.

Estimation Error SOE error of ACKF SOE error of ACKF+LSTM

SOE = 100% MAX Error 0.82% 0.81%

MIN Error 0% 0%

SOE = 65% MAX Error 0.91% 0.85%

MIN Error -0.79% -0.78%

SOE = 30% MAX Error 0.93% 0.88%

MIN Error -0.82% -0.82%

Through comparative analysis, the algorithm has good adaptive characteristics.

https://doi.org/10.1371/journal.pone.0306165.t003

Table 4. Comparison of methods.

Reference Accuracy of estimation Adaptability Methods Limitations

Method of this paper 0.88% Yes ACKF+LSTM Large amount of calculation

[29] 1.19% Yes LSTM + AEKF Large amount of calculation

[6] 2.34% Yes AUKF Low accuracy

[30] 2% Yes EKF Low accuracy

[31] 1.93% Yes Fuzzy+ACKF Large amount of calculation, low accuracy

https://doi.org/10.1371/journal.pone.0306165.t004
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Compared to when the SOE is 100%, the covariance change of observation noise is relatively

small, but the covariance change of process noise is relatively large.

4.4. SOE starts at 30%

The simulation comparison validation curve of SOE at 30% startup is shown in Fig 7.

The SOE estimation curve of LIB is shown in Fig 7A. The following figure shows the SOE

error curve, and the above figure shows the SOE adaptive estimation curve. As shown in

Table 3 and Fig 7, based on ACKF, the SOE error is -0.82% to 0.93%. Based on ACKF+LSTM,

the SOE error is -0.84% to 0.90%. With the increase of the initial error, the difference of stan-

dard deviation increases, which accords with the statistical law.

Fig 6. The simulation comparative validation curve when SOE starts at 65%. (a) Estimation and error curves of SOE,

(b) ONC and PNC.

https://doi.org/10.1371/journal.pone.0306165.g006
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The ONC and PNC curves of LIB are shown in Fig 7B. The following figure shows the

curve of PNC, and the above figure shows the curve of ONC. Based on the observation and

processing of the variation trend of the noise covariance curve, this algorithm has convergence.

Compared to when the SOE is 65%, both the observed values and the covariance of process

noise have increased.

4.5. Discussion

The simulation results show that the method based on ACKF+LSTM has an SOE estimation

error of less than 0.88% for LIB regardless of SOE at 100%, 65%, and 30%, which is more accu-

rate than the SOE estimation error of the individual ACKF.

Fig 7. The simulation comparative validation curve when SOE starts at 30%. (a) Estimation and error curves of SOE,

(b) ONC and PNC.

https://doi.org/10.1371/journal.pone.0306165.g007
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As shown in Table 4, compared with accuracy of 1.19% in Ref. [29], 2% in Ref. [30], 1.93%

in Ref. [31], 2.34% in Ref. [6], the method has high precision. In addition, the combination

method is self-adaptive.

As shown in Table 5, by comparing MSE (Mean square Error), MAE (Mean Absolute

Error), RMSE (Root Mean square Error) and SD (Standard Deviation), it can be seen that, the

method of ACKF+LSTM is more advantageous.

5. Conclusions

This article establishes a SOE estimation method based on ACKF+LSTM. In order to improve

the accuracy of SOE estimation, LSTM is introduced on the basis of adaptive Kalman filter to

optimize OIR and AE, and ACKF and LSTM are combined. Through this method, we can bet-

ter handle and predict complex nonlinear dynamic systems, and improve the accuracy of SOE

estimation. In addition, the proposed SOE estimation method was experimentally validated,

and the experimental results showed that the SOE estimation method based on ACKF+LSTM

has higher accuracy and robustness.

This paper has made some achievements, there are still many deficiencies: (1) In this paper,

the number of samples is not enough, the next step will increase the number of samples, test

universality. (2) parameter identification is offline at the moment; the next step will be to carry

out the parameter identification of online identification.
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