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Abstract

Combining data from experiments on multispecies studies provides invaluable contributions

to the understanding of basic disease mechanisms and pathophysiology of pathogens

crossing species boundaries. The task of multispecies gene expression analysis, however,

is often challenging given annotation inconsistencies and in cases of small sample sizes

due to bias caused by batch effects. In this work we aim to demonstrate that an alternative

approach to standard differential expression analysis in single cell RNA-sequencing

(scRNA-seq) based on effect size profiles is suitable for the fusion of data from small sam-

ples and multiple organisms. The analysis pipeline is based on effect size metric profiles of

samples in specific cell clusters. The effect size substitutes standard differentiation analyses

based on p-values and profiles identified based on these effect size metrics serve as a tool

to link cell type clusters between the studied organisms. The algorithms were tested on pub-

lished scRNA-seq data sets derived from several species and subsequently validated on

own data from human and bovine peripheral blood mononuclear cells stimulated with Myco-

bacterium tuberculosis. Correlation of the effect size profiles between clusters allowed for

the linkage of human and bovine cell types. Moreover, effect size ratios were used to identify

differentially regulated genes in control and stimulated samples. The genes identified

through effect size profiling were confirmed experimentally using qPCR. We demonstrate

that in situations where batch effects dominate cell type variation in single cell small sample

size multispecies studies, effect size profiling is a valid alternative to traditional statistical

inference techniques.

Introduction

In the constantly developing fields of molecular biology and medicine, comparative multi-

species studies are invaluable for advancing knowledge about basic biological processes or for

guiding design of novel interventions. Species-specific reagents for non-model organisms,
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which often are sources of pathogen spill overs, are limited and in such instances agnostic

investigations with a focus on transcript abundancies and transcriptional activity are feasible.

Studying immune responses to stimuli across different species at single cell resolution offers

unprecedented insights into host’s immune reactivity. Single cell RNA sequencing (scRNA-

seq) has revolutionized the scene of high-throughput technologies. Profiling of single cells has

indisputable advantages, e.g., revealing complex and rare cell populations, uncovering regula-

tory relationships between genes, and tracking the trajectories of distinct cell lineages in devel-

opment [1]. Nevertheless, as with any high-dimensional data generation technique, it is not

free of challenges during the analysis stages [2]. At the advent of rapidly growing databases

with data sets freely available, one of the means to improve information retrieval efficiency is

to integrate and combine data within and across different species and experiments. The reuse

potential could yet be confined by batch effects as sources of bias. Thus, data must be handled

with care to avoid false discoveries and incorrect conclusions. In many instances, the lack of

sufficient sample sizes poses difficulties in efficient batch effect correction [3, 4]. When per-

forming comparative studies of differential expression, standard statistical techniques or

approaches such as p-value integration are biased. Batch effects often overpower the biologi-

cally driven variation, disrupting differential gene expression analysis. To address the batch

effect correction in scRNA-seq data a variety of tools have been developed. Common tech-

niques introduce corrections at the dimensionality reduction level and affect the embeddings

to facilitate clustering tasks. For instance, canonical correlation analysis (CCA) implemented

in Seurat [5] identifies shared correlation structures across data sets, and aligns these dimen-

sions using dynamic time warping, yielding modified projection components. Harmony [6]

returns normalized feature reduction vectors through iterative clustering. FastMNN [7] pro-

vides normalized principal components with the use of the mutual nearest neighbor method.

These algorithms, however, do not affect the original expression matrix and do not mitigate

the issue of batch effects impacting differential gene expression analysis. State-of-the-art tools

for batch effect handling of microarrays and bulk RNA-seq data sets offer the possibility of

obtaining a corrected gene expression matrix. Limma [8] may be used as a solution for filtering

batch effects with a linear model. SVA [9] identifies and removes batch effects through latent

factors (surrogate variables). ComBat [10] may be applied to adjust the expression matrix

through empirical Bayes models, where the batch structure is known. Albeit successfully aiding

the process of cell type identification by means of dimensionality reduction and clustering,

these algorithms do not fully overcome the issue of batch effect driven variation. Other meth-

ods rely on normalization of gene expression matrices with regard to genes that are stably

expressed across samples and conditions. scMerge [11] is an algorithm derived from the

Remove Unwanted Variation III (RUVIII) model based on stably expressed genes and ZINB-

WaVE [12] and applies a zero-inflated negative binomial model extension for the RUV model.

These techniques are useful yet limited in their utility to data from model organisms, e.g.,

human or mouse genomes, and have sets of stably expressed genes identified. For comparative

analysis of non-standard species, there is a need to resort to other methods.

Here, we aimed to devise a pipeline enabling accurate analysis of small size datasets from

non-model organisms. Using published and newly generated scRNA-seq data sets across vari-

ous species we recognized that batch effects dominated cell subtype variation when combining

experiments and that consistent clustering was a complex task. We employed effect size-based

profiling, a novel approach in the context of scRNA-seq data, and report that this algorithm

may be used as an alternative to classic statistical analyses of differentiation in gene expression

for analysis of combined multi-species scRNA-seq studies. The analysis workflow is presented

in Fig 1.
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Materials and methods

The samples analyzed in this study consist of human and bovine PBMCs, each with one con-

trol and one sample stimulated with lysate of M. tuberculosis (Mtb). Studies involving human

blood samples were approved by the Ethics Committee of the University Hospital Greifswald

under the approval numbers BB 184/17 and BB 114/19. The studies were approved in Decem-

ber 2017 and September 2019, respectively. The samples for the scRNA-seq experiments were

collected in March 2019 under BB 184/17. All human samples for qPCR analysis were collected

between October 2019 and December 2021 under BB 114/19. For collection of human blood

samples written consent was obtained before sample collection. The bovine blood was col-

lected and handled according to approvals granted from the state authority “Landesamt für

Landwirtschaft, Lebensmittelsicherheit und Fischerei Mecklenburg-Vorpommern” (LALLF)

(reference number LALLF 7221.3–2-041/17).

Collection and processing

PBMCs sample from cattle and human were isolated using pancoll (Pan-Biotech) gradient

density centrifugation following the manufacturer’s protocol. Purified PBMCs were counted

using a Neubauer chamber and resuspended in RPMI-1640 + 10% FCS at a concentration of

1—5x106 PBMCs/ml medium for downstream applications. Cells were rested overnight at

37˚C and 5% CO2 before stimulation with 10 μg/ml Mtb H37Rv whole cell lysate (BEI

Resources Repository NIAID) for 3h at 37˚C and 5% CO2. Control samples were left untreated.

For qPCR CD14+ monocytes were isolated using an anti-human CD14 antibody (Biolegend,

Clone: M5E2) or an anti-bovine CD14 antibody (Kingfisher Biotech, Clone: CAM66A) using

magnetic-based enrichment.

Quantitative real time PCR

RNA was isolated by TRIzol (ThermoFisher) and chloroform extraction, washed with 75% eth-

anol and resuspended in RNAse-free H2O (Agilent). The RNA concentration was measured

using a Nanodrop und stored at -80˚C at a concentration of 100 ng/μl or used immediately for

Fig 1. Diagram of the analysis workflow.

https://doi.org/10.1371/journal.pone.0305874.g001
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downstream procedures. 100 ng/μl RNA was transcribed into cDNA using the High-Capacity

cDNA Reverse Transcription Kit (Applied Biosystems) following the manufacturer’s protocol.

The PowerUp™SYBR™Green Master Mix (Applied Biosystems) was used for quantification of

target genes by RT-PCR using 50 ng cDNA and 10μM primer in a total volume of 10 μl per

reaction. MicroAmp™Optical 96-Well Reaction plates (Applied Biosystems) were sealed using

MicroAmp™Optical Adhesive Film (Applied Biosystems) and loaded on a QuantStudio 6 Flex

real-time PCR cycler (ThermoFisher). Samples were run in triplicates and a H2O negative con-

trol for each condition and primer pair. Primer sequences and sources are provided in S1

Table. Primer pairs were validated before use. For this, efficiencies were evaluated and required

compatibility between human and bovine samples. In addition, primer pairs had to generate a

single product and show a single respective melt curve analysis. All genes of interest were nor-

malized against expression of GAPDH and RPS13 and the average fold change was reported.

scRNA-seq experiment

For scRNA-seq, samples were washed with 9 ml of PBS (Gibco)+0.04% BSA at 400xg for

10min. Cells were resuspended in 1ml PBS+0.04% BSA and counted using a Neubauer cham-

ber. 1x106 PBMCs from each sample were transferred into a new 15ml polypropylene tube and

filtered using a 70μm cell strainer (FisherScientific) before adjusting the cell concentration to

1x106 PBMCs/ml PBS + 0.04% BSA. Cells were loaded on the 10x genomics to achieve analysis

of 10,000 cells per sample by using the Chromium single cell 3’ library V2 (10x genomics) and

following the manufacturer’s instructions. Library quality and concentration was assessed by

Bioanalyzer (Agilent Technology) and the KAPPA library quantification kit (Roche) following

the manufacturer’s instructions. Libraries were pooled and sequenced using a on an Illumina

HiSeq1500 instrument using paired-end sequencing (26 bp Read 1 and 98 bp Read 2) with a

single sample index (8bp i7 index) and using a HiSeq Rapid SBS Kit V2 (Illumina).

Data preprocessing

Raw sequencing data were preprocessed with the Cell Ranger software [13]. The filtered gene-

barcode matrixes were used for further calculations. In each sample features with no detected

cells were discarded and cells with feature count greater than 200 and percentage of mitochon-

drial DNA below 10 were retained. These data were log-normalized with a scale factor of

10,000 and scaled and centered before clustering.

Clustering

Standard algorithms applied nowadays for clustering of single cell data include approaches

based on hierarchical clustering (SINCERA [14], BackSPIN [15], CIDR [16]), k-means (SC3

[17], RaceID [18], SIMLR [19]), graph-based techniques (scanpy [20], Seurat [21], SNN-Cliq

[22]) Gaussian mixture models (TSCAN [23]) or combinations of these methods. Depending

on the focus of a study, the selection of an appropriate tool is critical in terms of data set com-

plexity, algorithm scalability, sensitivity to rare cell types, etc. One of the methods suitable for

the detection of small clusters and rare cell types is DBSCAN [24], however, its efficacy in large

cluster detection is limited.

The clustering was performed employing the DivIK algorithm [25]. In each iteration fea-

tures were selected with the application of Gaussian mixture models for count amplitude,

where features belonging to the lowest component were discarded. Next, GMM was carried

out on the remaining data variances, and features belonging to the highest component were

retained. The remaining features are then used for k-means clustering with the GAP criterion

for determining the optimal number of clusters.

PLOS ONE Effect size profiles in differentiation analysis of multi-species single-cell studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0305874 June 25, 2024 4 / 15

https://doi.org/10.1371/journal.pone.0305874


Effect size profiling

The human sample clusters were identified with the aid of predefined cell markers, included in

S2 Table. Due to the unavailability of cell type gene signatures for bovine samples, an approach

based on effect size profiling was adopted. In each human and bovine sample, within every

cluster, Glass rank biserial effect size coefficients were calculated [26]. Effect size metrics were

calculated using the rcompanion R library [27]. In this way, each cluster is characterized by a

vector of effect size coefficients for every gene, creating a genetic effect size profile. These effect

size profiles were then used to link clusters in human and bovine samples within and between

species in order to determine the bovine cell types using Spearman’s correlation analysis.

Spearman’s coefficients were calculated between human clusters and bovine clusters. Clusters

in bovine samples closest in correlation coefficient value to a human cell type were identified

as that cell type in bovine samples.

Effect size identification of immune responses

In the case of single samples for each condition, traditional statistical analysis of differentiation

cannot be applied, due to the lack of possibility of variability assessment. Therefore, effect size

ratios between treatment and control samples were used as a measure of differentiation

strength. In each cell type, genes with the highest treatment to control ratio were selected as

candidate biomarkers. For every sample comparison, genes with negligible effect size levels

(< 0.1) in any sample were filtered out from the analysis.

Results and discussion

Batch effects dominate cell subtype variation when combining experiments

To evaluate batch effects upon integration of distinct experiments, we reused two scRNA-seq

datasets derived from studies with human peripheral blood mononuclear cells (PBMCs). The

datasets were combined with the scope of identification of cell types. The first dataset is a sub-

set comprising control specimens and Salmonella-infected cells [28]. The second dataset con-

sists of human naïve cells and samples infected with Mycobacterium tuberculosis (Mtb). Batch

effects dominated cell type grouping, even after batch effect correction using ComBat (Fig 2).

Despite the correction enabling clear identification of the cell clusters, ComBat was not suffi-

cient to suppress the impact of batch effects in order to carry out statistical inference on differ-

entially expressed genes. Moreover, the single samples available in each experiment rendered

the use of batch correcting algorithms unsuitable for removing solely the unwanted bias in

favor of biological variation.

In view of these issues, we devised an alternative pipeline for single cell data analysis includ-

ing cluster linkage and differential expression identification through effect size profiling. Glass

rank biserial effect size ratios were calculated for genes between the Salmonella stimulated and

control samples from the above-mentioned study [28]. The genes, where in either sample the

effect size was negligible, were filtered out from the analysis. To confirm the effectiveness of

detecting potential cell type biomarkers, genes presented in [28] as cluster-specific for naïve

and exposed samples were assessed for the effect size ratio level in monocytes, being the cell

type mainly affected by stimulation (Fig 3). The cluster-specific genes for naïve and exposed

samples exhibit high levels of effect size ratios. This shows that considering effect size ratios of

samples preprocessed separately is a valid approach, allowing for the identification of potential

biomarkers without the need for concern with batch effects after combining samples. All the

genes exhibiting high effect size ratio (above 1.5) were analysed functionally for overrepresen-

tation in KEGG pathways. They appeared to be linked with several immune related
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stimulation processes, e.g. TNF signaling, Salmonella infection, NF-kappa B signaling, Cyto-

kine-cytokine receptor interaction. The full list of enriched KEGG pathways is presented in S3

Table.

Cluster identification in non-standard organisms through effect size

profile linkage

The second issue addressed in this study is the assignment of cell type clusters in less well

described organisms, based on data from another species that provides a reference in terms of

Fig 2. Salmonella and M. tuberculosis dataset UMAP projections before batch effect correction and after batch effect correction. On the left the

cells are colored according to the dataset they are derived from; on the right the cells are colored according to cell type.

https://doi.org/10.1371/journal.pone.0305874.g002
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a stronger established cell type structure. In this work, Divisive Intelligent K-means (DivIK)

was applied as an alternative approach for clustering, which has the benefit of identifying small

clusters. It is an iterative method where each time features are selected using Gaussian mixture

models on the average amplitude (discarding the features in the lowest amplitude component

as noise) and variance (retaining the features in the highest variance component). Then, k-

means clustering is performed with the number of clusters chosen according to the GAP crite-

rion [29]. DivIK was previously successfully applied to radiomics data [25] and an example of

the transfer of the technique is presented in this paper. The data published in [30] comprise of

Fig 3. Violin plot presenting the distribution of effect size ratio values for monocytes between Salmonella stimulated and control samples. Each

dot represents a gene effect size ratio value. The dots marked in red correspond to the cluster-specific genes for monocytes indicated in [28].

https://doi.org/10.1371/journal.pone.0305874.g003
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single cell experiments concerning immune cell repertoire in mouse and naked mole-rat

spleen samples. The comparison was carried out on saline treated control samples and lipo-

polysaccharide (LPS) stimulated animals. Weighted Dice-Sørensen indexes were calculated

between clusters identified with Seurat and DivIK and are presented in Table 1. All the values

of Dice indexes are close to or above 0.9, indicating strong similarity. The full confusion matri-

ces for cluster assignments in both techniques are available in S4 Table. The clusters identified

in [30] using the standard Seurat pipeline juxtaposed against the clusters detected using DivIK

present a sufficient degree of similarity, while the iterative approach allows for the identifica-

tion of rare cell types with a deeper exploration of the data. The original cluster assignments

with a comparison to the subclusters detected using the iterative DivIK approach can be

observed in S1 Fig. UMAP projections.

Then, as a method for linking clusters between the naked mole-rat and the mouse, control

samples treated with saline were used to assign cell types using effect size profiles. For this pur-

pose, Glass rank biserial effect sizes were taken into consideration and Spearman’s correlation

coefficients were calculated between the effect size profiles in the main cell types (T cells, B

cells, Monocytes/Macrophages and Dendritic cells). Labeling of the cell types was adopted

from [30]. The corresponding cell types in mouse and naked mole rat match with the highest

positive correlation coefficients (Fig 4). The values of correlation coefficients are weak to mod-

erate due to the effect size profile being calculated for the entire gene list as opposed to cell

type specific genes. Nevertheless, the matching cell types confirm the technique’s efficacy,

despite small correlation magnitude. In this way, the profiling based on effect size measures

has been shown as an effective method for linking the cell type clusters in the naked mole-rat

to the mouse cell types.

Effect size profile identification of concordant and discordant immune

responses in monocyte from various species

Following the successful use of the proposed effect size profiling and effect size-based bio-

marker identification approaches on the two previously published data sets, we applied the

pipeline to newly generated data from a single experiment and single donor per species. The

possibility of utilizing effect size-based profiles as a substitute for standard differential expres-

sion analysis was validated on a scRNA-seq data set of human and cattle PBMCs stimulated

with Mtb lysates. The preprocessing filtration step led to sample sizes and feature numbers pre-

sented in Table 2.

The clustering analysis revealed in control human samples: CD16+ Monocytes, Monocytes,

B cells, T cells, CD8+ T cells, NK cells, whereas in the Mtb samples Monocytes, B cells, CD8

+ T cells, NK cells were detected. We identified in bovine samples 7 and 8 clusters in control

and Mtb, respectively.

Glass rank biserial effect size was calculated for human and bovine samples, and the effect

size vectors for each cluster in the bovine samples were subjected to pairwise correlation analy-

sis with the human sample clusters. The correlation coefficients presented linkage between

clusters from both species (Fig 5).

Table 1. Weighted Dice-Sørensen index (DSI) values for the comparison of cluster assignments between the original identification in [30] and the clusters deter-

mined by DivIK.

Sample Mouse saline Mouse LPS Naked mole-rat saline Naked mole-rat LPS

Weighted DSI 0.9030 0.9364 0.8815 0.9092

https://doi.org/10.1371/journal.pone.0305874.t001
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After cell type identity was completed, effect size ratios were calculated between Mtb and

control counterparts to identify differential regulated genes. The full list of effect size values

and ratios is presented in S5 Table. Genes presenting effect size ratios greater than 1 in both

human and bovine samples were examined in terms of their overrespresentation in KEGG

Fig 4. Correlogram showing Spearman’s correlation between pairs of main cell types based on their effect size profiles in the two studies species.

The highest positive correlation coefficient indicates pairing cell types for naked mole rat in reference to the mouse saline treated sample.

https://doi.org/10.1371/journal.pone.0305874.g004

Table 2. Data set sizes for human and bovine samples.

Transcripts Cells

Human Control 17880 4082

Human Mtb 17193 3148

Bovine Control 12160 1131

Bovine Mtb 12201 1515

https://doi.org/10.1371/journal.pone.0305874.t002
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Fig 5. Correlograms for effect size profile vectors between human and bovine samples. The strongest positive

correlation indicates a link between clusters and may serve as an indicator of homologous clusters in different species.

(a) Control samples, (b) Stimulated samples.

https://doi.org/10.1371/journal.pone.0305874.g005
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pathways. The significantly enriched processes included TNF signaling, NF-kappa B signaling,

Tuberculosis, IL-17 signaling. The majority of significant processes are triggered by inflamma-

tion and immune response. A full list of overrepresented pathways is provided in S6 Table. In

both species, primarily monocyte clusters responded to the stimulation with Mtb lysate. As

expected, genes associated with inflammation were most affected by stimulation. Effect size

and differentially expressed gene analysis revealed a more robust response in the human sam-

ple compared to the bovine monocyte cluster. A subset of genes, notably PTGS2, CXCL10,

TNF, IL6, IL1B, SAT1, having high Mtb to control effect size ratios and high effect size values,

were chosen to be validated using qPCR.

qPCR validation of genes identified by effect size profiling

Gene expression patterns unveiled by qPCR data were compared to expression values in the

scRNA-seq data. Selected gene transcripts were quantified by qPCR: those not affected by

stimulation or genes which were concordantly or discordantly upregulated in monocytes in

the two species after stimulation with Mtb lysate. This was reflected by high treatment to con-

trol effect size ratios in monocytes. For this, freshly isolated PBMCs were obtained from

human and cattle (n = 5) and CD14+ monocytes isolated by positive selection. In agreement

with the scRNA-seq data, CXCL10 was not upregulated in either species upon stimulation

with Mtb lysate, while PTGS2 and TNF were upregulated in both species. As predicted by the

algorithm, SAT1 was only upregulated in bovine, but not in human monocytes. Vice versa IL6

was only upregulated in human monocytes but not in the bovine sample. Only the expression

of IL1B did not match between scRNA-seq and qPCR. The qPCR experiment exposed upregu-

lation in the human as well as bovine samples, where significant differences were not observed

in bovine samples in scRNA-seq. Although, the trend seems to be concordant (upegulation

under stimulation) this discrepancy may point to certain limitations of effect size profiling,

namely the imperfect detection of immune process deregulation patterns in cell type specific

genes. Overall, the qPCR data confirmed the predicted concordant and discordant immune

responses of bovine and human monocytes detected in the scRNA-seq mean expression distri-

butions (Fig 6).

The employment of techniques based on effect size profiles and ratios was therefore con-

firmed as effective not only through testing on already published data but also experimentally

by validating the genes detected in scRNA-seq using qPCR.

Conclusion

Multi-species scRNA-seq studies provide substantial information on intrinsic species-specific

differences or variability in responses to stimuli, such as microbial pathogens. Such investiga-

tions are challenging given e.g., batch effects and differential expression analysis of small sam-

ple sizes. Often it is the case, that data are gathered from single experiments with single donors

per experimental condition, rendering it very difficult to efficiently reduce batch effects and

disabling the use of classic statistical analysis techniques for differentiation analysis. The tai-

lored analysis steps presented herein represent a valid alternative to classic statistical testing

techniques where inference based on p-values would be severely biased. Through effect size-

based profiling, concordant and discordant immune responses of bovine and human mono-

cytes have been identified in the scRNA-seq data and subsequently confirmed by qPCR valida-

tion. The limitations of the presented techniques include their design customised to situations

where single samples are available and batch effects present an impossible to overcome source

of bias. In cases where multiple samples are available per studied condition and batch effects

are not an overwhelming component of variability, classic techniques for the analysis of
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Fig 6. Mean expression values for genes chosen with a high effect size profile in monocytes for scRNA-seq and qPCR experiments. The control samples

are marked in red, the stimulated samples in green. The immune response observed in the scRNA-seq experiments is coherent with the results of qPCR

analysis.

https://doi.org/10.1371/journal.pone.0305874.g006
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deregulation patterns in single cell sequencing data will be more adequate. In conclusion, effect

size profiling enables accurate analysis of scRNA-seq datasets across multiple species, and pro-

vides a chance for knowledge discovery that would be otherwise impossible to gain due to sin-

gle samples and batch effects.
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