
RESEARCH ARTICLE

Differential methylation region detection via

an array-adaptive normalized kernel-

weighted model

Daniel AlhassanID*, Gayla R. Olbricht, Akim Adekpedjou

Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO, United

States of America

* daanmq@mst.edu

Abstract

A differentially methylated region (DMR) is a genomic region that has significantly different

methylation patterns between biological conditions. Identifying DMRs between different bio-

logical conditions is critical for developing disease biomarkers. Although methods for detect-

ing DMRs in microarray data have been introduced, developing methods with high

precision, recall, and accuracy in determining the true length of DMRs remains a challenge.

In this study, we propose a normalized kernel-weighted model to account for similar methyl-

ation profiles using the relative probe distance from “nearby” CpG sites. We also extend this

model by proposing an array-adaptive version in attempt to account for the differences in

probe spacing between Illumina’s Infinium 450K and EPIC bead array respectively. We also

study the asymptotic results of our proposed statistic. We compare our approach with a pop-

ular DMR detection method via simulation studies under large and small treatment effect

settings. We also discuss the susceptibility of our method in detecting the true length of the

DMRs under these two settings. Lastly, we demonstrate the biological usefulness of our

method when combined with pathway analysis methods on oral cancer data. We have cre-

ated an R package called idDMR, downloadable from GitHub repository with link: https://

github.com/DanielAlhassan/idDMR, that allows for the convenient implementation of our

array-adaptive DMR method.

Introduction

DNA methylation is an important epigenetic mechanism used by cells to control gene expres-

sion [1]. It plays an important role in many biological processes such as somatic cell [2] and

embryonic development [3]. Aberrant DNA methylation patterns have been linked to complex

diseases like cancer and diabetes [4]. DNA methylation refers to the addition of a methyl

group to a DNA base. In mammals, it is known to occur at cytosine sites when followed by a

guanine nucleotide (called a CpG site) [5]. Whole-genome bisulfite sequencing (WGBS) is the

gold standard for measuring methylation status in any organism. It can capture more than 28

million CpGs [6], providing genome-wide coverage, whereas microarrays focus on a subset of
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the genome, targeting specific genomic regions. Despite the massive reduction in cost of

WGBS in recent years, it is still expensive when employed in large-scale epidemiological stud-

ies. Microarrays have become more popular for most epigenome-wide association studies

(EWAS). They provide an economically feasible [7] means to explore the associations between

DNA methylation and complex diseases [8]. These studies aim to better understand the con-

nection between DNA methylation and human health through identifying markers associated

with diseases.

Illumina Infinium HumanMethylation BeadChip technology is the most widely used array-

based technology for EWAS studies. The Illumina platform estimates the methylation status

using two probes (methylated and unmethylated) at each CpG site to measure the methylation

intensities [9]. There are two ways of quantifying methylation output from the Illumina Bead-

Chip assay: (1) the β-value and (2) the M-value. The β-value measures the percentage of meth-

ylation and hence ranges from 0 (unmethylated) to 1 (fully methylated). The M-value is

calculated from the β-value using the following relationship:

M ¼ log
2

b

1 � b

� �

: ð1Þ

Though the β-value is biologically preferred when it comes to interpretation, the M-value is

statistically more appropriate. Most classical statistical methods, like the general linear model,

used in analyzing high-throughput experiments assume equal variances of populations and

normality of errors. The M-values approximately have equal variance and have the same sup-

port as the Gaussian distribution. Thus, a statistic based on M-values is more appropriate

when using such methods [10].

Over the years, Illumina has been improving their DNA methylation assay by increasing

the number of CpG sites that can be interrogated, starting with the Infinium HumanMethyla-

tion 27K (*27,000 CpG sites), Infinium HumanMethylation 450K (*480,000 CpG sites) to

the most recent Infinium HumanMethylationEPIC (*850,000 CpG sites). While the Infinium

HumanMethylationEPIC array (herein termed ‘EPIC’) represents the latest advancement in

methylation assays, the Infinium HumanMethylation 450K array (herein termed ‘450K’) con-

tinues to hold significant relevance. Historically, the 450K array was one of the first to provide

comprehensive coverage of methylation sites across the genome, making it foundational in

epigenetic research. Its widespread adoption has led to the accumulation of a large volume of

data over years, which now serves as a critical benchmark for longitudinal studies [11, 12].

As the technology evolves, future arrays may have different probe gap distributions and a

method the readily adapts to the type of array is needed. In this article, we will focus on 450K

array data but also provide a method that adapts to the EPIC and possibly future Infinium

assays. An important characteristic of the two arrays (450K and EPIC) is that the methylation

intensities are measured using either the Infinium I assay or Infinium II assay which have dif-

ferent chemistries. For a detailed description of these two assays, see [13] and references

therein. Owing to the different chemistries but complimentary strengths of the two designs,

data preprocessing and normalization are critical [14]. Several normalization methods [15–17]

exist in the literature and though no single one always outperforms the other, some methods

are built ideally for some specific cases. For instance, the functional normalization method

[15] is best suited for cases where global differences are expected, such as in treatment-control

studies. We employed this normalization technique in our simulation and data application

example.

Differences in DNA methylation between samples (e.g. cancer and normal) can be mea-

sured at single CpG sites, referred to as differentially methylated loci (position) (DML/DMP),
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and over contiguous sites, referred to as differentially methylation regions (DMRs). Despite

the many situations where researchers are interested in site-level testing [18], a more useful

form is one that involves testing over a region due to the increase in statistical power and bio-

logical interpretation [19, 20]. Methylation status between nearby CpG sites are highly corre-

lated (co-methylated) [21, 22] and this information is employed when collapsing contiguous

sites to form DMRs. Regions could be either predefined or user-defined. Differential DNA

methylation in predefined regions based on genomic annotations such as CpG Islands (CGI),

TSS200 (regions from transcription start site to 200 bases upstream), TSS1500 (200–1500

bases upstream of the TSS), Open sea (regions of the genome with sparse CpG density, distal

from CpG islands), and CGI shores (regions immediately adjacent to CpG Islands, typically

showing a gradient in CpG density) have special biological interpretations [23–26]. However,

they possess two problems: (1) they comprise only a subset of the 450K/EPIC probes for DMR

detection which provide less room for knowledge discovery and (2) they require defining

genomic regions prior to evaluation, forcing DMRs to have artificial start and end points. A

user-defined region, however, allows for flexibility and knowledge discovery as regions can be

defined based on some criteria such as median distance between probes. The method we pro-

pose falls within this group.

Many user-defined DMR detection methods such as Probe Lasso, Bump Hunter, DMRcate
among others, have been proposed [27–31]. However, no one approach always outperforms

the other. The Probe Lasso method [28] capitalizes on the uneven spacing of probes based on

genomic annotation on the array. It calls DMRs based on the probe density so that subsequent

analysis do not entirely focus on the dense regions alone. Though the DMR calling framework

is purported to be dynamic or flexible, it still forces DMRs to have artificial start and end

points within a gene feature. It is a user-defined region method between gene features but a

predefined region method within gene features, hence it may fail to detect other novel DMRs

when they do exist (lack statistical power). Bump Hunter [29], employs surrogate variable anal-

ysis to handle batch effects, a unique feature in their method, as samples are usually not col-

lected at the same time point. However, in an extensive simulation study under 60 different

parameter settings [32] comparing the popular methods (Probe Lasso and DMRcate included),

it was revealed that Bump Hunter was slow, lacked power (under large and small effect size)

and ranked last in terms of precision. DMRcate [31] is a novel method that only uses the spatial

distribution of probes to call DMRs and given a window, borrows information from nearby

CpG sites using a Gaussian kernel. DMRcate has gained much popularity in the literature due

to its particularly superior predictive performance compared to Probe Lasso and Bump Hunter
[32]. Despite this success, there is still a higher tendency to incur bias due to irregularly spaced

CpG sites and further lack the ability to detect all true DMRs that may exist. Given a specific

window, highly dense regions are more likely to be detected as all nearby CpG sites will each

receive weights that are very close to one. However, less dense regions, may receive no weights

at all. This bias towards denser regions leads to the high detection of DMRs in those regions

but also a low sensitivity in detecting true DMRs that may exist in less dense regions.

Furthermore, the high weights and subsequently smoother estimates obtained in the high

dense regions is not entirely realistic as it does not account for the contribution of each

nearby CpG site in obtaining the smoothed estimate. That is, if three adjacent sites A, B, and

C are considered neighbors because they are within some genomic distance of each other,

then we must consider the relative contribution from these neighbors rather than the raw

contribution when attempting to smooth site-level statistics at A. Accounting for the relative

contribution could reduce the bias in detecting DMRs to a level sufficient to detect true

DMRs in the high dense regions while also improving statistical power to detect DMRs in

less dense regions.
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Another limitation of the previous methods is that they do not sufficiently address varying

patterns of co-methylation (similar methylation profiles) in different genomic regions. [21]

first identified a significant correlation between methylation levels and CpG distance within a

span of 1000 base pairs (bp), a foundational finding cited by many DMR detection methods

including the aforementioned. However, recent studies show that co-methylation varies across

the genome. For instance, [33] indicates that co-methylation can occur within distances as

short as a few hundred base pairs in normal tissues. Further analysis by [34] in a breast cancer

study revealed significant variations in co-methylation region lengths between unmethylated

and methylated states. In a comprehensive follow-up, [35] also examined co-methylation pat-

terns in breast cancer data, uncovering distinct patterns on chromosome X compared to other

chromosomes.

In addition to the recent findings on co-methylation, the low statistical power due to the

bias and lack of flexibility in the aforementioned methods suggest the need for a much more

flexible and less-biased DMR detection method. Furthermore, the continued research in this

field evidenced by other recently developed methods by [36, 37] have further underscored the

critical relevance of DMR studies using microarray data. To this end, the goals of this manu-

script are three-fold: (1) we propose a general locally-weighted statistic via which co-methyla-

tion information can be incorporated to site-level statistics for DMR detection, (2) we show

some large sample properties of statistics of this form under some regularity conditions and

(3) we develop a new method for DMR detection (a specific case of the general locally-

weighted statistic), which reduces the bias due to irregular spaced CpG sites and increases the

sensitivity in detecting true DMRs. Furthermore, we formulate an array adaptive version of

the method (aaDMR) to better capture the somewhat complex co-methylation among CpG

sites, and that adapts to the spacing on each chromosome for 450K, EPIC and possibly future

arrays.

Methods

Site-level differential methylation testing with limma

Limma [38] stands for “linear models for microarray data” and it is the most widely used

method for microarray analysis. It involves fitting linear models and is commonly used in the

analysis of DNA methylation data. We use limma for our work to obtain differential methyla-

tion signals at individual CpG sites. To this end, consider testing H0: μT − μN = 0 against H1:

μT − μN 6¼ 0 where μT, μN are average methylation M-values from tumor and normal samples

respectively at a CpG site obtained from the respective true percent of methylation βT and βN

based on Eq (1). We fit a linear model with the M-values as the response, the condition (tumor

or normal) as the predictor, along with any covariates of interest. The specific contrast to test

the above hypotheses is conducted and the empirical Bayes techniques is then implemented to

obtain robust t estimates called moderated t-statistics. The DMR detection methods we discuss

below rely on the robust site-level tests from limma.

A general locally-weighted statistic

DNA methylation levels are correlated, at least for nearby CpG sites [21, 22]. Hence in deter-

mining the DMRs, we propose smoothing limma’s moderated t-statistic as a suitable way to

capture the correlation information among nearby CpG sites. To this end, we propose the gen-

eral locally-weighted statistic Eq (2), motivated by DMRcate’s kernel-weighted statistic. For a
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chromosome, define the locally weighted statistic S(xi) as:

SðxiÞ ¼ Yi þ
Xn

j6¼i

wjðxiÞYj ð2Þ

where xi denotes the position of CpG site i (site of interest where smoothing is happening) and

j (neighboring sites) respectively, n is the number of sites within some specified genomic dis-

tance, Yi(or Yj) denotes some function of a statistic from a site-level testing (such as the moder-

ated t-statistic from limma [38]), and wj(xi), some appropriate weighting function or

mechanism, used to account for the interdependencies between nearby CpG sites. For the pur-

poses of our work, we define Y = T2 where T is a random variable representing limma’s moder-

ated t-statistic [38]. We state in passing, that when wj(xi) = Kij, defined as Gaussian kernel

weights as in [31], we obtain DMRcate’s kernel-weighted statistic SKY(i). The EPIC array has

*400,000 CpG sites more than 450K array and so within some specified genomic distance,

EPIC is likely to contain more sites than the 450K. With this in mind, we investigate the

asymptotic behavior of S(xi) when the number of nearby CpG sites increases within some spec-

ified genomic distance of xi (or as the array technology improves). Investigating the asymptotic

behavior of our statistic is crucial as it guarantees the accuracy and reliability of our results,

providing a solid foundation for our conclusions in the complex study of DNA methylation.

For readers interested in the detailed mathematical underpinnings of these theorems, extensive

proofs and derivations are provided in the supplementary text (see S1 File).

Normalized kernel-weighted statistic

We propose a specific weighting function wj(xi) (simply wj) called the normalized kernel-

weight function (3) as a realistic way of incorporating the interdependencies among nearby

CpG sites. Kernel smoothers allow for a flexible degree of smoothing via its smoothing param-

eter, known as the bandwidth, which is an effective way of incorporating the shared methyla-

tion profiles at nearby CpG sites. Our rationale for the normalized kernel is two fold. First, if

A < B< C, where A, B, C are CpG sites, then within some “reasonable genomic distance”

(determined by the bandwidth), if A is a neighbor to B, and B a neighbor to C, then A and C
are neighbors as well. So in smoothing or weighting the statistic at A for instance, one needs to

consider the relative contribution from the nearby CpG sites since there is shared co-methyla-

tion among the neighbors. Secondly, the NK reduces the bias towards dense regions in the

DMR detection process through a “fair” distribution of the weights thereby increasing the sen-

sitivity in detecting DMRs in less dense regions when they do exist. With the caveat that the

total of all contributed weights must equal one, our method maintains the property that sites

closer to the reference site contribute more weight than those further away. One major differ-

ence between our proposed method and DMRcate lies in the rationale behind the statistics

proposed. We hypothesize that within some genomic distance all neighboring sites contain the

totality of information to smooth a site-level statistic. However, DMRcate advocates for using

raw contributions from neighboring sites in smoothing a site-level statistic. As previously

mentioned, DMRcate procedure is biased to CpG dense regions due to their statistic [32]. The

major advantage in our approach is the increase sensitivity or power in picking up DMRs that

do exist in less dense regions while maintaining our precision in picking up DMRs in CpG-

dense regions. For convenience, we employ the Gaussian kernel, KðzÞ ¼ exp � z2

2

� �
, and define
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the weighting function as:

wjðxiÞ ¼
K

xj � xi

h

� �

Xn

j6¼i

K
xj � xi

h

� � ; ð3Þ

where K(�) is the kernel, h is the bandwidth and xi, xj denote the position of CpG sites i and j
respectively. More specifically, we address the complex co-methylation patterns in the manner

stated below.

(i) First, we employ the normalized kernel-weight Eq (3) to address the interdependencies in

the methylation levels at nearby sites. In order to readily capture the benefit gained by using

our weighting measure, we keep a fixed bandwidth/ kernel size, h of 500bp, the optimal

bandwidth used in [31]. We call this approach the fixed-spacing array DMR (faDMR)

detection method.

(ii) Our first approach essentially assumes equal spacing between the probes on each chromo-

some which is far from truth. See Figs 1 and 2 for the distribution of probe gaps on the

450K and EPIC respectively. In addition to the uneven spacing at the chromosomal level,

co-methylation patterns are different for different chromosomes [35], suggesting that using

a different kernel size, h, for each chromosome may prove useful, since h acts as a measure

of spread. To that end, we propose an array-adaptive DMR (aaDMR) detection method,

one that chooses h to equal the median probe spacing on each chromosome.

Modeling S(xi) via Satterthwaite’s approximation

We describe the process of modeling our normalized kernel-weighted statistic and mention

that the process is similar to that used by DMRcate [31]. Let x1 < x2, � � �,<xn, be CpG site posi-

tions for an individual chromosome. Under the appropriate null hypothesis, T * tν where ν is

the degrees of freedom (after empirical Bayes’ adjustment) so that Y * F(1,ν). It is obvious that

Fig 1. Probe spacing distribution on the 450K array truncated at 1000bp to ease visualization.

https://doi.org/10.1371/journal.pone.0306036.g001
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Eq (2) is a weighted linear combination of F-distributed random variables which is mathemati-

cally complex to model [31]. Owing to the empirical Bayes method used by limma [38], ν is rel-

atively large even for small sample size situations. We capitalize on this so that as ν!1,

v!d x2

1
.

We can now view Eq (2) as a linear combination of scaled w2
1

random variables. Assuming

that S(xi) is approximately distributed as a scaled chi-squared random variable of the form

pxi
w2

qxi
, we utilize the rule suggested by Satterthwaite [39] by matching the first two central

moments in Eq (4) to obtain pxi
and qxi

in Eq (5). The first two central moments of S(xi) are

EðSðxiÞÞ ¼ EðYi þ
Pn

j¼1
wjYjÞ ¼ 1þ

Pn
j¼1

wj and VarðSðxiÞÞ ¼ VarðYi þ
Pn

j¼1
wjYjÞ ¼

2ð1þ
Pn

j¼1
w2

j Þ respectively. We adopt the notation pxi
and qxi

to make clear that the constants

are obtained on a CpG-site-level and hence may differ from one site to another. The mean and

variance of pxi
w2

qxi
are given by pxi

qxi
and 2p2

xi
qxi

respectively. By matching the first two central

moments to the mean and variance stated, we have:

pxi
qxi

¼ 1þ
Xn

j¼1

wj

2p2
xi

qxi
¼ 2ð1þ

Xn

j¼1

w2

j Þ:

8
>>>><

>>>>:

ð4Þ

Solving (4) leads to

pxi
¼

1þ
Pn

j¼1
w2

j

1þ
Pn

j¼1
wj

qxi

ð1þ
Pn

j¼1
wjÞ

2

1þ
Pn

j¼1
w2

j

8
>>>><

>>>>:

ð5Þ

Fig 2. Probe spacing distribution on the EPIC array truncated at 1000bp to ease visualization.

https://doi.org/10.1371/journal.pone.0306036.g002
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Now, since SðxiÞ � pxi
w2

qxi
then,

SðxiÞ

pxi

� w2
qxi

. We compare the observed values of
SðxiÞ

pxi

to a

χ2 distribution with qxi
degrees of freedom to obtain p-values for our local estimator. Next, we

apply the Benjamini-Hochberg (BH) [40] correction to control the false discovery rate (FDR)

across all site-level tests. CpG sites with a BH-corrected p-value less than the significance level

of α = 0.05 are retained. As a last step, we group significant CpG sites (retained from the previ-

ous procedure) that are within g genomic distance from each other to form DMRs. In collaps-

ing these contiguous sites into regions, we defaulted to g = 1000 bp as do DMRcate [31] and

Bumphunter [29]. To quantify statistical uncertainty to the identified DMRs, we take the CpG

site with the minimum p-value as a representative p-value for that region.

Step-by-step summary of the faDMR and aaDMR detection methods

(a) Obtain site-level moderated observed t-statistics, tj, using limma [38].

(b) Calculate observed yj ¼ t2
j for CpG site j.

(c) Use the normalized kernel weight Eq (3) to weight observed yj to obtain smoothed locally

weighted statistic S(xi) Eq (2). For the faDMR method, h is set to 500bp. For the aaDMR

method, h is taken to equal the median probe spacing on each chromosome.

(d) Use Satterthwaite’s approximation to model S(xi) to obtain unadjusted p-values.

(e) Apply BH correction to obtain adjusted p-values.

(f) Filter out any CpG site with an adjusted p-value greater than α = 0.05.

(g) Specify g, the agglomerate parameter, and collapse significant sites from (f) that are within

g base pairs of each other to form DMRs.

(h) Take the minimum p-value as a representative p-value across CpG sites in the region. This

p-value is used to order the regions in terms of the strength of significance.

Results

Simulation study

To validate our method and investigate its performance, we perform a simulation study and

compare our method with DMRcate. We simulated 1000 repetitions of a 450K data set, each

with 10 control and 10 treatment samples yielding a 450K × 20 matrix. In each set of simulated

data, we randomly assigned 2,136 promoter regions comprising TSS200 and TSS1500 as true

DMRs out of 21,363 regions. Half of these were hypermethylated (i.e., methylation higher in

treatment than control) and the other half hypomethylated (i.e., methylation lower in treat-

ment than control). For DMRs, β–values were simulated from a beta distribution with mode

equal to some specified beta level. For non-DMRs, probes were classified as completely meth-

ylated or unmethylated based on array data from The Cancer Genomic Atlas (TCGA) on cho-

langiocarcinoma (CHOL) [41]. For non-DMRs, β–values were simulated from a beta

distribution with parameters manually chosen to match the average modes of two methylation

statuses of CHOL data. A detailed description of the simulation study can be found in the sup-

plementary text (see S1 File). We investigated two different treatment effects (large and small).

For the large effect, we set the true methylation difference (Δβ = 0.2) to be exactly 0.2 (as in

DMRcate [31]). However, [32] reported that the common DMR testing methods such as
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DMRcate, lacked power to detect small effect sizes. Consequently, we compared our methods

to DMRcate with a true methylation difference of 0.09 (small effect) while maintaining other

aspects of the simulation unchanged. All analyses were based on the M-values (see (1)) Our

simulation study was set up in a similar way to DMRcate. In addition, we obtained a histogram

for one of the 1000 datasets to investigate how well the parameter space is explored (see Fig 3).

Evaluation criteria

We compare our methods (faDMR and aaDMR) with DMRcate under its best (default) perfor-

mance setting (see [31]) to assess their performance using three criteria (precision, recall and

F1-score). As previously stated, we compare faDMR to DMRcate to readily capture the benefit

gained from using the normalized kernel. Next we compare faDMR and aaDMR to capture

the advantage of using a bandwidth that adapts to the array (and chromosome). We consider

two forms of overlap in each criteria that follows: (1) equal overlap (EO)—where start and end

positions of significant DMRs match that of true DMRs; (2) any overlap (AO)—where signifi-

cant DMRs intersect true DMRs. When a significant DMR from any method does not overlap

a true DMR, we call that a false positive (FP). Similarly, we define a true positive as an overlap

between a significant DMR and a true DMR. When a true DMR is not significant, we call it a

false negative (FN). The three criteria we use to evaluate performance are:

(i) Recall (power): We estimate power by dividing the number of true positives (TP) by (TP

+ FN), ie. 2136 true DMRs. That is, recall =
TP

TP þ FN
.

Fig 3. Distribution of β–values from one of 1000 datasets showing the parameter space is well explored.

https://doi.org/10.1371/journal.pone.0306036.g003
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(ii) Precision: We estimate precision by dividing the number of true positive DMRs by

(TP + FP), i.e. the total number of significant DMRs found by our methods. That is,

precision =
TP

TPþ FP
.

(iii) F1 score: This metric combines precision and recall into a single metric ranging from 0 to

1, where 1 represents perfect precision and recall. Some methods have a tendency to priori-

tize reducing false positives (increasing precision) at the expense of recall (more false nega-

tives). We use this metric, which assigns equal weight to precision and recall, because relying

solely on either precision or recall does not provide a comprehensive assessment of the per-

formance of the method. We compute F1 score as, F1 ¼ 2�
precision� recall
precisionþ recall

[32, 42].

Simulation results

Based on the EO criteria (see Table 1), the type I error rates (i.e., percent of FPs) for our meth-

ods are around the expected 5% (5.16% for faDMR and 5.35% for aaDMR) with DMRcate a lit-

tle above (6.07%). The story is reversed using the AO criteria (see Table 2) with all methods

well controlling the type I error rate at less than 5% (0 FP for DMRcate, 2 FPs for faDMR and 1

FP for aaDMR). Both faDMR and aaDMR detected substantially more DMRs compared to

DMRcate from of a total of 2136 (see Tables 1 and 2).

The precision, power and F1-score metrics all indicate faDMR and aaDMR methods are

outperforming DMRcate. Based on the EO criteria, DMRcate performed poorly on precision,

power and F1 score with median of less than 0.2 on all three criteria across the 1000 simulated

data sets. Though power and precision are less than 50% for all methods, it’s readily improved

with median values in faDMR and aaDMR (averaged across 1000 datasets) more than twice

that of DMRcate (see Fig 4). At the time of writing, we have not come across an article in this

domain that utilizes the EO criteria. Most authors tend to favor the less strict AO criteria [32].

Based on the AO criteria, all three methods perform well in terms of precision with DMRcate

sacrificing power (less than 0.7) for nearly perfect precision. faDMR and aaDMR both improve

power (between 0.8 and 0.9) without hurting precision (see Fig 5). In allowing for the array-

adaptive case, we were able to slightly improve power by 3% (comparing faDMR to aaDMR

Table 1. Large treatment effect (Δβ = 0.2): A confusion matrix comparing the results from three methods

(DMRcate, faDMR and aaDMR) with true DMRs based on EO criteria averaged across 1000 datasets. Sig. means

statistically significant DMRs; Not Sig. indicates the number of regions that are not statistically significant.

DMRcate True DMR No DMR Total

Sig 284 1168 1452

Not Sig. 1852 18059 19911

Total 2136 19227 21363

faDMR True DMR No DMR Total

Sig. 753 992 1745

Not Sig. 1383 18235 19618

Total 2136 19227 21363

aaDMR True DMR No DMR Total

Sig. 772 1030 1802

Not Sig. 1364 18197 19561

Total 2136 19227 21363

https://doi.org/10.1371/journal.pone.0306036.t001
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under AO criteria). Comparing faDMR and aaDMR using the EO criteria, we notice a slight

increase in power (* 1%).

For the small methylation difference (treatment effect) of Δβ = 0.09, all methods performed

well on precision (based on the AO criteria), but very poor in terms of power. This is usually

the case with power for small treatment effects. However, we highlight that our DMR detection

methods performed relatively better in terms of power than DMRcate (see Table 3 and Fig 6).

All methods under the EO criteria performed poorly, yet our methods still do better, especially

on precision with median greater than 0.35 compared to the median precision of less than 0.2

for DMRcate across the 1000 simulated data sets (see Fig 7).

Table 2. Large treatment effect (Δβ = 0.2): A confusion matrix comparing the results from three methods

(DMRcate, faDMR and aaDMR) with true DMRs based on AO criteria averaged across 1000 datasets. Sig. means

statistically significant DMRs; Not Sig. indicates the number of regions that are not statistically significant.

DMRcate True DMR No DMR Total

Sig 1452 0 1452

Not Sig. 684 19227 19911

Total 2136 19227 21363

faDMR True DMR No DMR Total

Sig. 1743 2 1745

Not Sig. 393 19225 19618

Total 2136 19227 21363

aaDMR True DMR No DMR Total

Sig. 1801 1 1802

Not Sig. 335 19226 19561

Total 2136 19227 21363

https://doi.org/10.1371/journal.pone.0306036.t002

Fig 4. Large treatment effect (Δβ = 0.2): Precision, recall and F1 score metrics based on EO criteria. Boxplots of results across the 1000 simulated

data sets. All pairwise comparisons of the methods are statistically significant with p< 0.001 using Tukey’s multiple comparison test from a one-way

ANOVA.

https://doi.org/10.1371/journal.pone.0306036.g004
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In Fig 8, we briefly compare the density of the CpGs in the DMRs obtained from one of our

simulated datasets. As previously stated, these results suggest that our methods are able to

detect DMRs in lower density regions compared to DMRcate.

Real data example

Data extraction. We downloaded the Oral Squamous Cell Carcinoma (OSCC) data set

[43] from the National Center for Biotechnology Information (NCBI) Gene Expression Omni-

bus (GEO) repository. The OSCC data set (with GEO accession number GSE87053) was gen-

erated using the Illumina Infinium 450K Human DNA methylation Beadchip v1.2. A total of

Fig 5. Large treatment effect (Δβ = 0.2): Precision, recall and F1 score metrics based on AO criteria. Boxplots of results across the 1000 simulated

data sets. All pairwise comparisons of the methods are statistically significant with p< 0.001 using Tukey’s multiple comparison test from a one-way

ANOVA.

https://doi.org/10.1371/journal.pone.0306036.g005

Table 3. Small treatment effect (Δβ = 0.09): A confusion matrix comparing the results from three methods

(DMRcate, faDMR and aaDMR) with true DMRs based on AO criteria averaged across 1000 datasets. Sig. means

statistically significant DMRs; Not Sig. indicates the number of regions that are not statistically significant.

DMRcate True DMR No DMR Total

Sig 82 0 82

Not Sig. 2054 19227 21281

Total 2136 19227 21363

faDMR True DMR No DMR Total

Sig. 123 0 123

Not Sig. 2013 19227 21240

Total 2136 19227 21363

aaDMR True DMR No DMR Total

Sig. 127 0 127

Not Sig. 2009 19227 21236

Total 2136 19227 21363

https://doi.org/10.1371/journal.pone.0306036.t003
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21 samples were collected, with 10 paired tumor and adjacent normal tissues and 1 unpaired

tissue. We used the 10 paired tissues for our analysis. Information on human papillomavirus

(HPV) status (5 HPV positive, 5 HPV negative) and sex (3 females and 7 males) was also

provided.

Fig 6. Small treatment effect (Δβ = 0.09): Precision, recall and F1 score metrics based on AO criteria. Boxplots of results across the 1000 simulated

data sets. All pairwise comparisons of the methods are statistically significant with p< 0.001 using Tukey’s multiple comparison test from a one-way

ANOVA.

https://doi.org/10.1371/journal.pone.0306036.g006

Fig 7. Small treatment effect (Δβ = 0.09): Precision, recall and F1 score metrics based on EO criteria. Boxplots of results across the 1000 simulated

data sets. All pairwise comparisons of the methods are statistically significant with p< 0.001 using Tukey’s multiple comparison test from a one-way

ANOVA.

https://doi.org/10.1371/journal.pone.0306036.g007
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Oral Squamous Cell Carcinoma (OSCC). Oral cancer is the most common form of head

and neck squamous cell cancer. According to the American Cancer Society, about 1 in 60 men

and 1 in 140 women have a lifetime risk of developing oral cavity cancer. Aberrant DNA meth-

ylation patterns have been found to be associated with OSCC [43].

We applied our methods and DMRcate to the OSCC data of paired tumor and adjacent nor-

mal tissues after we had accounted for the paired data in limma’s test-statistic. We adhered to

the standard quality control steps such as normalization and probe filtering using the prepro-
cessFunnorm [15] function in the minfi R/Bioconductor package [44]. In addition to this, we

controlled for the HPV status and sex in our modeling. All three methods found 13,697

DMRs. faDMR and aaDMR found more common DMRs (1825) than either method with

DMRcate (341 with aaDMR and 47 with faDMR, see Fig 9). In terms of the number of

uniquely identified DMRs, the results were consistent with the simulation study, as aaDMR
detected the most DMRs (with 828 unique ones) followed by faDMR (with 198 unique ones)

and then DMRcate (with 247 unique ones) (see Fig 9).

With the large number of DMRs detected, we sought to determine the biological relevance

(i.e. the pathways enriched and the associated unique differentially methylated genes) via a

KEGG pathway analysis, using the goregion function in the missMethyl package [45]. We

employed this new function in the missMethyl package because in identifying enriched genes,

it annotates probes to genes in a way that accounts for the bias towards genes with more mea-

sured CpG sites on the array (“probe-bias”) and corrects for “multi-gene bias” [45] thereby

improving the type I error rate (see [45] for details). For this downstream analysis, we nar-

rowed our discussion to comparing aaDMR and DMRcate. Whereas 30 significantly affected

Fig 8. Density of CpGs in significant DMRs from one of 1000 datasets for the three methods (DMRcate, faDMR and aaDMR).

https://doi.org/10.1371/journal.pone.0306036.g008
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pathways were identified from the aaDMR procedure, 22 significantly affected pathways were

found with DMRcate. Nineteen of the 22 significantly affected pathways by DMRcate were also

reported by aaDMR. For the 19 pathways identified by both methods, the evidence of differen-

tially methylated genes was stronger in aaDMR. We attribute this to the higher power aaDMR
has over DMRcate, as shown in the simulation study. Moreover, we found that the 11 unique

pathways determined by aaDMR were related to the immune and nervous system, suggesting

that the genes affected by the OSCC disease map to these systems. In the case of DMRcate, the

3 unique pathways were related to immune and sensory systems, and cardiovascular disease.

The associated genes from the unique pathways identified by aaDMR and DMRcate were fur-

ther checked with a wide list of databases using the interactive Enrichr enrichment analysis

tool [46–48]. Our analysis revealed that pathways detected by aaDMR contained the AKT

Fig 9. Venn diagram of significant DMRs identified by the three methods from OSCC data.

https://doi.org/10.1371/journal.pone.0306036.g009
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serine-threonine protein kinase family (AKT1, AKT2 and AKT3) which has been linked to

oral cancer. In their study of the specific role of AKT in OSCC, [49] revealed that the silencing

of AKT1 and AKT2 genes decreased the expression of proteins regulating cancer cell survival.

The frequency of appearances for the three genes (see S2 File) suggest their importance in

OSCC.

Summary of results

There were many common DMRs among the three methods compared in both the simulation

study and OSCC data example. However aaDMR determined more unique DMRs due to its

higher power. Using the EO criteria revealed that there is more room for improvement as all

methods performed poorly with less than 50% precision and power for the large treatment

effect and below 40% precision and 10% power for the small treatment effect. Despite this

issue, we point out that our methods are more likely to detect the true length of a DMR than

DMRcate, as our simulation results using the EO criteria reveal that aaDMR has better preci-

sion and recall performance. This finding supports the list of genes that are significantly

affected in the pathway analysis when our methods are applied (see S2 File).

Conclusion

The development of diseases is influenced by a number of factors, some of which are genetic

in origin and some of which are environmental. Additionally, by comparing the changes in

DNA methylation patterns between disease and normal samples, epigenetic markers like DNA

methylation give us a way to understand how diseases are formed. However, this area is not

fully understood and methods that reveal unique genomic regions and genes that are enriched

by changes in methylation patterns are desirable as they provide researchers with newer areas

to explore. We discovered that our method, aaDMR, has the capacity to provide researchers

with additional pathways to investigate while also revealing particular genes that are signifi-

cantly impacted by the presence of a condition, thereby assisting researchers in selecting the

precise genes that need further analysis. Due to cost and resource constraints, high-throughput

experiments frequently have small to medium sample sizes. This means that there is less statis-

tical power to detect DMRs that do exist, which affects the reliability of studies and statistical

data analysis results. In such cases, our method may be preferred because it has a higher statis-

tical power to detect a DMR than DMRcate, especially in low treatment effect settings. Our

methods use limma for the site-level statistic, which is employed in WGBS data analysis for

testing for DMPs. Hence our methods can be applied to such data. In using WGBS, we recom-

mend aaDMR due to the increased density of CpG sites in WGBS data. If an alternative to

limma is preferred for the site-level statistic, the main additional work needed to utilize our

approach would be to obtain the (approximate) statistical distribution of the locally-weighted

statistic (2). Lastly, we note that our methods are validated by comparison with DMRcate, an

established method previously validated using WGBS data. This comparison, leveraging

DMRcate’s established validity, provides strong indirect support for the accuracy and reliabil-

ity of our results.

In summary, we have developed a general class of locally-weighted estimators for use in

DMR detection and shown its consistency and asymptotic normality. We have proposed the

normalized kernel-weight methods within this general class, which have a higher power to

detect a true DMR than DMRcate without sacrificing precision for large treatment effect and a

higher precision than DMRcate for a low treatment effect. Essentially, our methods demon-

strate two things: (1) that using the normalized kernel-weight is a better way to borrow infor-

mation from neighboring sites and account for co-methylation than DMRcate (revealed by
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comparing faDMR with DMRcate) and (2) that accounting for co-methylation using the adap-

tive-array technique increases the susceptibility of detecting true methylation differences

(revealed by comparing aaDMR with faDMR).

Supporting information

S1 File. This file contains the statement and proofs to theorems 1 and 2. It also contains

details of the simulation setup.

(PDF)

S2 File. This file contains list of genes produced from the pathway analysis based on

DMRcate, faDMR and aaDMR.
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