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Abstract

Current antimicrobial susceptibility testing (AST) requires 16–24 hours, delaying initiation of

appropriate antibiotics. Hence, there is a need for rapid AST. This study aims to develop

and evaluate the feasibility of a rapid flow cytometric AST assay to determine minimum

inhibitory concentration (MIC) for carbapenem-resistant Acinetobacter baumannii (CRAB).

Antibiotic exposure causes increased intracellular reactive oxygen species (ROS) in bacte-

ria. We hypothesized that ROS can be used as a marker to determine MIC. We assessed

three CRAB clinical isolates across fifteen antibiotics at various concentrations in a custom-

ized 96-well microtiter plate. The antibiotics assessed include amikacin, beta-lactams (ampi-

cillin/sulbactam, aztreonam, cefepime, ceftolozane/tazobactam, doripenem, imipenem,

meropenem, and piperacillin/tazobactam), levofloxacin, polymyxin B, rifampicin, trimetho-

prim/sulfamethoxazole, and tetracyclines (tigecycline and minocycline). These clinical

CRAB isolates were assessed for ROS after antibiotic treatment. Increased ROS levels indi-

cated by increased RedoxSensorTM Green (RSG) fluorescence intensity was assessed

using flow cytometry (FCM). MIC was set as the lowest antibiotic concentration that gives a

�1.5-fold increase in mode RSG fluorescence intensity (MICRSG). Accuracy of MICRSG was

determined by comparing against microtiter broth dilution method performed under CLSI

guidelines. ROS was deemed accurate in determining the MICs for β-lactams (83.3% accu-

racy) and trimethoprim/sulfamethoxazole (100% accuracy). In contrast, ROS is less accu-

rate in determining MICs for levofloxacin (33.3% accuracy), rifampicin (0% accuracy),

amikacin (33.3% accuracy), and tetracyclines (33.3% accuracy). Collectively, this study

described an FCM-AST assay to determine antibiotic susceptibility of CRAB isolates within

5 hours, reducing turnaround time up to 19 hours.
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Introduction

The Acinetobacter baumannii pathogen causes a range of life-threatening nosocomial infec-

tions [1]. The A. baumannii infections are associated with poor clinical outcomes, including

attributable mortality rates of 8.4–36.5% [2] and excess 5–10 days of ICU stay [3,4]. Early treat-

ment with appropriate antibiotics is vital to reduce mortality. Inappropriate antibiotics therapy

can lead to increased risk of in-hospital mortality (adjusted relative risk ratio 1.76) [5] and

increased 30-day mortality of 43.7% [6]. Delays in initiating appropriate antibiotics by�1 day

is associated with 6.6% increase in mortality [7].

Appropriate treatment is further complicated by global increasing rates of resistance [8,9].

Multi-drug resistant (MDR) A. baumannii infection is associated with 5-fold increase in rela-

tive risk of receiving inappropriate empirical therapy [5]. Global investigation of multidrug-

resistant A. baumannii revealed that resistance rates of imipenem (a carbapenem) increased

exponentially every 5 years from 2000 to 2016 among countries in the Organization for Eco-

nomic Cooperation and Development [10]. A study assessing Acinetobacter spp. collected

from 140 hospitals across 32 countries revealed non-susceptibility to carbapenems doubled

from 2005 to 2009 [11]. European surveillance data from 2009 showed that the Acinetobacter

spp. was implicated in intensive care unit (ICU)-acquired pneumonia up to 21.8% of the time,

in ICU-acquired bloodstream infections up to 17.1% and in ICU-acquired urinary tract infec-

tions up to 11.9% [12]. In Singapore, imipenem resistance rates in the largest tertiary acute

care hospital, Singapore General Hospital in 2011–2015 was 4.3% higher compared to 2006–

2008 [13]. Patients may only receive appropriate antibiotics after antimicrobial susceptibility

testing (AST). Therefore, a short turn-around time to generate AST results is a crucial factor in

ensuring early administration of appropriate antibiotics and successful treatment.

Current AST methods involve minimum inhibitory concentration (MIC) determination

using culture-based methods, such as broth dilution and agar dilution assays. These culture

methods are gold standards with high levels of sensitivity and specificity. However, current

AST methods require 16–24 hours incubation following isolation of pure bacterial colonies

[14,15]. This delays administration of appropriate antibiotics thereby increasing the likelihood

of infection-related mortality. While rapid AST methods such as molecular and mass spec-

trometry-based methods were proposed and have been compared against the gold standards,

these rapid AST methods may not always specify antibiotic susceptibility [16].

Flow cytometry (FCM) has been considered for rapid AST since the 1980s [17,18]. FCM

can assess more than 10,000 cells per second. This rapid methodology will not only reduce the

turnaround time significantly, delivering same-day results but is also able to detect bacteria

sub-populations within the strains such as heteroresistant sub-populations. Currently, there is

limited literature establishing a FCM assay that can be adopted for rapid AST covering a wide

range of antibiotics [19–21]. Flow cytometry has been demonstrated to have good correlation

to current automated diagnostic methods [22]. To the best of our knowledge, flow cytometric

AST has yet to be established for routine clinical use globally.

Reactive oxygen species (ROS) is a collective term for all unstable, reactive oxygen-contain-

ing molecules. Exposing bacteria to antibiotics increases intracellular ROS, causing oxidative

stress in bacteria [23–27]. Increased ROS can be simply measured and assessed by fluorometric

methods such as flow cytometry. Therefore, we hypothesized that ROS is a suitable marker in

predicting MIC and antibiotic susceptibility using FCM. Using ROS as an indicator, we aimed

to evaluate the feasibility of an “one-protocol-fits-all-antibiotics” FCM-AST assay.
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Materials and methods

Bacteria isolates

Nonclonal clinical strains of CRAB previously collected from the largest tertiary hospital in

Singapore as part of a nationwide surveillance study from 2009 to 2016, were used in this

study. Genus identity was determined using Vitek 2 ID-GN cards (bioMérieux, Inc., Hazel-

wood, MO). Bacteria isolates were stored at -80˚C. Isolates were sub-cultured twice on Tripti-

case Soy Agar (TSA) with 5% sheep blood (Thermo Fisher, Singapore) at 35˚C before each

experiment. Isolates were randomly selected for this study. Three CRAB clinical isolates

(AB0047, AB0356, AB0603) were used in this study (S1 Table in S1 File). The lab adapted

ATCC19606 strain was used as a reference strain for characterizing the RSG fluorophore.

Fluorophores used for FCM

The fluorescent dye, RedoxSensorTM Green (RSG) of the BacLight RedoxSensor Green Vitality

Kit (Thermo Fisher Scientific, Singapore), was used to assess bacterial ROS. Increased RSG

fluorescence intensity indicates increased intracellular ROS. To identify viable bacteria for

ROS assessments, the fluorescent dyes, SYTO-62 and propidium iodide (PI), (Thermo Fisher

Scientific, Singapore) were used together with RSG. SYTO-62 labels nucleic acid of all bacteria.

PI only enters non-viable bacteria with compromised membranes and intercalate DNA.

Characterization of RSG fluorophore

The ATCC 19606 A. baumannii reference strain was used to characterize the RSG fluorophore.

An inoculum of 105.7 bacteria were stained with 20 μM RSG at room temperature for 15 mins.

Stained bacteria were then exposed to various ROS-generating reagents. Hydrogen peroxide

and sodium hypochlorite were added at a final concentration of 10 mM and 1.5 mM respec-

tively. Hydroxyl radicals were generated using 1mM ferrous sulfate heptahydrate reacting with

200 μM hydrogen peroxide [28]. Samples were then assessed by FCM at every timepoint.

FCM assessments of MIC

Similar to standard microtiter broth dilution method, bacteria suspension at 105.7 CFU/mL

was inoculated into each well of a customized microtiter broth dilution panel. The plate was

incubated at 35˚C for 30 minutes. Bacteria were then stained with the fluorescence cocktail

(20 μM RSG, 1 μM SYTO-62 and 20 μM PI) and incubated for a further 15 minutes at room

temperature before FCM assessments. Data acquisition was carried out with CytoFlex (Beck-

man Coulter, Singapore). Details on instrumental settings and configurations during data

acquisition can be found in (S2 Table in S1 File). The manufacturer settings with a default

“medium” flow rate of 30 μL/min was used. Each well was sampled for 180 seconds or until

20,000 events were collected, whichever came first. The durations for sample mixing and back-

flush of the fluidic system were set at 5 s and 60 s respectively to ensure accuracy of FCM

assessments. Data acquired were exported in .fcs files and analyzed using the FlowJo software

(v10.4, Tree Star, Ashland, OR, USA). Gating strategy and compensation matrix can be found

in the (S1 Fig in S1 File and S2 Table in S1 File).

Standard microtiter broth dilution method

MIC was determined using standard microtiter broth dilution method with customized

96-well microtiter broth dilution panels (Trek Diagnostics, East Grinstead, UK) performed

under CLSI guidelines. Briefly, bacterial suspension of 107.7 CFU/mL in physiological saline

(0.85% (w/v) sodium chloride) was prepared. Ten-fold dilutions were performed to achieve
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105.7 CFU/mL in cation-adjusted Müller-Hinton broth. Microtiter broth dilution panel was

inoculated with 100 μL of bacterial suspension at 105.7 CFU/mL per well. Bacterial growth is

assessed after the microtiter plate was then incubated at 35˚C over 20–24 hours. Susceptibility

breakpoints from MICs were interpreted primarily based on CLSI guidelines. Breakpoints

from other sources were used when the breakpoint is not indicated in CLSI.

Results

Establishing optimal conditions for RedoxSensor Green to measure

intracellular ROS

The commercial RedoxSensor™ Green (RSG) fluorophore can assess bacterial intracellular

redox environment [29]. The RSG probe was used to sort dormant bacteria known as persist-

ers, based on intracellular redox environment [30,31]. We first established optimal conditions

for RSG to detect specific intracellular ROS.

To minimize bacterial redox buffering response to the ROS-generating reagents, the ATCC

19606 reference strain was first stained with RSG before exposing to ROS-generating reagents.

Bacteria were then assessed using FCM. The RSG mode fluorescence intensities (peak of histo-

gram) obtained from flow cytometric analyses were then compared against untreated condi-

tions (Fig 1; panel A).

As recommended by the consensus established, we developed our FCM assay with an

attempt to define the specific ROS measured by RSG [32]. Both hydrogen peroxide (H2O2)

and hypochlorite (HOCl-) revealed an increase in RSG mode fluorescence intensity (MFI)

compared to untreated bacteria at 45 minutes (Fig 1; panel B). Alterations in metabolism asso-

ciated with oxidative damage are present as short as 30 minutes of antibiotics exposure. [33].

Therefore, in selecting a shorter antibiotic exposure time, we anticipate an increase in viability

of bacteria for better ROS assessments. Hence, 45 minutes was used for FCM measurements of

Fig 1. Establishing a FCM assay by characterising RSG for assessing oxidative stress in antibiotic exposed A. baumannii. The lab adapted strain, ATCC 19606, was

first stained with RSG, before exposing to the ROS-generating reagents at room temperature. Bacteria were then assessed by FCM. Mode fluorescence intensities obtained

from flow cytometric analyses were compared against untreated conditions as shown in panel (A). Flow cytometric histograms revealing the optimal fold change of RSG

fluorescence intensities at 45 minutes were shown in panel (B).

https://doi.org/10.1371/journal.pone.0305939.g001
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antibiotic-treated bacteria in this study. The�1.5-fold increase observed was also used as the

minimum cut-off for increased ROS in subsequent experiments.

Flow cytometric AST assay to predict MIC using ROS as a marker

We next investigated ROS as a marker in our assay to predict MIC. Using a cocktail of various

fluorophores, we assessed the oxidative stress in viable bacteria after exposure to antibiotics

(Fig 2; Panel A). This fluorophore cocktail consists of RSG, SYTO-62 and propidium iodide

(PI). Viable bacteria are defined as bacteria stained with SYTO-62 but not PI.

Bacteria strains were first exposed to varying concentrations of antibiotics in a customised

microtiter panel for 30 minutes. These antibiotics include amikacin, ampicillin/sulbactam,

aztreonam, cefepime, ceftolozane/tazobactam, doripenem, imipenem, levofloxacin, merope-

nem, minocycline, piperacillin/tazobactam, polymyxin-B, rifampicin, tigecycline and trimeth-

oprim/sulfamethoxazole. Without removing the antibiotics, bacteria were then stained with

the fluorescence cocktail for a further 15 minutes at room temperature. This staining protocol

was adapted from protocol suggested by manufacturers, using metabolic inhibitors.

Flow cytometric analyses revealed increased RSG fluorescence intensities of viable bacteria

populations after exposure to several antibiotics (Fig 2; Panel B). Increased RSG fluorescence

intensities indicate increased ROS levels, supporting the basis that antibiotics exposure

increases ROS production [23–27].

To avoid bias from human curation in determining MIC, we opted an arithmetic approach

in determining MIC from the flow cytometry plots. Mode values of RSG fluorescence intensi-

ties (i.e., peak of histograms) at each drug concentration were compared against untreated

controls (Fig 2). Adapting from our RSG characterization studies (Fig 1), a�1.5-fold increase

in RSG fluorescence indicates an increase in bacterial ROS. Sub-inhibitory concentrations of

antibiotics will result in negligible oxidative stress [34]. Therefore, the MIC was determined

from the lowest antibiotic concentration that gives a�1.5-fold increase in mode RSG fluores-

cence intensity (MICRSG).

A summary of these MICs determined from RSG fluorescence assessed by flow cytometry

is reflected in Table 1. As the viable bacteria exposed to polymyxin-B remains very low

(< 10%), we are unable to determine the MICs for polymyxin-B.

Comparison of the methods: FCM AST against standard microtiter broth

dilution method

To determine the accuracy of our FCM AST assay, the MICs of antibiotics determined by

FCM were compared against the standard microtiter broth dilution method (Table 1). MICs

determined by FCM that are within ± 2-fold dilutions of the MIC determined by microtiter

broth dilution was deemed as accurate.

Flow cytometric determination of MICs using ROS as a marker was deemed accurate for β-

lactams (83.3% accuracy) and trimethoprim/sulfamethoxazole (100% accuracy) as compared

to the standard microtiter broth dilution method. In contrast, FCM is less accurate in deter-

mining the MICs for levofloxacin (33.3% accuracy), rifampicin (0% accuracy), amikacin

(33.3% accuracy), and tetracyclines (33.3% accuracy) when using ROS as a marker.

We then further verify if the MICs predicted by the 2 different methods affects the antibi-

otic susceptibilities breakpoints (Tables 1 and 2). The susceptibilities breakpoints (i.e., suscep-

tible/intermediate/resistant) were primarily inferred from the CLSI guidelines. The EUCAST

or recommended breakpoints by literature [35] were used when susceptibility breakpoints

were not available on CLSI. We observed that the susceptibilities profile remains >95% accu-

rate for ß-Lactams, levofloxacin, rifampicin, and trimethoprim/sulfamethoxazole. In other
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Fig 2. RSG fluorescence intensities in bacteria changes upon antibiotics exposure. Panel (A) describes the labelling strategy to assess ROS in viable bacteria using a

cocktail of dyes. SYTO-62 labels all bacteria by binding to nucleic acid, while propidium iodide (PI) only enters non-viable bacteria. Viable bacteria (takes up SYTO-62 but

not PI) will be assessed for ROS. Basal ROS is generated as a by-product of respiration under homeostatic conditions, hence exhibiting RSG fluorescence. After bacteria

were exposed to antibiotics, there will be an increase in ROS. This increase in intracellular ROS, increases the intensity of RSG fluorescence measurable by flow cytometry.

(B) Representative flow cytometric histograms depicting the changes in RSG fluorescence intensities in clinical isolate (AB0047) upon exposure to various antibiotics. Flow

cytometric histograms for clinical isolates (AB0356 and AB0603) are shown in S2 and S3 Figs in S1 File. Exposure to sufficient concentrations of antibiotics resulted in

increased RSG fluorescence as indicated by rightward shifts of the histograms. The antibiotic concentration corresponding to the first histogram shift compared to

untreated (no antibiotics) was determined to be the MIC of that antibiotic (circled in red). The ‘>‘ symbol indicates MIC is higher than the highest concentration tested in

the customized microtiter panel.

https://doi.org/10.1371/journal.pone.0305939.g002
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Table 1. Antibiotics susceptibility profiles of clinical AB isolates.

MIC (mg/L) AB0047 AB0356 AB0603
Antibiotics MICBMD MICRSG MICBMD MICRSG MICBMD MICRSG

AMK �256 (R) 32 (I) � 4 (S) � 4 (S) �256 (R) �256 (R)

ATM 1 �128 (R) �128 (R) �128 (R) 64 (R) 64 (R) �128 (R)

C/T 2 �128/4 (R) �128/4 (R) �128/4 (R) 1/0.5 (S) 64/4 (R) �128/4 (R)

DOR 32 (R) 32 (R) 32 (R) 1 (S) 32 (R) �64 (R)

FEP �128 (R) �128 (R) 64 (R) �128 (R) �128 (R) �128 (R)

IPM �64 (R) 32 (R) 16 (R) 32 (R) 32 (R) �64 (R)

LVX 32 (R) 16 (R) 16 (R) >32 (R) 32 (R) �64 (R)

MER �64 (R) �64 (R) 32 (R) 1 (S) 32 (R) �64 (R)

MIN 4 (S) �16 (R) � 2 (S) 4 (S) 8 (I) �16 (R)

PMB 0.5 (I) Unable to determine 0.5 (I) Unable to determine 0.5 (I) 0.5 (I)

RIF 3 �32 (R) �32 (R) 4 (R) �32 (R) 4 (R) �32 (R)

SAM 32/16 (R) �128/64 (R) 32/16 (R) 1/0.5 (S) �128/64 (R) �128/64 (R)

SXT �8/152 (R) �8/152 (R) �8/152 (R) �8/152 (R) �8/152 (R) �8/152 (R)

TGC 4 2 (S) 8 (R) 1 (S) 0.5 (S) 1 (S) �16 (R)

TZP �256/4 (R) �256/4 (R) �256/4 (R) 128/4 (R) �256/4 (R) �256/4 (R)

Inoculum 105.76 105.83 106.13 105.85 105.92 106.01

Table shows MICs of the three clinical CRAB isolates (AB0047, AB0356, AB0603). MICs obtained were interpreted based on CLSI guidelines, otherwise stated.

Breakpoints against aztreonam, ceftolozane/tazobactam, rifampicin and tigecycline against AB were determined using breakpoints stated in literature. MICs for

respective antibiotic as determined by both techniques, found within within 1-fold dilution are deemed as a “hit” and are indicated in bold. Abbreviations: MICBMD:

Minimal inhibitory concentrations determined from standard microtiter broth dilution; MICRSG: Minimal inhibitory concentrations determined from RSG mode

fluorescence intensity fold differences; (S): Susceptible; (I): Intermediate; (R): Resistant; AMK: Amikacin; ATM: Aztreonam; C/T: Ceftolozane/Tazobactam; DOR:

Doripenem; FEP: Cefepime; IPM: Imipenem; LVX: Levofloxacin; MER: Meropenem; MIN: Minocycline; PMB: Polymyxin B; RIF: Rifampicin; SAM: Ampicillin/

Sulbactam; SXT: Trimethoprim/Sulfamethoxazole; TGC: Tigecycline; TZP: Piperacillin/Tazobactam; 1Breakpoints based on EUCAST P. aeruginosa breakpoints;
2Breakpoints for AB determined as: Susceptible� 2/4 μg/mL; Resistant:� 4/4 μg/mL [35]; 3Breakpoints based on CLSI Staphylococcus breakpoints; 4Breakpoints based

on FDA Enterobacteriaceae breakpoints.

https://doi.org/10.1371/journal.pone.0305939.t001

Table 2. Summary of MICs comparisons between standard microtiter broth dilution method and MICs deter-

mined via FCM (using ROS as a marker).

Antibiotics MICs within

± 2-fold dilution

Matched antibiotic susceptibility breakpoints

Amikacin 1/3 (33.3%) 1/3 (33.3%)

β-lactams 20/24 (83.3%) 23/24 (95.8%)

Levofloxacin 1/3 (33.3%) 3/3 (100%)

Rifampicin 0% 3/3 (33.3%)

Tetracyclines 2/6 (33.3%) 1/6 (33.3%)

Trimethoprim/sulfamethoxazole 3/3 (100%) 3/3 (100%)

Polymyxin B # 1/1 (100%) 1/1 (100%)

Antibiotics of which the MICs are compared between the FCM and standard microtiter broth dilution method as

grouped and shown in the first column. MICs determined from FCM analyses that falls within ±2-fold dilution of the

MICs from standard microtiter broth dilution method were indicated as accurate in the second column. MICs

predicted from both methods were interpreted using CLSI guidelines and the breakpoints were compared. Matched

breakpoints were indicated as accurate and shown in the last column. #Unable to determine MIC of polymyxin B for

AB0047 and AB0356 strains due to very low viable cells (<10%) available for flow cytometric assessments of ROS.

https://doi.org/10.1371/journal.pone.0305939.t002
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words, the MICs from the two techniques were still giving similar antibiotic susceptibility

breakpoints for ß-Lactams, levofloxacin, rifampicin, and trimethoprim/sulfamethoxazole. The

susceptibilities profile for amikacin (33.3% accuracy) and the tetracyclines (16.7% accuracy)

were vastly different when inferring from MICs of the two techniques. This implies that the

antibiotic susceptibilities inferred from the MICs of the two techniques were different for ami-

kacin and tetracyclines

Discussion

The A.baumannii is an aerobic pathogen that causes a range of life-threatening nosocomial

infections with poor clinical outcomes [1]. Early treatment with appropriate antibiotics is vital

to reduce mortality. Thus, time taken to produce AST results is a crucial factor in ensuring

early administration of appropriate antibiotics and successful treatment.

One major advantage of FCM is the rapid assessments of cells at the single cell resolution.

FCM assay also offers an advantage in higher flexibility compared to current automated AST

tools, such as Vitek-2 [22,36]. High correlations (>90%) of flow cytometric determination of

AST against Vitek-2 was documented across multiple species [22]. These flexibilities include

testing any bacteria species against any antibiotics, including antibiotics combinations [37–39].

A major pitfall of FCM-based assays for routine use is data analyses. FCM data analyses are

often time-consuming, requiring high technical expertise and can be subjective with high user

variability. To improve reproducibility and reduce user variability, we adopted auto-contour-

ing gating (S2 Fig in S1 File). We envisioned an automated workflow from the extractions of

mode fluorescence intensities and subsequent comparison to a single MIC value output with-

out human intervention [40].

Fluorescence methodologies, such as FCM, remain one of the simplest measurements of

ROS in live cells. ROS arises from basal metabolism as a by-product of electron transport chain

[25]. Exposing bacteria to antibiotic activates stress response pathways leading to a higher

increase of intracellular ROS [23–27]. In A. baumannii, polymyxins increase hydroxyl radicals

[41], which can be further amplified with rifampicin [42]. Ajiboye and colleagues demonstrated

increased superoxide ion generation, NAD+/NADH ratio and ADP/ATP ratio in A. baumannii
when exposed to various antibiotics at 4X higher MIC [43–47]. Dwyer and colleagues demon-

strated higher hydrogen peroxide (H2O2) levels with ampicillin exposure compared to norfloxa-

cin, while superoxide (•O2
–) levels remain similar for both antibiotics [23]. This suggests that

specific ROS might be generated in bacteria, in response to different antibiotics. However, we

are unable to discern the specific ROS for each antibiotic through our assay.

We reasoned that the inaccuracies in our assay stemmed from the different mechanisms of

actions of individual antibiotics. Aminoglycosides are broad-spectrum antibiotics that inhibit

protein synthesis, by primarily binding to the aminoacyl site of 16S ribosomal RNA within the

30S ribosomal subunit. Similar to our observation for amikacin in clinical isolates, multiple

aminoglycosides at concentrations higher than MICs did not generate ROS in lab-adapted A.
baumannii strains [48]. Polymyxin B binds and neutralizes the lipopolysaccharide of Gram-

negative bacteria, disrupting membrane integrity. Due to the pharmacokinetics of polymyxin-

B, 45 minutes might not be the optimal duration to assess viable cells for polymyxin-B induced

oxidative stress. Decreased oxidative respiration were reported in Escherichia coli and Staphy-
lococcus aureus treated with “bacteriostatic” antibiotics, such as rifampicin that inhibits bacte-

rial RNA polymerase, tetracyclines that inhibit protein synthesis via inhibition of 30s ribosome

and levofloxacin that inhibit DNA synthesis [49]. Consistent to our data, these antibiotics do

not reveal an increase in RSG fluorescence intensity.
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Literature had debated if ROS is the key mediator of antibiotic bactericidal effect [34,50,51].

This current study neither contests nor concurs with the association of ROS to be the cause of

bactericidal effects of antibiotics. This study also does not dissect the mechanisms of antibiotics

actions nor the bacterial redox defense mechanisms against antibiotics. Rather, this study

builds on the foundation that by exposing bacteria to a stress stimulus, such as sufficient con-

centrations of antibiotics, ROS will be increased in bacteria causing oxidative stress.

We envisaged that measuring bacterial ROS can also be further used to detect heteroresis-

tant sub-populations routinely. There is increasing evidence that heteroresistance can lead to

treatment failure and detecting heteroresistance is crucial for appropriate antibiotics for a suc-

cessful treatment outcome. [52,53]. Current gold-standard in determining heteroresistance is

population analysis profiling, which is tedious and laborious for routine clinical laboratory

diagnosis [54–56]. Single-cell assessments by FCM can detect heterogenous sub-populations

rapidly. Isogenic resistant sub-populations have lower oxidative burst than the susceptible

counterparts upon antibiotic exposure [57]. Hence, our protocol will reveal a multi-modal his-

togram when assessing RSG fluorescence.

Further studies will aim to optimize this setup in attaining our aim for an “one-protocol-

fits-all-antibiotics” FCM-AST workflow for A. baumannii. Nevertheless, this current protocol

still demonstrates that ROS is a good indicator for determining MIC for β-lactams and Tri-

methoprim/sulfamethoxazole.

In summary, this study described the workflow of a rapid FCM-AST assay to determine

antibiotic susceptibility of CRAB isolates against fifteen different antibiotics. We demonstrate

that ROS is a good indicator for determining MICs for β-lactams and Trimethoprim/sulfa-

methoxazole. The workflow can produce results within 5 hours, up to 19 hours earlier com-

pared to standard AST methods. Our assay can potentially translate to faster initiation of

appropriate antibiotics, and hence, improved clinical outcomes.
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