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Abstract

Diabetes is a chronic disease, which is characterized by abnormally high blood sugar levels.

It may affect various organs and tissues, and even lead to life-threatening complications.

Accurate prediction of diabetes can significantly reduce its incidence. However, the current

prediction methods struggle to accurately capture the essential characteristics of nonlinear

data, and the black-box nature of these methods hampers its clinical application. To address

these challenges, we propose KCCAM_DNN, a diabetes prediction method that integrates

Kendall’s correlation coefficient and an attention mechanism within a deep neural network.

In the KCCAM_DNN, Kendall’s correlation coefficient is initially employed for feature selec-

tion, which effectively filters out key features influencing diabetes prediction. For missing

values in the data, polynomial regression is utilized for imputation, ensuring data complete-

ness. Subsequently, we construct a deep neural network (KCCAM_DNN) based on the self-

attention mechanism, which assigns greater weight to crucial features affecting diabetes

and enhances the model’s predictive performance. Finally, we employ the SHAP model to

analyze the impact of each feature on diabetes prediction, augmenting the model’s interpret-

ability. Experimental results show that KCCAM_DNN exhibits superior performance on both

PIMA Indian and LMCH diabetes datasets, achieving test accuracies of 99.090% and

99.333%, respectively, approximately 2% higher than the best existing method. These

results suggest that KCCAM_DNN is proficient in diabetes prediction, providing a foundation

for informed decision-making in the diagnosis and prevention of diabetes.

Introduction

Diabetes is a chronic metabolic disease characterized by elevated blood glucose levels due to

insufficient insulin secretion or impaired insulin action. In severe cases, it can lead to various

complications, including cardiovascular disease, kidney damage, neuropathy, and retinopathy

[1]. According to statistics from the International Diabetes Federation(IDF): approximately
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537 million adults (ages 20-79) worldwide had diabetes in 2021. This number is projected to

increase to 643 million by 2030 and further to 783 million by 2045 [2]. The Children’s Diabetes

Association notes a concerning trend of diabetes affecting a younger demographic, with

around 1.1 million people under the age of 20 worldwide diagnosed with type 1 diabetes [3].

The escalating incidence of diabetes poses a significant challenge to global public health. Given

the absence of a cure for diabetes, proactive prevention becomes crucial. Accurate prediction

of diabetes plays a vital role in providing technical support for disease prevention efforts.

In recent years, extensive research has been conducted on predicting diabetes, utilizing var-

ious machine learning algorithms for diabetes data. Traditional machine learning models,

including Random Forest (RF) [4], Support Vector Machine (SVM) [5], Logistic Regression

(LR) [6], and k-nearest Neighbor(KNN) [7], and others, have been employed to build predic-

tive models aimed at assisting physicians in diagnostic decision-making. However, these meth-

ods are grounded in linear models and lack the capability to effectively model complex

nonlinear data. Prediction based on traditional models often falls short of meeting the perfor-

mance requirements for clinical applications, with accuracy levels below 90%.

It’s notable that some scholars have ventured into using deep learning methods for diabetes

prediction research [8]. Deep learning proves advantageous in handling complex nonlinear

data, as it has the capability to automatically learn feature representations, consequently

improving prediction accuracy [9]. Deep learning models can be highly sensitive to the repre-

sentation of input data and often require careful consideration of feature selection to optimize

performance. Another critical concern is that deep learning models are frequently perceived as

black boxes, given their intricate internal structures and decision-making processes, making it

challenging to explain and understand how predictions are derived.

To enhance both the accuracy and interpretability of diabetes prediction, we propose

KCCAM_DNN, a high-performance deep neural network prediction method for diabetes.

KCCAM_DNN integrates Kendall’s correlation coefficient and an attention mechanism, pro-

viding a robust solution for early disease detection and prevention. By effectively controlling

disease progression, this approach aims to reduce the incidence of diabetes. We conducted

experiments on PIMA Indian and LMCH diabetes datasets, achieving remarkable results. Spe-

cifically, the test accuracies reached 99.090% and 99.333% respectively, showcasing an

improvement of approximately 2% compared to the best available method. The key contribu-

tions and findings of this work are summarized as follows:

1. Feature Analysis and Selection: The method employs Kendall’s Correlation Coefficient

(KCC) to analysis and select features effectively, overcoming the challenge of identifying

relevant features in a large pool of variables. This helps to reduce the dimensionality of the

feature space and eliminates redundant or irrelevant features, improving the efficiency of

the prediction model. Apply polynomial regression(PR) to interpolate missing values,

enhancing data completeness.

2. Model Construction with Self-Attention Mechanism: Introduce the self-attention mecha-

nism to construct the KCCAM_DNN model based on a deep neural network. The incorpo-

ration of self-attention mechanism in the hidden layers of the deep neural network (DNN)

enables the model to learn the associations and importance between features. This attention

mechanism helps the model focus on relevant features, particularly those crucial for diabe-

tes prediction. By emphasizing important features during training, the model can improve

its predictive performance. Fine-tune model hyperparameters through grid search and

repeat stratified k-fold cross-validation to improve performance. Conduct comparative

experiments, demonstrating the superiority of the model across various prediction metrics.
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3. Dataset Relabeling for Prediabetes Prediction: Relabel the PIMA Indian dataset to enable

the prediction of prediabetes classes. Provide a more comprehensive clinical diagnosis of

diabetes.

4. Interpretability Enhancement: Adopt the SHAP (SHapley Additive exPlanations) model

to analyze the main features influencing diabetes prediction. The incorporation of the

SHAP model enhances the interpretability of the KCCAM_DNN model because it offers

insights on the importance of individual features in predicting diabetes. As a result,

researchers and clinicians are able to understand the underlying factors contributed by

each feature. This transparency is crucial for gaining insights into the prediction process

and for building trust in the model’s results.

Related work

In recent years, propelled by the rapid progress of science and technology, researchers have

undertaken extensive and in-depth explorations in the realm of diabetes prediction. The pri-

mary emphasis within this field has centered on methodologies grounded in both machine

learning and deep learning.

Kangra et al. [10] used machine learning algorithms for prediction of diabetes mellitus, vali-

dated on Pima Indian Diabetes Datasets (PIDD) dataset. The results show that SVM works

better and has 74% accuracy. However, the hybrid model proposed in the article has no rele-

vant experiments and lacks comparability. Sai M J et al. [11] proposed machine learning

ensemble algorithm for predicting diabetes. The algorithm ensembles KNN, Naive Bayes, Ran-

dom Forest, Adaboost and Light Gradient Boosting Machine. KNN, Adaboost and LightGBM

together achieved 90.76% accuracy and successfully solved the class imbalance problem of the

underlying dataset. Edeh et al. [12] used four machine learning classification algorithms to pre-

dict diabetes, namely supervised learning algorithms (Random forest, SVM and Naive Bayes)

and unsupervised learning algorithm (k-means). The results obtained from Pima Indian data-

base showed that SVM algorithm has the highest accuracy of 83.1%. However, the model

exhibited significant memory and computation time requirements, particularly when con-

fronted with high-dimensional data. In a separate study, Rupapara et al. [13] presented an

approach to classify diabetic and normal individuals using integrated machine learning mod-

els. Several experiments were conducted on the PIMA dataset, employing Principal Compo-

nent Analysis (PCA) and chi-square (Chi-2) features, resulting in an accuracy of 85%.

Nonetheless, the effectiveness of this method on unstructured datasets remains unknown.

In summary, machine learning methods heavily depend on the quality and quantity of data,

posing challenges when dealing with missing and noisy data. Issues such as overfitting may

arise when the model is overly complex or the training data is insufficient, leading to subopti-

mal performance on new data [14]. Deep learning methods, on the other hand, exhibit a

capacity to effectively capture intricate relationships within data, resulting in enhanced model

performance. These methods excel in processing unstructured data and demonstrate greater

adaptability to complex data types compared to traditional machine learning approaches.

Chollette et al. [15] introduced a 2GDNN (two-growth deep neural network) diabetes pre-

diction model, utilizing a deep neural network as the foundational framework. The model was

validated on the PIMA and LMCH datasets, achieving test accuracies of 97.248% and 97.333%,

respectively. However, it’s worth noting that the 2GDNN prediction model employs the Spear-

man correlation coefficient for feature selection. The stability of Spearman correlation coeffi-

cient results may be compromised when dealing with small sample data. Additionally,
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2GDNN is characterized as a black-box model, lacking interpretability. In a separate study,

Khanam and Foo [16] utilized Artificial Neural Network (ANN) for diabetes prediction,

attaining an accuracy of 88.6% on the PIMA dataset. Jaloli et al. [17] designed a deep neural

network model based on CNN-LSTM, combining a stack of Convolutional Neural Network

(CNN) and Long Short-Term Memory (LSTM) units to predict blood glucose levels for 30-,

60-, and 90-minute prediction horizons (PH). The study used the Replace-BG and DIAdvisor

datasets, achieving a maximum detection accuracy of 94.71%. However, it is important to note

that dealing with large-scale datasets or long time series data may especially result in high time

and resource consumption for training and inference.

In summary, despite the advancements in existing algorithms for diabetes prediction, sev-

eral challenges persist:

1) Diabetes data is inherently nonlinear, with complex relationships among variables. How-

ever, most of the current diabetes predictions models employ linear data processing meth-

ods for feature selection, limiting their effectiveness.

2) Existing deep learning models treat all feature information equally and may not effectively

prioritize important features.

3) Deep models are typically complex black-box models that are challenging to interpret and

lacking in model interpretability.

To address these issues, we propose KCCAM_DNN. The Kendall’s correlation coefficient

utilized in feature selection effectively sifts through the primary features impacting diabetes

prediction, thereby eliminating redundancy. Adding self-attention mechanism into the hidden

layers before and after the output layer, helps the deep neural network model understand the

association and significance of features, so that it can give priority to the important features

affecting diabetes. Therefore, these enhancements enhance the model’s ability to identify key

features and improve its predictive performance. Combined with the SHAP model,

KCCAM_DNN can explain the contribution of key features to diabetes prediction. This helps

us understand which features play a key role in prediction and provides a further explanation

of the model. Feature selection improves classifier performance by 1.334%, 7.5%, and 0.915%

for the SVM, RF, and KCCAM_DNN models, respectively. Compared to the existing best

available methods, the addition of the self-attention mechanism improved test accuracy by 2%.

It aims to enhance the accuracy of diabetes prediction by addressing the nonlinear nature of

diabetes data and prioritizing important features. The introduction of KCCAM_DNN facili-

tates precise diabetes prediction, offering valuable technical support for medical diagnosis and

prevention of diabetes.

Methods

KCCAM_DNN comprises three main modules(Fig 1):(i)Data preprocessing. Feature selection

is performed using Kendall’s correlation coefficient, and polynomial regression is applied for

imputation on the original data with missing values. (ii)Model construction. A DNN model

based on the self-attention mechanism, named KCCAM_DNN, is designed and implemented.

Model hyperparameters are fine-tuned through grid search and repeated stratified k-fold

cross-validation. (iii)Model interpretation. The SHAP model is incorporated to analyze the

main features influencing the prediction results of diabetes, enhancing the model’s

interpretability.

PLOS ONE A Deep neural network prediction method for diabetes

PLOS ONE | https://doi.org/10.1371/journal.pone.0306090 July 2, 2024 4 / 19

https://doi.org/10.1371/journal.pone.0306090


Data preprocessing

The prevention of diabetes is more crucial than treatment, making accurate prediction of pre-

diabetic conditions a significant research focus. While much of the existing diabetes research

primarily centers around predicting whether an individual has diabetes or not, for improved

diagnosis and prevention, it is essential to classify prediabetic conditions. The LMCH diabetes

dataset comprises three categories: N (Normal), P (Prediabetes), and Y (Diabetes), eliminating

the need for relabeling. In the PIMA Indian dataset, there are two categories: 0 (Normal) and 1

(Diabetes). We relabeled the dataset based on blood glucose levels into normal, prediabetes,

and diabetes. In the subsequent processing, we identified and preserved the key features in the

data using feature selection methods. Afterwards, we processed the missing values with suit-

able interpolation methods. This significantly reduces redundant data and improves data qual-

ity and processing efficiency.

Feature selection. Feature selection is a critical step in data preprocessing. Not all attri-

butes in a dataset are necessarily important features for prediction. Selecting the features most

correlated with the target variable can enhance prediction accuracy and expedite both model

training and inference speed. Given that the diabetes dataset is nonlinear, Kendall’s correlation

is preferred over Spearman correlation in terms of robustness and efficiency [18]. Conse-

quently, we opt for Kendall’s correlation coefficient for feature selection.

Kendall’s correlation coefficient is a nonparametric test employed to evaluate the degree of

association between two variables. Nonparametric correlation tests do not depend on assump-

tions about the distribution of the data but are instead based on the ranking or ordering of the

data and pairwise comparisons. The Kendall’s correlation coefficient is calculated as follows:

t ¼
Nc � Nd

n=2ðn � 1Þ
ð1Þ

Here, τ represents the Kendall’s correlation coefficient, Nc is the number of concordant pairs,

Nd is the number of discordant pairs, and n is the total number of pairs.

Kendall’s correlation coefficient ranges between -1 and 1. A value of 1 indicates a perfect

positive correlation between two variables, meaning that when one variable increases, the

other variable increases proportionally. A value of -1 indicates a perfect negative correlation,

where an increase in one variable corresponds to a proportional decrease in the other variable.

Fig 1. Workflow of KCCAM_DNN.

https://doi.org/10.1371/journal.pone.0306090.g001
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When the coefficient approaches 0, it implies a lack of linear correlation or weak linear correla-

tion between the two variables.

The research results presented in Table 1 illustrate a noteworthy correlation between glu-

cose and insulin levels with the target variable. These two features are deemed crucial and will

constitute a subset of the original PIMA Indian dataset. The identical feature selection algo-

rithm was utilized for the LMCH dataset and can be applied effectively to any other dataset.

Missing value imputation. Applying missing value imputation is crucial when dealing

with datasets containing a large number of missing values. Directly removing samples with

missing values may reduce the dataset’s sample size, diminishing the reliability and accuracy of

model predictions. To enhance model performance, imputing missing values is employed to

obtain a complete dataset. In the PIMA Indian dataset, which comprises a substantial number

of missing values (432 out of 768 data points), missing value imputation is implemented, while

the LMCH dataset, lacking any missing values, does not undergo this process.

The common practice in diabetes research is to fill missing data with mean and median val-

ues. However, these methods may introduce data bias [19]. Multiple Imputations of Missing

Values (MICE) [20] is an alternative technique that predicts missing values using existing fea-

ture data. However, MICE is not well-suited for nonlinear data [21]. In the context of nonlin-

ear relationships, polynomial regression is a more appropriate approach for describing

correlations between features, offering improved data fitting. Consequently, we employ poly-

nomial regression for missing value imputation.

Polynomial regression (PR) extends linear regression to model nonlinear relationships. In

polynomial regression, polynomial terms, such as powers of the independent variables, are

incorporated into the regression model. A standard monomial polynomial regression model is

represented as follows:

Y ¼ b0 þ b1X þ b2X2 þ . . .þ bnXn þ � ð2Þ

where Y is the dependent variable, X is the independent variable, β0 is the bias term, β1, β2,

β3,. . .,βn are regression coefficients, and X the predictor variable and X, X2,. . ., Xk are addi-

tional variables created by raising X to various exponents.

The primary objective of polynomial regression is to capture nonlinear relationships within

the data by introducing power terms for the independent variables. For instance, introducing

quadratic (X2) and cubic (X3) terms accommodates complex shapes like quadratic or cubic

Table 1. The statistical significance of Kendall’s correlation coefficient values between predictor and outcome variables is crucial for feature selection.

Feature Glucose Insulin DPF Age BMI Pregnancies SkinThickness BloodPressure

Glucose 1(0.00***) 0.516(0.00***) 0.059(0.38) 0.334(0.00***) 0.147(0.03**) 0.255(0.00***) 0.184(0.01***) 0.162(0.02**)
Insulin 0.516(0.00***) 1(0.00***) 0.042(0.54) 0.324(0.00***) 0.237(0.00***) 0.19(0.01***) 0.241(0.00***) 0.126(0.07*)
DPF 0.059(0.39) 0.042(0.54) 1(0.00***) 0.071(0.31) 0.000(0.99) -0.026(0.71) 0.081(0.24) 0.021(0.76)

Age 0.334(0.00***) 0.324(0.00***) 0.071(0.31) 1(0.00***) 0.191(0.01***) 0.452(0.00***) 0.181(0.01***) 0.178(0.01**)
BMI 0.147(0.03**) 0.237(0.00***) 0.000(0.99) 0.191(0.01***) 1(0.00***) -0.015(0.84) 0.488(0.00***) 0.201(0.00***)
Pregnancies 0.255(0.00***) 0.19(0.01***) -0.026(0.72) 0.452(0.00***) -0.015(0.84) 1(0.00***) 0.021(0.77) 0.121(0.09*)
SkinThickness 0.184(0.01***) 0.241(0.00***) 0.081(0.24) 0.181(0.01***) 0.488(0.00***) 0.02(0.768) 1(0.00***) 0.1(0.15)

BloodPressure 0.162(0.02**) 0.126(0.07*) 0.021(0.76) 0.178(0.01**) 0.201(0.00***) 0.121(0.09*) 0.1(0.15) 1(0.00***)
Outcome 0.813(0.00***) 0.548(0.00***) 0.114(0.14) 0.322(0.00***) 0.195(0.01**) 0.273(0.00***) 0.244(0.00***) 0.193(0.02**)

***,**,* represent 1%,5%,and 10% significance levels.

DPF:DiabetesPedigreeFunction.

https://doi.org/10.1371/journal.pone.0306090.t001
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curves in the data [22]. If the order is too low, the model may fail to accurately fit the data. The

process of performing polynomial regression interpolation involves the following steps:

(1) Identify all missing values in the subset of the PIMA Indian dataset after feature selection.

Examine the percentage of missing values for features, setting the threshold at 5%. If the

number of zero entries in the subset data is less than 5%, the entry is deleted; otherwise,

polynomial regression (PR) is applied. For the PIMA Indian diabetes dataset, insulin has

zero entries exceeding 5%.

(2) Referencing the correlation heat map in Fig 2, identify highly correlated variables. In this

case, glucose and insulin are highly correlated, making glucose a predictive variable for fill-

ing in missing insulin values.

(3) Predicting missing values using polynomial regression. For each sample with missing val-

ues, input glucose to construct a polynomial regression model for prediction. Combine the

resulting output with the non-missing values to form the final dataset.

KCCAM_DNN

Model construction. The Deep Neural Network (DNN) is an artificial neural network

model comprised of multiple layers of neurons, typically with multiple hidden layers. During

the training process, the backpropagation algorithm is used to update the connection weights

[23]. DNN has been widely applied to diabetes prediction [8]. However, DNN models have a

large number of parameters and a complex structure, requiring a longer training time. DNN

treats all feature information equally and may not effectively prioritize important features.

There are also limitations in terms of interpretability, which is crucial for physicians and

patients in diabetes research.

The traditional attention mechanism computes attention weights by sequentially calculat-

ing the relevance between different features, which leads to higher computational complexity.

In contrast, self-attention mechanism performs parallel computations across all features, sig-

nificantly improving computational efficiency. Moreover, it dynamically adjusts the weights

based on the input context, allowing the model to better focus on relevant information, thereby

enhancing the model’s perception of significant features [24]. This capability is valuable for

predicting the health status and risk of diabetic patients.

Fig 2. Correlation coefficient heat map. The map shows a significant relationship between Glucose and Insulin.

https://doi.org/10.1371/journal.pone.0306090.g002
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This work introduces KCCAM_DNN, a DNN network based on the self-attention mecha-

nism. It is a deep learning model that utilizes the quadratic growth attention mechanism to

improve performance and handle complex tasks. The model consists of an input layer, four

hidden layers, an attention mechanism layer and an output layer. The front two hidden layers

have 8 neurons each, while the last two hidden layers have 16 neurons each. ReLU is used as

the activation function for all hidden layers. The attention mechanism layer is located after the

hidden layers, making it easier to adjust inputs and weights. The scale and complexity of the

KCCAM_DNN model can be better understood as shown in Table 2 of the model parameters.

A visual representation of the model is provided in Fig 3.

The self-attention mechanism involves input mapping and the calculation of attention

weights, as illustrated in Fig 4. Initially, the input features undergo mapping to the hidden

space through a fully connected layer. Subsequently, attention scores are calculated and nor-

malized. Finally, the input features are multiplied by the attention weights to obtain a weighted

representation. The computation can be formalized as follows:

AttentionðQuery;KeyÞ ¼ softmaxðWa∗tanhðWq∗QueryþWk∗KeyÞÞ ð3Þ

where Query represents the query vector, Key represents the key vector, Wq, Wk, and Wa

denote the learnable weight matrices, tanh signifies the hyperbolic tangent activation function,

and softmax denotes the normalization operation of the attention scores.

Parameter design. In order to enhance adaptability to data characteristics and improve

overall model performance, we conducted optimization of model parameters with the aim of

maximizing key performance indicators.

Table 3 provides a concise overview of the hyperparameters utilized by the three classifiers:

RF, SVM, and KCCAM_DNN. To achieve the optimal model configuration, we employed a

Table 2. Parameter table.

Model Input Layer

Neurons

Hidden Layer1

Neurons

Hidden Layer2

Neurons

Hidden Layer3

Neurons

Hidden Layer4

Neurons

Attention

Layer

Output Layer

Neurons

DNN 4 8 8 16 16 - 3

KCCAM_DNN 2 8 8 16 16 1 3

https://doi.org/10.1371/journal.pone.0306090.t002

Fig 3. The architecture of the proposed deep neural network model based on Kendall’s correlation coefficient and

attention mechanism (KCCAM_DNN) for diabetes prediction.

https://doi.org/10.1371/journal.pone.0306090.g003
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grid search methodology for optimizing the model parameters. This systematic and detailed

search process involves testing various combinations of parameters to identify the most suit-

able model configuration. Model performance is assessed by iterating through all parameter

combinations in the space and conducting k-fold cross-validation [25] multiple times for each

combination. The synergy of repeated cross-validation and grid search aids in discovering the

most effective combination of hyperparameter settings for a defined parameter set [26], ulti-

mately enhancing the predictive performance of the model.

Model interpretation

Most contemporary deep models are intricate black-box models, posing challenges in inter-

preting their internal mechanisms and limiting their clinical applicability. To address this, we

Fig 4. Flow chart of the self-attention mechanism.

https://doi.org/10.1371/journal.pone.0306090.g004

Table 3. Experimental parameter design.

Items Parameters Description Default Optimization

RF Max-Depth Controls how specialized each tree is to the training dataset. The more the value the more likely overfitting. 2 3

Max-Features The maximum allowable number of trees the RF will consider for each split. 3 2

n-Estimators The number of trees you want the algorithm to build. 50 10

SVM C A regularization parameter that controls the error of the misclassification of SVC to data. 100 1000

Kernel TA non-linear transformation function to map data to a high-dimensional space. Rbf Rbf

Gamma A nonlinear parameter that represents the separation line or decision region between classes. 0.0001 0.001

Optimizer An algorithm that minimizes the loss function of the network during training. Adam RMSProb

2GDNN Epoch Defines the number of passes made to the entire training dataset during training. 100 200

Batch-size The number of samples utilized in one iteration. 1 5

KCCAM_DNN Epoch Defines the number of passes made to the entire training dataset during training. 100 200

Batch-size The number of samples utilized in one iteration. 1 5

Learning rate The size of the step is an important factor in the gradient descent optimization process. 0.001 0.001

momentum The technique can be used to accelerate gradient descent algorithms and help escape local minima. 0.9 0.9

K-Fold n-Splits The number of different validations set to create from the given train data. 10 10

n-repeats The Number of times cross-validation is repeated. - 3

PIMA Train Percentage of the dataset for training. 582 582

Test Percentage of the dataset for testing. 146 146

https://doi.org/10.1371/journal.pone.0306090.t003
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incorporated SHAP into the KCCAM_DNN model to elucidate and analyze the factors influ-

encing diabetes within the model, thereby enhancing its interpretability.

SHAP (Shapley Additive exPlanations) is an open-source tool and method designed for

interpreting machine learning model predictions. In 2017, Lee et al. [27] first proposed SHAP

as a widely applicable method for explaining diverse models, particularly black-box models

that are challenging to comprehend. Grounded in game theory’s Shapley value concept, SHAP

investigates the contribution of the extracted features by visualizing the high-contributing fea-

tures from the entire feature set using machine learning algorithms [28]. Shahid Akbar et al.

[29] employed a global interpolation method utilizing SHAP to reduce the dimensionality of

training vectors by selecting an optimal feature set, focusing on high-contributing features for

target classification. The selected feature set was then trained using Bi-directional Temporal

Convolutional Network (BiTCN). The resulting iAFPs-Mv-BiTCN model achieved an accu-

racy of 98.15% on the training dataset, demonstrating the effectiveness of their approach. The

combination of SHAP and KCCAM_DNN model enhances interpretability by offering

detailed insights into the importance of features, interactions, model understanding and iden-

tification of key risk factors associated with diabetes prediction. This knowledge is invaluable

for developing more effective predictive models and guiding clinical decision-making pro-

cesses for diabetes management. The model’s prediction value is the sum of the prediction

mean of all samples and the SHAP value of each feature, expressed by the formula:

Y ¼ fb þ f1 þ . . .þ fi þ . . .þ fM ð4Þ

where Y is the model’s predicted value, fi is the SHAP value corresponding to feature i, and fb
is the mean of the predicted values of all samples.

By accurately calculating SHAP values that reflect the impact of each feature on the model,

we enhance interpretability, providing a comprehensive understanding of the influence of

each feature variable on diabetes prediction in diabetes research.

Results and discussion

We employed various experimental settings to assess the performance of KCCAM_DNN in

predicting diabetes, encompassing the following aspects: (1) assessment of the data preprocess-

ing methods, (2) performance evaluation of the KCCAM_DNN model, (3) computation effi-

ciency of KCCAM_DNN, and (4) model interpretation and analysis based on SHAP.

Dataset description

We conducted experiments on the PIMA Indian and LMCH diabetes datasets.

The PIMA Indian diabetes dataset, sourced from the National Institute of Diabetes, Diges-

tive and Kidney Diseases (NIDDK), comprises 768 cases involving Pima Indian females aged

21 years or older [30]. It includes 268 patients in the diabetes category and 500 in the non-dia-

betes category. Each data point has 8 characteristic features and 1 categorical label: pregnan-

cies, glucose level, blood pressure, skinfold thickness, insulin level, body mass index (BMI),

diabetes pedigree function, and age. Table 4 provides a description of the PIMA Indian dataset,

with the outcome denoting the category label of each data item (0 for not having diabetes and

1 for having diabetes).

The LMCH dataset is a diabetes dataset from the Laboratory of Medical City Hospital

(LMCH), consisting of data from 1000 Iraqi patients [31]. It includes 103 with normal glucose

levels, 53 with prediabetes, and 844 with diabetes.
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Evaluating indicator

We employ Precision, F1-score, Specificity, Recall, and Accuracy metrics to evaluate the pre-

dictive performance of the model in different configurations.

Typically, the positive class is designated as the class of interest, while the other classes are

considered the negative class. The classifier’s predictions on the test dataset and their accuracy

can be represented through a confusion matrix, as shown in Table 5.

Precision measures the accuracy of correctly identifying diabetes in patients, calculated as

the ratio of TP to the total of TP and FP. The formula is:

Precision ¼
TP

TP þ FP
ð5Þ

Specificity is the proportion of negative instances accurately identified as nondiabetic. It is

calculated as the TN divided by the sum of TN and FP. The formula is as follows:

Specificity ¼
TN

TN þ FP
ð6Þ

Recall is the percentage of positive cases correctly identified as diabetic, calculated as TP

divided by the sum of TP and FN. The formula is as follows:

Recall ¼
TP

TP þ FN
ð7Þ

Table 5. Confusion matrix for diabetic prediction evaluation. TP: model correctly predicts positive as positive. FN:

model wrongly predicts positive as negative. FP: model wrongly predicts negative as positive. TN: model correctly pre-

dicts negative as negative.

Predicted Positive(Diabetes) Predicted Negative(No Diabetes)

Actual Positive(Diabetes) True Positive (TP) False Negative(FN)

Actual Negative(No Diabetes) False Positive(FP) True Negative(TN)

https://doi.org/10.1371/journal.pone.0306090.t005

Table 4. Description of the PIMA Indian diabetes dataset.

S/

N

Feature Description Missing

Value

1 Pregnancies Number of pregnancies 110

2 Glucose Glucose concentration (2h oral test) 5

3 Blood Pressure (BP) Diastolic blood pressure 35

4 Skin Thickness (ST) Skin fold thickness in mm 227

5 Insulin 2h insulin serum (mm u/ml) 374

6 BMI Body mass index = weight in kg/height in m2 11

7 Diabetes Pedigree

Function (DPF)

Likelihood value computed from the relationship between the patient

and the genetic history of the patient’s relative

0

8 Age Age in years 0

https://doi.org/10.1371/journal.pone.0306090.t004
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F1-score combines precision and recall, weighted by their influence on the overall outcome,

accounting for both false positives and negatives. The formula is as follows:

F1 � score ¼ 2∗
Precision∗Recall
Precisionþ Recall

ð8Þ

Accuracy denotes the proportion of accurate predictions over the total number of predic-

tions, and can be expressed as follows.

Accuracy ¼
TPþ TN

TP þ FPþ TN þ FN
ð9Þ

Performance evaluation of the data preprocessing methods

The data preprocessing stage involved the use of feature selection methods to eliminate irrele-

vant features and enhance the efficiency of the datasets. Additionally, missing value interpola-

tion methods were employed to supplement data completeness.

The feature selection performance was evaluated using the LMCH dataset, which included

prediabetes types and did not contain missing values. Table 6 displays the results, indicating

that feature selection boosts classifier performance by 1.334%, 7.5%, and 0.915% for the SVM,

RF, and KCCAM_DNN models, respectively. This outcome demonstrates that after feature

selection, the performance of the RF models is strengthened. Henceforth, all analyses employ a

subset of the dataset post-feature selection as input.

Next, we evaluate the missing value interpolation method using the PIMA Indian dataset.

The performance of the mean, median, and MICE missing value interpolation methods was

compared to the PR method. As shown in Table 7 and Fig 5, the PR predictive interpolation

method outperforms common methods, indicating its efficacy in resolving missing values in

nonlinearly distributed data. Multiple Imputation Chained Equations (MICE) does not per-

form as well as polynomial regression (PR) in terms of accuracy, with a 2.134% difference in

performance.

Table 6. Performance evaluation of feature selection. Where, FS stands for feature selection.

Set Model Precision(%) Recall(%) F1-Socre(%) Train Acc(%) Test Acc(%)

No FS SVM 94.385 94.000 93.714 95.429 94.000

RF 88.651 92.500 90.432 92.000 92.500

KCCAM_DNN 96.074 96.000 95.911 100 95.999

With FS SVM 96.551 93.768 94.912 98.545 94.915

RF 100 100 100 98.726 100

KCCAM_DNN 97.522 97.333 97.393 97.424 97.333

https://doi.org/10.1371/journal.pone.0306090.t006

Table 7. Performance evaluation of the missing value imputation methods. Where, FS stands for feature selection, PR stands for polynomial regression.

Data Preprocessor Precision(%) Recall(%) F1-Socre(%) Train Acc(%) Test Acc(%)

FS+ Mean 95.259 96.421 95.772 96.480 96.551

FS+ Median 96.497 97.161 96.796 97.206 97.413

FS+ Mice 96.139 96.084 96.082 96.828 96.956

FS+PR 99.109 99.090 99.089 98.624 99.090

https://doi.org/10.1371/journal.pone.0306090.t007

PLOS ONE A Deep neural network prediction method for diabetes

PLOS ONE | https://doi.org/10.1371/journal.pone.0306090 July 2, 2024 12 / 19

https://doi.org/10.1371/journal.pone.0306090.t006
https://doi.org/10.1371/journal.pone.0306090.t007
https://doi.org/10.1371/journal.pone.0306090


The predictive capability of PR relies on evaluating the nth-order polynomial to determine

the optimal fit for insulin data. Analysis (Fig 6 and Table 8) with the Root Mean Square Error

(RMSE) and R-squared (R2) error indicates that the 7th-order polynomial aligns more accu-

rately with the data.

Performance evaluation of the KCCAM_DNN model

We compared KCCAM_DNN against some commonly used machine learning methods and

deep models. The overall benchmark results are shown in Figs 7 and 8 and Table 9. The test

accuracy reaches 99.090% and 99.333%. Comparing with the best available methods [15], the

test accuracy is improved by 1.842% and 2% on PIMA Indian and LMCH datasets, respec-

tively. As can be observed in Table 9, ORF shows a higher probability of determining the sever-

ity of the diagnosis at 100% than KCCAM_DNN. However, in a broader context,

KCCAM_DNN can be better used when the number of datasets is large, in which case ORF

may fail because it is only stable with a small amount of data [32].

Fig 5. Evaluation of missing value imputation methods.

https://doi.org/10.1371/journal.pone.0306090.g005

Fig 6. The fit of the polynomial regression line for the glucose predictor to the predicted values of insulin is

depicted in Fig 6. Various nth-degree polynomials, including 2(Upper left), 7(Upper right), 12(Lower left), and 17

(Lower right), are plotted. The performance summary indicates that a 7-degree polynomial provides a better fit.

https://doi.org/10.1371/journal.pone.0306090.g006
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Table 8. Evaluation of nth order polynomials with RMSE and R2.

N-Degree RMSE R2

2 82.90 0.4391

7 76.38 0.6081

12 80.65 0.4692

17 80.51 0.4710

https://doi.org/10.1371/journal.pone.0306090.t008

Fig 7. KCCAM_DNN performance on PIMA Indian diabetes dataset.

https://doi.org/10.1371/journal.pone.0306090.g007

Fig 8. KCCAM_DNN performance on Laboratory of Medical City Hospital dataset.

https://doi.org/10.1371/journal.pone.0306090.g008
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Computation efficiency of KCCAM_DNN

KCCAM_DNN significantly enhances temporal performance, with a training time of 64.049

seconds. Table 10 shows its superior performance over comparison models. Compared with

the best available methods [15], the time improvement is 17.941 seconds.

The experiments were conducted on a system with the Windows 11 operating system. Our

method does not require dedicated GPU devices and performs efficiently using only CPU

devices. The machine is powered by an Intel(R) Core(TM) i7-8550U CPU processor with a

base frequency of 1.80GHz, a maximum turbo frequency of 2001 MHz, 4 cores, and 8 logical

processors. The system is configured with 81GB of RAM. The development language used for

the experiments was Python 3.9.1. KCCAM_DNN exhibits outstanding performance in man-

aging large datasets and providing swift response times for individual predictions, rendering it

a high-quality model for real-time applications. This creates the opportunity for its utilization

in actual clinical scenarios.

Model interpretation and analysis based on SHAP

SHAP can effectively analyze the key factors that affect diabetes prediction, significantly

improving model transparency and reliability. This insight plays a crucial role in gaining a

deeper understanding of the pathogenesis of diabetes and developing targeted prevention

strategies.

Fig 9 displays SHAP bars organized by the corresponding SHAP value of each feature, indi-

cating the significance of global characteristics. As shown in Fig 9, characteristics such as

Table 9. Performance evaluation of diabetes prediction. Where, FS stands for feature selection, MVI stands for missing value imputation, O* stands for parameter

optimisation.

Data Data Preprocessing Model (%) Precision (%) Recall (%) F1-Socre (%) TrainAcc (%) TestAcc (%)

LMCH FS SVM 96.551 93.768 94.912 98.545 94.915

OSVM 97.674 95.333 95.299 97.281 95.333

RF 100 100 100 98.726 100

ORF 98.765 95.238 96.969 98.247 95.000

2GDNN 97.348 96.667 96.965 98.714 96.667

O2GDNN 97.281 97.333 97.265 99.571 97.333

KCCAM_DNN 99.362 99.333 99.339 97.424 99.333

OKCCAM_DNN 100 98.850 99.421 97.622 98.000

PIMA FS+MVI SVM 97.083 96.363 96.375 99.607 96.363

OSVM 98.462 98.462 98.462 100 98.181

RF 100 100 100 98.109 100

ORF 100 100 100 100 100

2GDNN 95.156 94.495 94.504 99.802 94.495

O2GDNN 97.348 97.245 97.255 99.012 97.248

KCCAM_DNN 99.109 99.090 99.089 99.803 99.090

OKCCAM_DNN 98.989 98.666 98.806 99.312 98.630

https://doi.org/10.1371/journal.pone.0306090.t009

Table 10. Time evaluation of the proposed KCCAM_DNN.

Model Precision(%) Recall(%) F1-Socre(%) TrainAcc(%) TestAcc(%) Time(s)

2GDNN 95.156 94.495 94.504 99.802 94.495 81.990

KCCAM_DNN 99.109 99.090 99.089 99.803 99.090 64.049

https://doi.org/10.1371/journal.pone.0306090.t010
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glucose concentration and insulin have a noteworthy influence on the classification of diabe-

tes, reaching SHAP values of 0.182 and 0.067 respectively, with discrepancies in glucose con-

centration yielding the most notable impact on the model. This finding is highly consistent

with the key features identified after using Kendall’s correlation coefficient for feature selec-

tion, both focusing on the two core features of glucose and insulin. After feature selection, the

model’s prediction accuracy has improved, achieving a 0.915% increase in performance com-

pared to the data without feature selection, ultimately reaching an accuracy of 97.333%. This

fully validates the importance of feature selection in improving model performance.

Fig 10 shows the average impact of each feature on the model output in the diabetes data-

sets. It provides information about the average relative importance of features concerning the

model predictions. The results demonstrate that the average impact of glucose concentration

and insulin on the model is significant, further validating their importance in diabetes

prediction.

Fig 11 displays the SHAP summary plot, ranking the significance of features that influence

determining diabetes. The graph visually presents the distribution of SHAP values for each fea-

ture, with the horizontal axis reflecting the magnitude of the SHAP values, and the vertical axis

arranging the samples based on the sum of SHAP values for that feature. Each data point rep-

resents a single sample, with the sample size stacked vertically. The color indicates the level of

the feature value, with red indicating a high value and blue indicating a low value, and a wider

Fig 9. An analysis of the importance of influencing the characteristics of diabetes.

https://doi.org/10.1371/journal.pone.0306090.g009

Fig 10. Average impact on model output magnitude.

https://doi.org/10.1371/journal.pone.0306090.g010
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color region signifies a more significant impact of that feature on the model’s predictions. As

shown, both glucose and insulin characteristics have a significant impact on predicting diabe-

tes status. As the values of these characteristics decrease, the likelihood of being diagnosed

with diabetes decreases. Of these, glucose concentration has the most significant effect on the

identification of diabetes. Therefore, we need to control glucose and insulin effectively after-

ward to better prevent diabetes.

By analyzing the above three figures, we can clearly observe that the analysis results of the

SHAP model and the conclusions from feature selection are highly compatible in terms of key

feature identification. The mutual validation of these two methods enables us to understand

more accurately the influence of features on diabetes prediction, providing a strong basis for

subsequent model optimization and decision support.

Conclusion

In conclusion, we present KCCAM_DNN, a high-performance model designed for predicting

and diagnosing diabetes. KCCAM_DNN leverages Kendall’s correlation coefficients for fea-

ture selection, which accelerates model training and inference, and demonstrates proficiency

in handling nonlinear data. Polynomial regression is used to ensure robust missing value inter-

polation, preserving data integrity. The proposed deep neural network, KCCAM_DNN, incor-

porates a self-attention mechanism to prioritize crucial feature information impacting

diabetes, enhancing prediction performance. The SHAP model contributes to accurately

understand the impact of each feature on the model, facilitating clinical application. Experi-

mental results indicates the superior performance of KCCAM_DNN in diabetes prediction

compared to current state-of-the-art methods. Future efforts will focus on optimizing feature

analysis and hyperparameter settings, in order to further enhance model accuracy and extend

its application to real-world scenarios to provide more accurate prediction services for diabetes

patients. By collecting patients’ blood glucose monitoring data and combining them with life-

style habits such as diet, exercise and sleep, we can predict whether people are at risk of devel-

oping diabetes and help doctors design more effective prevention and treatment strategies.
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