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Abstract

Psoriasis is chronic immune-mediated inflammatory disorder characterized by various

comorbidities, erythematous plaques with silvery scale which can lead to psoriatic arthritis.

The phosphodiesterase 4 (PDE4) protein is a potential drug target to control Psoriasis. In

the current study, pharmacophore-based virtual screening of Diversity library of ChemDiv

database was first performed, and then the screened hits were docked to the active site of

PDE4 to choose the best binding modes. Forty-six hits generated during the virtual screen-

ing were prepared and docked to the PDE4 receptor by SP docking module of glide. The

binding affinities of the selected hits were calculated by molecular docking and based on the

affinities, ten hits were selected for the bioactivity scores prediction and ADMET analysis.

Based on the ADMET profiling, four hits D356-2630, C700-2058, G842-0420 and F403-

0203 were processed to MD simulations for stability analysis. The outcomes showed that

these compounds showed strong binding with proteins with better binding free energies.

Based on the results of our study, we proposed that these hits can function as lead in the

biological assays and in vitro studies are required to develop the novel drug candidates.

1. Introduction

Psoriasis is a prevalent chronic immune-mediated inflammatory disorder characterized by

numerous comorbidities, erythematous plaques with silvery scale, and considerable effects on

the quality of life [1,2]. People of all ages are impacted by psoriasis, which has a global preva-

lence of 0.5 to 11.4% in adults and 0 to 1.4% in children [3,4]. Although the precise etiology of

psoriasis remains unclear, a complex interplay of immune system, environmental, and genetic

factors is thought to be responsible. Tumor necrosis factor (TNF)-α, interleukin (IL)-12,

IL-17, IL-22, IL-23, and interferon (IFN)-γ are among the several inflammatory mediators

involved in the immunopathogenesis of psoriasis [5,6].
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There are several ways to treat psoriasis: topical corticosteroids, calcipotriol, and retinoids;

oral conventional systemic treatments that suppress the immune system broadly; and biologi-

cal therapies that target particular receptors or cytokines to regulate inflammation downstream

[6,7]. The severity of the disease often determines the course of treatment; moderate-to-severe

diseases are typically controlled with topical therapy, while severe diseases require systemic

therapy. Despite being widely used and frequently successful in treating psoriatic plaques, topi-

cal corticosteroids (TCS) have long-term side effects that restrict their use, including striae and

atrophy [8,9]. The goals of managing psoriasis remain the same regardless of the treatment

option selected: to offer a highly effective treatment that targets a range of inflammatory medi-

ators involved in the pathogenesis of psoriasis, while guaranteeing a favorable safety profile

and minimal side effects [5].

Among psoriasis treatments, phosphodiesterase-4 (PDE4) inhibitors are emerging as prom-

ising options. PDE4 is an enzyme found in cells throughout the body that regulates intracellu-

lar signaling by degrading cyclic adenosine monophosphate (cAMP), a critical messenger

molecule involved in many cellular processes [5]. Phosphodiesterase 4 (PDE4) inhibitors can

effectively treat inflammation in various tissues/organs caused by conditions such as psoriasis,

chronic obstructive pulmonary disease (COPD), asthma, and Alzheimer’s disease [10–12].

PDE4 inhibitors used in drug therapy have been shown to have some advantages over conven-

tional formulations, such as increased sensitivity to selective inhibitors, unique tissue distribu-

tion, and ease of oral administration. By inhibiting PDE4 activity, cAMP levels rise, leading to

suppression of immune cell activation and downregulation of pro-inflammatory cytokines,

both of which are critical processes in the pathogenesis of psoriasis [4]. Many PDE4 inhibitors

have been discovered over time, and some of these substances have moved on to clinical trials.

Adverse events such as vomiting, headache, nausea, weight loss, and depression have been

reported, which may limit use in some patients. Because PDE-4 inhibitors are small molecules,

they can be applied topically; thus, topical PDE-4 inhibitors are currently being studied with

the goal of avoiding systemic side effects [5,13,14].

The discovery of novel PDE4 inhibitors for psoriasis treatment using insilico methods

requires a combination of computational techniques and molecular modeling. Researchers

can efficiently screen large chemical libraries for potential PDE4 inhibitors using advanced

computational tools like molecular docking, virtual screening, and molecular dynamics simu-

lations. Virtual screening effectively reduces the enormous number of options to a manageable

set of promising compounds by using computational techniques to predict how various mole-

cules will interact with a target protein. This speeds up the early stages of drug development,

reduces the need for extensive laboratory experiments, and aids in the identification of novel

compounds that would otherwise go undetected using traditional methods. Hence, virtual

screening improves the efficiency, speed, and innovation in the drug discovery process [15–

17]. Hence, in the current study, virtual screening in combination with molecular docking was

used to find possible PDE4 inhibitors.

2. Methodology

2.1. Development of pharmacophore hypothesis

The crystal structure coordinates of the PDE4 (PDB ID: 7W4X) were obtained from Protein

Data Bank (https://www.rcsb.org/). The refined structure of PDE4 protein was subjected to

Maestro workspace. The structure was minimized and then the receptor cavity based pharma-

cophore model was developed by Phase tool of Schrödinger [18]. The hypothesis was devel-

oped by choosing the receptor cavity and the binding pocket residues were selected manually.
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Prior to developing the hypothesis, the receptor was prepared by following the steps explained

in section 2.4.

2.2.Compound library preparation and virtual screening

The Diversity library of ChemDiv database containing 38646 compounds was retrieved and

processed for database preparation through Phase [18]. To increase the chemical space search,

twenty conformers of each compound were generated at pH by Epik [19]. Additionally, the

high energy tautomer was removed. After preparing the database, the developed pharmaco-

phore hypothesis was employed for virtual screening. The output of the screening was ana-

lyzed by phase screen score. The phase screen score is a combination of RMSD site matching,

volume score, and vector alignments. The hits that met with the selection criteria of 1.5 phase

score were selected for the molecular docking studies.

2.3. Molecular docking studies

The refined structure of PDE4 protein was processed for the preparation for molecular dock-

ing preparation wizard [20]. The preparation involved three steps: preprocessing, optimiza-

tion, and minimization. In the preprocessing, the hydrogen atoms were added, extra chains

were removed, the charges were added, and the side chain atoms of residues were fixed. Fur-

ther, the tautomeric states were generated by PROPKA [21]. The hydrogen atoms were opti-

mized at pH 7.0. and then the energy of structure was minimized by using OPLS2005

forcefield [22]. The processed structure was subjected for grid generation by selecting the pre-

dicted binding site residues. The X, Y, and Z coordinates of generated grid were 24.03, 2.80,

and -25.75, respectively. Further, the screened hits were prepared by LigPrep tool [23] and

docked to the prepared structure.

2.4. Prediction of bioactivity scores

The biological activity of the selected compounds was predicted by using the Molinspiration

tool (https://www.molinspiration.com/). The bioactivity of a drug can be impacted by the

chemical structure of compound, its potency and lastly the selection of target. A potent drug

candidate is expected to bind with the target enzyme or receptor with stability and it will

deliver the therapeutic benefits after binding with the receptors and produce fewer side effects

as compared to the compounds with lower potency [24]. The bioactivity scores of the com-

pounds selected at the docking steps were predicted against the GPCR, the kinase proteins,

several ion channels, proteases, and the inhibitors of enzymes.

2.5. ADMET analysis

The higher rate of drug erosion is often attributed to issues related to toxicity and poor phar-

macokinetics [25]. To address these challenges, ADMET properties are predicted to assess the

pharmacokinetic properties and toxicity risks associated with potential drug candidates [26].

This predictive approach also helps in evaluating the likelihood of lead compounds becoming

viable oral drugs. In this study, we used Maestro’s QikProp tool [27] to predict the ADMET

characteristics of the most promising compounds. Molecular weight, hydrogen bond donors

and acceptors, QPlogBB, QPPCaco, QPlogKhsa, QPlogPo/w, and QPlogHERG were signifi-

cant characteristics. Hydrogen bond donors and acceptors are metrics that quantify the

amount of atom centers and hydrogen atoms available for participating in interactions involv-

ing hydrogen bonds. The logarithm of the octanol and water partition coefficient is predicted

by QPlogPo/w, which provides information about the compound’s membrane permeability
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and hydrophobicity. QPlogHERG assesses the potential of a ligand to block the hERG potas-

sium channel, providing information about the likelihood of cardiac toxicity. QPPCaco is a

model for intestinal absorption that determines a compound’s permeability over the mono-

layer of Caco-2 cells. The substance’s ability to penetrate the blood-brain barrier and reach the

central nervous system is indicated by QPlogBB, which forecasts the BBB partition coefficient’s

logarithm. Finally, the logarithm of the binding affinity to human serum albumin, a necessary

protein that influences drug distribution and binding efficiency, is determined by QPlogKhsa.

Similarly, the toxicity profiles of the compounds were predicted by using the ProTox-II webt-

ool (https://tox.charite.de/protox3/). The insilico toxicity prediction of the compounds reduces

the cost of experimentation. The toxicity properties such as Hepatotoxicity, Carcinogenicity,

Immunogenicity, Mutagenicity, and Cytotoxicity were predicted and compared.

2.6. MD simulation

Desmond was employed to conduct Molecular Dynamics simulations lasting 100 ns for

selected compounds [28]. The protein and ligand complexes were submitted to Molecular

Dynamics simulations to evaluate their stability. MD simulations were used to evaluate the sta-

bility of complexes after several stages, including preprocessing, optimization, and reduction.

The minimizing process was carried out using the OPLS_2005 force field [22]. The complexes

were solvated in a periodic box with a 10 Å size containing the TIP3P water molecules [29].

Neutralization of the systems was done by adding counter ions and the 0.15 M NaCl salt as

needed to mimic physiological circumstances. The NPT ensemble was set to a temperature of

300 K and a pressure of 1 atm. Prior to the simulation initiation, the systems underwent a

relaxation phase. Trajectories were recorded and saved at 40 ps intervals during the simulation,

enabling subsequent analysis of the obtained results.

2.7. Binding free energy calculations

The binding free energies of the selected complexes were calculated by employing the Prime-

MMGBSA module of Schrödinger [30]. The presence of the counter ions in the system was

stripped and the VSGB solvent model along with OPLS_2005 forcefield were employed to cal-

culate the binding free energy (ΔGbind). The calculations were conducted by using Eq 1. The

binding free energy is the difference between complex free energy and the free energy of pro-

tein and ligand. The free energy terms used during the calculation were ΔGcoulomb, ΔGcovalent,

ΔGHbond, ΔGLipo, ΔGPacking, ΔGvdW, ΔGstraing_energy, and ΔGSolv_Gb.

DGBind ¼ DGcomplex � DGprotein þ DGligand

� �
ð1Þ

3. Results

3.1. Pharmacophore hypothesis development

The crystal structure was subjected to the workspace of Maestro and optimized for the binding

sites prediction. Prior to the binding sites prediction, the structure was validated by calculating

the ERRAT quality factor and by observing the Ramachandran plot. A good structure usually

shows an average overall quality factor of about 90% for the ERRAT score. The ERRAT quality

factor of the PDE4 structure was 98% (Fig 1A). Similarly, the Ramachandran plot of the pro-

tein showed that all residues were in the favored region while no residue was observed in disal-

lowed region (Fig 1B). The binding pocket residues were predicted and then selected to

generate the pharmacophore hypothesis containing a total of seven features. The
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pharmacophore hypothesis contained seven features, R1981, A456, H1525, D953, D1041,

D963, R2081 (Table 1) shown in Fig 2A and 2B.

3.2. Virtual screening of CNS library

The developed pharmacophore model was employed for the virtual screening of CNS library

of the ChemDiv database. During screening, a compound that matched at least four features

Fig 1. (A) The ERRAT quality factors of PDE4 structure. (B) Ramachandran plot. The yellow region shows the allowed region while the white region shows the

disallowed regions.

https://doi.org/10.1371/journal.pone.0305934.g001
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was selected as a hit. The screened hits were ranked by the phase screen score which is a com-

bination of Volume score, RMSD site matching, and vector alignments. For better alignment,

the vector score must be high in the range of -1.0 to 1.0. Similarly, the reference range for vol-

ume is 0.0 to 1.0 where high score shows the greater overlaps among the volume of reference

ligand and aligned ligands. It is calculated by dividing the volume of aligned ligands by the vol-

ume of the total volume of two ligands, a zero score shows no reference ligand. The potential

hits were identified by setting a cutoff phase screen score of 1.5. The compounds with 1.0

phases scores are given in Table 2.

3.3. Molecular docking

The hits generated during the virtual screening were prepared and docked to the PDE4 recep-

tor by SP docking module of glide. The docking poses were analyzed based on the glide gscore

and molecular interactions of the docked compounds. The compounds with binding affinities

greater than -7 kcal/mol were selected for further analysis. The two-dimensional structures of

the selected hits are shown in Fig 3. The molecular interactions of the selected docked hits

Table 1. The pharmacophore hypothesis features along with scores and coordinates in the receptor cavity.

Rank Feature Label Score X Y Z

1 R1981 -2.81 22.8124 3.0185 -22.3465

2 D953 -2.2 24.9696 4.2669 -21.4469

3 D1041 -2.18 19.6692 0.9717 -25.3118

4 D963 -2.13 21.144 -0.199 -33.1458

5 A456 -1.63 23.4318 0.915 -33.9508

6 H1525 -1.55 23.1533 2.405 -24.241

7 R2081 -1.48 25.1946 4.1546 -25.5467

https://doi.org/10.1371/journal.pone.0305934.t001

Fig 2. The developed pharmacophore models. (A) The pharmacophoric features shown in the protein pocket. (B) The receptor cavity along with the

pharmacophoric features.

https://doi.org/10.1371/journal.pone.0305934.g002
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were analyzed, and it was observed that D356-2630 made five hydrogen bonds with Asp318,

His204, Tyr159, His233, Glu230 and five hydrophobic interactions with Phe372, Ile336,

met273, Leu229, and Asp201. D356-2542 made two hydrogen bonds with Asp318, His160 and

three alkyl interactions with Phe340, Phe372, and Ile336. 8525–0383 was engaged in hydrogen

bonding with Asp318, His204, His160, Asp201, Asn321. It also made hydrophobic interactions

with Phe372, Phe340, Ile336, Leu319. Similarly, C700-2058 made five hydrogen bonds with

Glu339, His204, Asp201, Glu230, Ser208. D359-0432 made hydrogen bonds with Asp318,

Gln369, Thr271 during docking while G842-0420 participated in hydrogen bonding with the

residues Asn321, Tyr159, His160, Trp332. G289-0060 made hydrogen bonds with Asp318,

His204, Asp201, Glu230, Tyr159. At last, 8525–0381, 7752–0515, F403-0203 made hydrogen

bonds with Asp318, His204, Asp201, Asn321, Asp318, Asp201, Asn321, Ser208, Asp318,

His160, and Asp201 (Fig 4). The docking scores, interacting residues, interaction types, and

the distance between ligand and hydrogen bond forming residues are given in Table 3. Fur-

ther, the plausible binding modes of the docked ligands were analyzed, and it was observed

that all ten selected ligands occupied the same space in the predicted binding pocket of protein

(Fig 5).

3.4. Bioactivity scores

The bioactivity scores of the compounds help to analyze the drug binding ability to various

human receptors. The bioactivity scores of the selected seven compounds were predicted by

Molinspiration tool. The predicted scores of the compounds against several receptors are

shown in Table 4, indicating that the scores were in the range of -5 to 0.0. showing the

Table 2. The hits generated during virtual screening, selected based on the phase screen scores.

No. ChemDiv IDs Phase Scores No. ChemDiv IDs Phase Scores

1 7752–0511 1.652 24 8561–08046 1.521

2 7752–0515 1.648 25 D526-0065 1.519

3 8407–0222 1.599 26 D526-0057 1.519

4 D188-0139 1.571 27 D526-0056 1.519

5 8211–0341 1.564 28 D526-0009 1.518

6 8525–0815 1.563 29 D526-0074 1.518

7 8525–0384 1.562 30 D526-0079 1.518

8 8525–0381 1.56 31 D526-0064 1.517

9 D356-2630 1.554 32 D733-0293 1.516

10 8525–0383 1.554 33 D359-0432 1.508

11 D526-0020 1.55 34 D526-0091 1.507

12 D526-0066 1.55 35 F173-0395 1.505

13 G289-0060 1.548 36 D526-0059 1.505

14 D526-0067 1.548 37 D526-0010 1.504

15 D526-0022 1.529 38 D526-0091 1.504

16 G842-0420 1.527 39 F173-0406 1.503

17 D526-0021 1.523 40 F173-0425 1.503

18 D526-0075 1.522 41 F403-0203 1.502

19 F403-0096 1.522 42 D526-0091 1.502

20 D526-0068 1.522 43 D526-0020 1.502

21 D356-2542 1.521 44 C202-3703 1.501

22 D526-0055 1.521 45 D526-0138 1.501

23 D359-0006 1.521 46 C700-2058 1.5

https://doi.org/10.1371/journal.pone.0305934.t002
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moderate activity of these compounds against the receptors. Some compounds showed scores

close to zero, indicating good activity against the receptors. The analysis revealed that the

selected compounds have the properties of lead compounds.

3.5. ADMET analysis

QikProp was used to predict the ADMET characteristics of the selected compounds, and it

was found that the expected values fell within an acceptable range. The molecular weight of a

compound indicates its easy distribution in the cells so the compounds with less weight can

easily distribute in the body as compared to the compounds with higher weight. In this regard,

a criterion of 500 g/mol was set, and all the molecular weights of all selected compounds fall

within this range. QPlogPo/w determines the octanol/water partition coefficient, a value

within a range of 1.0 to 4 is good. The values of selected hits fall within this range. The com-

pounds that were selected had anticipated ADMET qualities that are within the acceptable

Fig 3. The molecular structures of the compounds selected based on the binding affinities.

https://doi.org/10.1371/journal.pone.0305934.g003
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Fig 4. The binding interactions of hits with protein. The hydrogen bonds are shown by green spheres, hydrophobic interactions are shown by magenta color, the

purple lines show pi-sigma, while orange lines show the pi-sulfur interactions.

https://doi.org/10.1371/journal.pone.0305934.g004

Table 3. The docking scores, interacting residues and the hydrogen bond distances of the selected compounds with protein.

ChemDiv IDs Glide scores Hydrogen Bonds Distance (Å) Hydrophobic Interactions

D356-2630 -8.062 Asp318(2.02), His204(2.19), Tyr159(2.75), His233(2.35), Glu230(2.29) Phe372, Ile336, met273, Leu229, Asp201

D356-2542 -7.99 Asp318(1.77), His160(2.03) Phe340, Phe372, Ile336

8525–0383 -7.942 Asp318(1.65), His204(2.76), His160(2.34), Asp201(1.94), Asn321(2.83) Phe372, Phe340, Ile336, Leu319

C700-2058 -7.853 Glu339(2.58), His204(1.86), Asp201(2.36), Glu230(2.46), Ser208(4.06) Ile336, Phe372, Phe340, tyr159, Leu229, His233

D359-0432 -7.779 Asp318(2.06), Gln369(2.31), Thr271(2.72) Phe372, Ile336, Met357, Met273

G842-0420 -7.317 Asn321(2.61), Tyr159(2.19), His160(2.80), Trp332(2.30) Phe372, Ile336, Met273

G289-0060 -7.298 Asp318(2.13), His204(1.86), Asp201(2.97), Glu230(279), Tyr159(2.40) Phe340, Met357, Phe372, Ile336

8525–0381 -7.286 Asp318(2.04), His204(2.61), Asp201(1.94), Asn321(2.70) His160, Tyr159, Ile336

7752–0515 -7.088 Asp318(1.95), Asp201(2.26), Asn321(2.49), Ser208(3.49) Ile336, Tyr159, Met273

F403-0203 -7.07 Asp318(1.89), His160(2.12), Asp201(2.90) Phe340, Met273, Phe372, Ile336, Tyr159, His204

https://doi.org/10.1371/journal.pone.0305934.t003
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Fig 5. The plausible binding modes of the selected compounds are represented with the sticks in the binding pocket of protein.

The orientation of the hits is also shown in the pocket separately. (A) D356-2630 (B) D356-2542 (C) 8525–0383 (D) C700-2058 (E)

D359-0432 (F) G842-0420 (G) G289-0060 (H) 8525–0381 (I) 7752–0515 (J) F403-0203.

https://doi.org/10.1371/journal.pone.0305934.g005
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range, as demonstrated. in Table 5. Similarly, ProTox-II server predicted the toxicity profiles

of the compounds. It can be observed that all the hits showed toxicity class 4 except for D356-

2542 and C700-2058 which showed toxicity class 6 and 3 respectively (Table 6). Additionally,

8525–0383, G289-0060, 8525–0381, and 7752–0515 showed active profiles for one or two

parameters of hepatotoxicity, carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity.

After ADMET analysis, four compounds D356-2630, C700-2058, G842-0420 and F403-0203

showed better QPPCaco values so these were selected for further stability analysis.

3.6. MD simulation

After the ADMET analysis, four compounds with highest drug-likeness and not toxicity risks

were selected for the stability analysis by conducting 100 ns simulation. The MD trajectories

were analyzed by measuring the RMSD, RMSF, Protein-ligand contacts, PCA, and drawing

the 2D PCA based free energy diagrams.

3.6.1. RMSD. The RMSD of carbon alpha atoms of protein was calculated and aligned

with ligand atoms RMSD to investigate the stability of protein ligand complex [31]. It can be

observed that the RMSD of D356-2630 complex deviated in the range of 0.9–2.1 Å till 30 ns

and then attained stability in the range of 1.5–2.4 Å till the end of simulation, while the RMSD

of ligand was fitted on the protein (Fig 6A). The RMSD of carbon alpha atoms of C700-2058

complex started at 0.9 Å and increased to 2.1 Å and then stayed between the range of 1.3–2.4 Å

Table 4. The predicted bioactivity scores of the selected compounds against different human receptors.

ChemDiv IDs GPCR ligand Ion channel modulator Kinase inhibitor Nuclear receptor ligand Protease inhibitor Enzyme inhibitor

D356-2630 0.01 -0.23 -0.44 -0.25 -0.01 -0.31

D356-2542 0.14 -0.06 -0.53 -0.19 0.16 -0.26

8525–0383 -0.32 -0.59 -0.51 -0.91 -0.50 -0.44

C700-2058 -0.05 -0.28 -0.40 -0.40 -0.20 -0.31

D359-0432 -0.29 -0.51 -0.69 -0.51 -0.63 -0.37

G842-0420 -0.13 -0.48 -0.04 -0.36 -0.36 -0.23

G289-0060 0.14 -0.42 0.44 -0.30 -0.11 -0.08

8525–0381 -0.38 -0.67 -0.58 -1.00 -0.61 -0.48

7752–0515 -0.51 -0.65 -0.62 -1.00 -0.72 -0.46

F403-0203 -0.35 -0.64 -0.74 -0.65 -0.46 -0.36

https://doi.org/10.1371/journal.pone.0305934.t004

Table 5. The ADMET and toxicity risks analysis of the selected hits.

Compounds MW HBD HBA QPlogPo/w QPlogHERG QPPCaco QPlogBB QPlogKhsa

D356-2630 426.418 1 8 2.773 -5.567 1365.029 -0.323 -0.106

D356-2542 306.311 2 7 0.493 -3.4 175.083 -0.837 -0.685

8525–0383 379.461 3 5 3.968 -5.865 653.108 -1.089 0.59

C700-2058 481.609 0 7 4.513 -4.538 1972.66 -0.372 0.481

D359-0432 418.451 2 6 3.836 -6.003 464.089 -1.049 0.675

G842-0420 414.82 0 6 4.197 -6.092 2488.033 -0.107 0.201

G289-0060 346.446 1 7 2.495 -5.419 760.416 0.323 0

8525–0381 321.381 3 4 3.156 -5.75 624.636 -0.918 0.323

7752–0515 321.338 3 6 1.616 -5.114 218.402 -1.137 -0.043

F403-0203 365.431 3 4 3.683 -4.237 1741.637 -0.417 0.291

"QPlogHERG" (<-5), "QPlogPo/w" (-2.0 to 6.5), "QPlogBB" (-3.0 to 1.2), "QPPCaco" (<25 poor, >500 great), and "QPlogKhsa" (-1.5 to 1.5).

https://doi.org/10.1371/journal.pone.0305934.t005
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till the end of simulation while the RMSD of ligand atoms remained less than protein (Fig 6B).

The RMSD of G842-0420 (Fig 6C). complex attained stability at 40 ns in the range of two Å
with the almost same RMSD value of ligand. Lastly, F403-0203 (Fig 6D) the RMSD value stabi-

lized in the range of 1.25–2.00 Å with the RMSD of ligand less than of protein. All our findings

collectively demonstrate that the protein and ligand complexes stayed stable during MD

Table 6. The toxicity profiles of the selected hits.

Compounds Hepatotoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity Predicted LD50 (mg/kg) Toxicity Class

D356-2630 Inactive Inactive Inactive Inactive Inactive 1250 4

D356-2542 Inactive Inactive Inactive Inactive Inactive 5800 6

8525–0383 Inactive Active Active Inactive Inactive 1470 4

C700-2058 Inactive Inactive Inactive Inactive Inactive 300 3

D359-0432 Inactive Inactive Inactive Inactive Inactive 1000 4

G842-0420 Inactive Inactive Inactive Inactive Inactive 540 4

G289-0060 Inactive Active Inactive Inactive Inactive 1000 4

8525–0381 Inactive Active Inactive Inactive Inactive 450 4

7752–0515 Active Active Inactive Active Inactive 1000 4

F403-0203 Inactive Inactive Inactive Inactive Inactive 1200 4

https://doi.org/10.1371/journal.pone.0305934.t006

Fig 6. The RMSD protein along with selected hits calculated during simulation. (A) D356-2630 (B) C700-2058 (C) G842-0420 (D) F403-0203.

https://doi.org/10.1371/journal.pone.0305934.g006
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simulation, providing valuable new insight into their dynamic behavior and suitability for fur-

ther investigation.

3.6.2. RMSF. Root mean square fluctuations (RMSF) values have been calculated in order

to examine the fluctuating behavior of the proteins while they are bound to the ligands [32].

For each protein residue over the simulation period, RMSF values give detailed information

on the residue’s flexibility and mobility. Based on the expected RMSF values, most protein resi-

dues changed very slightly during the simulation, measuring less than 3 Å except for the loop

regions L1, L2, and L3. This suggests that these residues maintained their relative stability in

the presence of ligands. However, the loop regions of the protein exhibited higher RMSF val-

ues, which were around 4.5 Å (Fig 7). The residues that form the contacts with the ligand did

not undergo any confirmational changes and remained stably bound with the ligands. Overall,

RMSF values are compatible with the idea of a stable protein and ligand.

3.6.3. Protein-ligand contacts. The MD Simulation analysis showed that ionic, hydrogen,

and hydrophobic bonds were the most important types of interactions between the ligands

and the protein. The functional properties of the protein-ligand complex are stabilized and

regulated by these interactions. The residues that form hydrogen bonds with D356-2630 were

Tyr-159, His-160, His-204, Asp-318 and Gln-343.The residue that form ionic bond is Asp-318.

(Fig 8A). In the C700-2058 complex, residues involved in bonding with hydrogen were His-

206, His-276 and Met-277 (Fig 8B). The hydrogen bonding in G842-0420 complex was

Fig 7. The residual flexibility of the complexes during simulation along with the loop regions with higher fluctuations. (A) D356-2630 (B) C700-2058 (C)

G842-0420 (D) F403-0203.

https://doi.org/10.1371/journal.pone.0305934.g007
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observed in Tyr-159, Met-273, Asp-318 and Asn-32,1 while Thr-271, His-315, Asp-318

engaged in ionic bond (Fig 8C). Lastly, in F403-0203 (Fig 8D). residues involved in bonding

with hydrogen were Tyr-159, Met-273 and Asp-318. These hydrogen bonding interactions,

which were displayed during the MD simulations, not only highlighted the specific residues

that were crucial for stabilizing the protein-ligand complexes, but they also provided insight

into the crucial interactions that underpin the complexes’ general stability and binding

affinity.

3.6.4. Principal component analysis and PCA based free energy. The principal compo-

nent analysis (PCA) was performed to calculate the variance percentage in protein clusters.

The dominant movements were observed in the first five eigenvectors in all complexes. The

eigenvalues in D356-2630 complex were 25.6, 41.5, 50.6, 55.6, 66.4 and 78.8% in the first five

eigenvectors, respectively. The total variation was 78.8% while the highest fluctuations were

observed in the PC1 (25.6%) (Fig 9A). Similarly, the eigen values in the first five eigenvectors

of C700-2058 were 15.5, 28.6, 35.9, 42.1, 57.8, and 75%, respectively. The total variation was

70%. The highest variation was observed in PC1 which recorded 15.5% fluctuations during the

simulation (Fig 9B). The eigen values in the first five eigenvectors of G842-0420 were

23.9,45,52.7,58.7,69.2 and 80.7% and total variation in the complex was 80.7% with the highest

fluctuation in PC1 of 23.9% (Fig 9C). Lastly, eigenvalues in F403-0203 complex

19.1,32.9,39.3,44.8,57.6 and 73% in the first five eigenvectors. The total variation was 73% with

Fig 8. The Protein-Ligand contacts generated during the 100 ns simulation. (A) D356-2630 complex. B) C700-2058 complex. (C) G842-0420 complex. (D)

F403-0203 complex. Green shows hydrogen bonding, purple shows hydrophobic interactions, and blue shows the water bridges.

https://doi.org/10.1371/journal.pone.0305934.g008
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the highest fluctuation observed in PC1 19.1% (Fig 9D). The most significant movements are

shown with blue regions, with intermediate motions shown by white color, while red color

show the minor fluctuations [33]. Further, the PCA based 2D energy surface was also gener-

ated to calculate the configurations with stable thermodynamic values. The energy surface cal-

culated the fluctuation direction of energy in two PCs (PC1 and PC2) for carbon alpha atoms.

Most of the clusters were found in the local minima well (purple color) which indicated the

stable transition of one configuration to another in all four complexes (Fig 10).

Fig 9. Principal component analysis of the selected complexes. (A) D356-2630 B) C700-2058 (C) G842-0420 (D) F403-0203.

https://doi.org/10.1371/journal.pone.0305934.g009
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3.6.5. MM/GBSA. The prime-MMGBSA module was used to calculate the binding energy

of selected complexes [34]. The binding energies of the D356-2630, C700-2058, G842-0420

and F403-0203 complexes were -42.627, -59.33, -63.862, and -52.713kcal/mol, respectively.

Gbind resulted from non-bonded interactions, GCoulomb, GPacking, GHbond, GLipo, and GvdW (Fig

11). GbindLipo, GbindvdW, and GbindCoulomb affected the average binding free energies among all

interaction types. Conversely, the final average binding energies were least affected by the

GbindSolvGB and GbindCovalent energies. Furthermore, stable hydrogen bonds were observed

between the ligands and amino acid residues indicated by GbindHbond interaction values. Thus,

the binding energies calculated during simulation supported the binding affinities of ligands

obtained during docking studies [35].

4. Discussion

Psoriasis is a common chronic immune-mediated disease with numerous comorbidities that

impair quality of life. Among psoriasis treatments, phosphodiesterase-4 (PDE4) inhibitors are

emerging as new options. PDE4 inhibitors degrade cyclic adenosine monophosphate (cAMP),

which contributes to the production of pro-inflammatory mediators [3]. Apremilast, an oral

Fig 10. PCA based free energy surface of the complex calculated during simulation. (A) D356-2630 B) C700-2058 (C) G842-0420 (D) F403-0203.

https://doi.org/10.1371/journal.pone.0305934.g010
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PDE4 inhibitor, is approved for treating psoriasis. While effective, its side effects may limit its

utility [36]. Roflumilast, a topical PDE4 inhibitor, was recently approved for psoriasis and has

shown promising results in clinical trials [37]. Crisaborole, a PDE4 inhibitor approved for

atopic dermatitis, has also been evaluated in psoriasis. These PDE4 inhibitors pave the way for

a promising future in psoriasis management [38]. The ongoing expansion of clinical trials, as

well as continued research on existing agents and the development of novel inhibitors, have

the potential to broaden psoriasis treatment options and improve outcomes [39,40].

In recent years, in silico approaches have transformed drug discovery by allowing the iden-

tification of novel PDE4 inhibitors with improved efficacy and safety profiles. These insilico
techniques direct the design and synthesis of novel compounds with enhanced pharmacologi-

cal properties while enabling the quick and economical exploration of chemical space [41,42].

Several studies have shown that in silico approaches can be effective in identifying novel PDE4

inhibitors for psoriasis treatment [43,44]. Hence, this study used molecular docking and vir-

tual screening to identify a group of compounds with a high affinity for PDE4.

The PDE4 crystal structure coordinates (PDB ID: 7W4X) were obtained from the Protein

Data Bank. The binding pocket residues were predicted and then chosen to generate the phar-

macophore hypothesis, which consisted of seven features (R1981, A456, H1525, D953, D1041,

D963, and R2081). By developing a pharmacophore model for PDE4 inhibitors, large chemical

libraries can be screened for compounds that share these characteristics. This approach aids in

the discovery of structurally diverse compounds that may inhibit PDE4 [45–47].

The CNS library of the ChemDiv database was virtually screened using the created pharma-

cophore model. A compound was considered a hit during screening if it matched at least four

features. Virtual screening is the computational screening of large chemical libraries to find

potential drug candidates [48–50]. Forty-six potential hits were identified by using a phase

screen cutoff score of 1.5.

The hits generated during virtual screening were prepared and docked to the PDE4 recep-

tor using glide’s SP docking module. The docking poses were assessed using the glide gscore

and molecular interactions of the docked compounds. Ten compounds with binding affinities

Fig 11. The comparison of binding free energy components in selected complexes.

https://doi.org/10.1371/journal.pone.0305934.g011
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higher than -7 kcal/mol were chosen for further investigation. After analyzing the binding

modes of the docked ligands, it was found that each of the ten ligands that were chosen occu-

pied the same area in the protein’s predicted binding pocket [51,52].

The bioactivity scores of the selected ten compounds were predicted. Since bioactivity

scores are quantitative indicators of the interaction between putative drug candidates and their

biological targets, they are extremely important in the drug discovery process. These rankings

aid in the prioritization of compounds for additional research and development according to

their anticipated or experimentally verified potency, specificity, and efficacy [53–55]. Certain

compounds exhibited near-zero scores, signifying strong binding to the receptors. The results

of the analysis showed that the chosen compounds possessed lead compound characteristics.

Further, ADMET characteristics of the selected compounds were analyzed. ADMET is an

important set of criteria in the drug discovery and development process. Understanding and

optimizing these properties is critical for determining whether a potential drug candidate is

both effective and safe for human use [56–59]. Four compounds, D356-2630, C700-2058,

G842-0420, and F403-0203, showed better QPPCaco values, so they were selected for further

stability analysis.

Selected four compounds were subjected to stability analysis by performing 100ns simula-

tion. These simulations shed light on the dynamics of molecular interactions, structural stabil-

ity, and time-dependent conformational changes—all essential for comprehending how drugs

interact with their intended targets [60–63]. All results show that the protein and ligand com-

plexes remained stable during MD simulation, which offers valuable information about their

dynamic behavior and makes them suitable for more research. Binding energies (MMGBSA)

of the compounds were also calculated. According to MMGBSA analyses and MD simulations,

these compounds were stable as effective inhibitors within the binding pocket of protein. The

findings of this study may pave the way for the development of new anti- psoriasis drugs with

improved efficacy and safety profiles.

However, computational research has some limitations. These methods rely on the accu-

racy of the models and algorithms used, which may fail to capture complex biological interac-

tions. Furthermore, the availability and reliability of structural data limit the accuracy of

predictions. Computational findings must also be rigorously validated in vivo to ensure effi-

cacy, bioavailability, and safety [64,65]. Despite these limitations, combining CADD

approaches with experimental validation shows great promise for developing effective and tar-

geted psoriasis treatments.

5. Conclusion

The use of in silico techniques in this study successfully identified novel PDE4 inhibitors with

promising therapeutic potential for psoriasis. The identified inhibitors had high binding affini-

ties and favorable interactions with the PDE4 enzyme, indicating potential efficacy in modulat-

ing inflammatory pathways involved in psoriasis. These findings pave the way for additional

experimental validation and optimization, eventually leading to the development of effective

treatments for this chronic and debilitating skin condition. The study promotes the continued

use of computational tools in drug discovery to address unmet medical needs and improve

patient outcomes.
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