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Abstract

In the analysis of electroencephalography (EEG), entropy can be used to quantify the rate

of generation of new information. Entropy has long been known to suffer from variance

that arises from its calculation. From a sensor’s perspective, calculation of entropy from a

period of EEG recording can be treated as physical measurement, which suffers from

measurement noise. We showed the feasibility of using Kalman filtering to reduce the vari-

ance of entropy for simulated signals as well as real-world EEG recordings. In addition, we

also manifested that Kalman filtering was less time-consuming than moving average, and

had better performance than moving average and exponentially weighted moving aver-

age. In conclusion, we have treated entropy as a physical measure and successfully

applied the conventional Kalman filtering with fixed hyperparameters. Kalman filtering is

expected to be used to reduce measurement noise when continuous entropy estimation

(for example anaesthesia monitoring) is essential with high accuracy and low time-

consumption.

Introduction

Electroencephalography (EEG) is highly nonlinear and entropy measures have long been used

in clinical practice to reveal the nonlinear nature, for example, in classifying walking limita-

tions [1], analyzing complexity and variability of trunk accelerations in patients with Parkin-

son’s Disease [2, 3], differentiating balance patterns in diabetic patients with and without

neuropathy [4], assessing anesthetic drug effects on the brain [5], identifying fetal distress [6],

autism spectrum disorder in children [7], tinnitus [8], attention deficit hyperactivity disorder

[9], epilepsy [10], Alzheimer’s disease [11], schizotypy [12], mind wandering [13] and psycho-

genic non-epileptic seizures [14]. Examples of entropy measures are permutation entropy [15],

approximate entropy [16], neural network entropy [17], dispersion entropy [18], sample

entropy [19, 20] and their variants [21–25].
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Most studies on the entropy measures of EEG focus on the values of entropy at some spe-

cific moments while there exist some circumstances that emphasize the evolving pattern. For

example, Liang et al. use entropy measures to monitor depth of anesthesia [5]. Kbah et al. use

entropy-based biomarkers to monitor epileptic EEG activity [10]. Dı́az et al. show entropy

dynamic map of EEG in resting conditions [26].

Calculation of entropy can be conceived as a physical sensor to measure the irregularity

of the time series in question. Like any other measure of sensors [27], sample entropy also

suffers from the inherent measurement noise, which can be estimated numerically [28]. The

measurement noise of entropy should be reduced to achieve more accurate estimation. Con-

ventional smoothing methods, moving average [29], exponentially weighted moving aver-

age (EWMA) [30] can be applied to the continuously computed (measured) entropy values

with a sliding window. The two methods may suffer from high computational cost or low

performance, which may not be optimal when online monitoring of entropy measures is

required.

As a powerful technology for estimating the states of a dynamic system, the Kalman filtering

is usually applied to the recorded time series, e.g., EEG [31], electrocardiogram [32], position-

ing in global positioning system [33] and drone tracking [34].

In this paper, we propose a measurement noise-reducing method for entropy, in which, the

Kalman filtering operates on the continuous calculated entropy values of EEG time series with

non-overlapping sliding windows. We test this method on simulated signals (power noise,

Logistic map signals and Rössler system signals) as well as EEG recordings from publicly avail-

able datasets (sleep EEG, and EEG recordings from pediatric subjects with refractory seizures).

We also compare the smoothing effects and computational costs among three smoothing

methods. We also study the effects of hyperparameters of Kalman filtering on the variance

reduction.

Materials and methods

Datasets

Simulation signal generation. First, we generated power-law time series (also called

power noise) with power spectrum of 1/f β following [35]. The signals were generated with

known β: 0, 0.5, 1, representing white noise, pink noise and 1/f noise respectively. Each time

series contains 50,000 data points at a sampling rate of 100 Hz. The power noise signals were

generated using the Matlab toolbox powernoise.m provided in [36].

Logistic map signals are often used [6] to compare entropy measures to the original work

by Costa et al [37]. Logistic map signal can be defined by

xiþ1 ¼ rð1 � xiÞ ð1Þ

We generated logistic map signals using parameters r = 3.57, 3.77 and 3.9.

Rössler system signals can also be used as a test dataset to assess entropy related properties

[35]. A Rössler system is expressed as [38]

dx
dt
¼ � y � z

dy
dt
¼ xþ ay

dz
dt
¼ bþ zðx � cÞ

8
>>>>>><

>>>>>>:

ð2Þ
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We generated Rössler system time seires using parameters a = 0.38, b = 0.2, c = 5.7 following

[35] and two additional parameters c = 2.5 and 4.

Real-world dataset. In this study, two EEG datasets were analyzed. The first EEG dataset

is the Sleep-EDF Expanded Database open sleep dataset published on physioNet. One hundred

and fifty three SC* files (SC, sleep cassette) were obtained in a 1987-1991 study on the age

effects [39, 40]. Polysomnograms were recorded twice, for approximately 20 hours each time,

at a sampling rate of 100 Hz. Polysomnograms contained Fpz-Cz- and Pz-Oz-based EEG sig-

nals, horizontal electrooculogram signals, sub-chin electromyography, and event markers. All

polysomnograms were manually scored by trained technicians according to the 1968

Rechtschaffen and Kales manual. Polysomnograms included sleep stages ‘W’, ‘R’, ‘1’, ‘2’, ‘3’, ‘4’,

‘M’ and ‘?’, representing Wake, REM, S1, S2, S3, S4, movement and unlabeled, respectively. In

our study, in order to investigate how Kalman filtering can reduce the variance of entropy on

slower changing sleep data, we chose to analyze the same channels in different people. The

window length for entropy calculation is 5 times the sampling frequency (100 Hz), i.e., 500.

Our second dataset was derived from the CHB-MIT Scalp EEG Database, a collection of

EEG recordings from 22 (5 males, 17 females) pediatric subjects with refractory seizures col-

lected by Children’s Hospital Boston [41, 42]. Detailed descriptions of these samples are on the

physioNet website. The subjects were monitored for up to several days after discontinuation of

antiepileptic drugs. Continuous EEG data were recorded for each subject. A total of 182 sei-

zure onset and end times were recorded. All data were acquired at a sampling rate of 256 Hz

with 16-bit resolution. These recordings were made using the International 10-20 EEG Elec-

trode Location and Naming System. In this study, in order to investigate the performance of

Kalman filtering in reducing the variance of entropy for transient EEG activities, we chose to

analyze EEG segments of one-hour that contain seizures from channels FP1-F3, F3-C3, C3-P3

and P3-O1 in the same subject (chb03). The window length for entropy calculation is 5 times

the sampling frequency (256 Hz), i.e., 1280.

Sample entropy

Sample entropy is invented by Richman et al [43] and is briefly summarized here to show the

principles and parameter choice. Let the raw data sampled at equal event intervals be u(i),
i = 1, 2, � � �, N. First, Reconstructing m-dimensional vectors x(1), x(2), � � � x(N −M + 1), where

xðiÞ ¼ ½uðiÞ; uðiþ 1Þ; � � � uðiþm � 1Þ�; i ¼ 1∽N � mþ 1 ð3Þ

Define the distance d[x(i), x(j)] between x(i) and x(j) to be the one with the largest differ-

ence between the corresponding elements of the two, i.e.,

d ¼ ½xðiÞ; xðjÞ� ¼ max
a

�
�
�
�uðaÞ � uðaÞ

∗
�
�
�
�; i 6¼ j ð4Þ

where u(a) is an element in the vector x. For each value of i calculate the distance d[x(i), x(j)]
between x(i) and the other vectors x(j), j = 1, 2, � � �, N −m + 1.

According to the given threshold r(r> 0), for 1 ⩽ i ⩽ N −m + 1, the number of d[x(i), x(j)]
< r is counted for each value of i and the ratio to the total number of vectors N −m is denoted

as Bmi ðmÞ.

Bmi mð Þ ¼
numfd½xðiÞ; xðjÞ� < rg

N � m
; i 6¼ j ð5Þ
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The average of the Bmi ðmÞ over all values of i, denoted Bm(r), i.e.,

Bm rð Þ ¼
1

N � mþ 1

XN� mþ1

i¼1

Bmi rð Þ ð6Þ

Then increase the dimensionm tom + 1 to get Bmþ1
i ðrÞ. Thus the sample entropy is defined

as

SampEn m; nð Þ ¼ lim
N!1

� ln
Bmþ1ðrÞ
BmðrÞ

( )

ð7Þ

Since N cannot be1,

SampEn m; r;Nð Þ ¼ � ln
Bmþ1ðrÞ
BmðrÞ

" #

ð8Þ

where N is the length of the data;m is the embedding dimension, r is the threshold (is calcu-

lated as r = c � σ, where, σ is the standard deviation of the original sequence).

The conditional probability (CP) is defined as

CP ¼
A
B
¼
Bmþ1ðrÞ
BmðrÞ

ð9Þ

There is no a priori parameter setting precedure currently. According to the evaluation by

Lake et al. [28] for the neonatal heart rate data,m should be 2 or 3; c is between 0.1 and 0.25.

The above choice of parameters is widely accepted [35, 44, 45]. In this study, we adopted typi-

cal values of embedding dimensionm and threshold r, i.e.,m = 2, r = 0.15σ. We also compared

the effects of different choices ofm (m = 2 or 3) and r (in the range of 0.1σ and 0.25σ).

Theoretical estimation of sample entropy variance. The theoretical variance of sample

entropy can be numerically calculated [28] as

s2
CP ¼

CPð1 � CPÞ
B

þ
1

B2
KA � KB CP

2ð Þ½ � ð10Þ

where KA is the number of pairs of matching templates of lengthm + 1 that overlap and KB is

the number of pairs of matching templates of lengthm that overlap.

Other entropy measures

To test the feasibility of the proposed Kalman filtering, we also tried two additional entropy

measures.

Approximate entropy. Approximate entropy is introduced by Pincus et al [16] and is

briefly summarized here to show the principles and parameter choice. Let the raw data sam-

pled at equal event intervals be u(i), i = 1, 2, � � �, N. First, Reconstructing m-dimensional vec-

tors x(1), x(2), � � � x(N −M + 1), where

xðiÞ ¼ ½uðiÞ; uðiþ 1Þ; � � � uðiþm � 1Þ�; i ¼ 1∽N � mþ 1 ð11Þ

Define the distance d[x(i), x(j)] between x(i) and x(j) to be the one with the largest differ-

ence between the corresponding elements of the two, i.e.,

d ¼ ½xðiÞ; xðjÞ� ¼ max
a

�
�
�
�uðaÞ � uðaÞ

∗
�
�
�
�; i 6¼ j ð12Þ

PLOS ONE Kalman filtering to reduce measurement noise of sample entropy

PLOS ONE | https://doi.org/10.1371/journal.pone.0305872 July 29, 2024 4 / 21

https://doi.org/10.1371/journal.pone.0305872


where u(a) is an element in the vector x. For each value of i calculate the distance d[x(i), x(j)]
between x(i) and the other vectors x(j), j = 1, 2, � � �, N −m + 1.

According to the given threshold r(r> 0), for 1 ⩽ i ⩽ N −m + 1, the number of d[x(i), x(j)]
< r is counted for each value of i and the ratio to the total number of vectors N −m + 1 is

denoted as Bmi ðmÞ.

Bmi mð Þ ¼
numfd½xðiÞ; xðjÞ� < rg

N � mþ 1
ð13Þ

Take the logarithm of Bmi ðmÞ first, and then find its average over all i.denoted as,

Fm rð Þ ¼

XN� mþ1

i¼1

ln Bmi ðrÞ

N � mþ 1

ð14Þ

Then increase the dimensionm tom + 1 to get Fm+1(r). Thus the approximate entropy is

defined as

ApEnðm; r;NÞ ¼ FmðrÞ � Fmþ1ðrÞ ð15Þ

where N is the length of the data;m is the embedding dimension, r is the threshold.

There is no a priori parameter setting procedure currently. According to the evaluation by

Bajić et al [46],m should be 2 or 3; r is between 0.1σ and 0.25σ (σ is the standard deviation of

the time series u(i)). In this study, we adopted typical values of embedding dimensionm = 2

and threshold r = 0.15σ.

Neural network entropy. Recently, a new entropy measure has been proposed, namely,

neural network entropy (NNetEn), which is a neural network-based technique for entropy

estimation of time series data [17]. Unlike conventional entropy measures, NNetEn does not

consider a probability distribution, and depends on only one parameter, number of epochs in

the LogNNet model [47]. We used Method 1 (Row-wise filling) with duplication and set epoch

to 20 to calculate the NNetEn entropy.

Kalman filtering

Kalman filtering is an algorithm that utilizes the state equation of a linear system to optimally

estimate and predict the state of the system by means of the input and output observations of

the system [48]. Since the observation data include the influence of noise and interference in

the system, the optimal estimation can also be regarded as a filtering (smoothing) process. The

principle is to use the Kalman gain to correct the state prediction value to make it close to the

real value. It consists of two main steps: prediction and update. The algorithm is divided into

the following steps:

A system is represented by a discrete state-space equation as

Xk ¼ AXk� 1 þBUk� 1 þWk� 1

Zk ¼ HXk þ Vk

(

ð16Þ

where Xk is the state variable, the “idea” entropy which is free from variance interference; Zk is

the measurement variable, which is normally calculated from an algorithm (e.g., sample

entropy, approximate entropy, NNetEn entropy).Wk−1 and Vk are the noises in the system

and in the measurement process, which obey normal distributions with zero mean and covari-

ance matrices Q, R, respectively, i.e.,Wk∽ P(0, Q), Vk∽ P(0, R). Uk is the control variable that

relates the optional control input to the state variable Xk. A is the state transfer matrix that
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relates the state at the previous time step to the state at the current step. B is the control matrix

that relates the optional control input to the state Xk. H is the state observation matrix, which

relates the state to the measurements.

The Kalman algorithm is divided into two steps, prediction and update.

Prediction: estimate the state at the current moment, namely moment k, based on the a pos-

teriori estimate bXk� 1 of the previous moment k − 1, and get the a priori estimate bX �k of moment

k; that is

bX �k ¼ AbXk� 1 þ BUk� 1
ð17Þ

Based on the covariance matrix Pk−1 of the error ek−1 at moment k − 1 and the covariance

matrix Q of the process noise w, the covariance matrix P�K of the error ek at moment k of the

prediction is taken, which is.

P�K ¼ APk� 1A
T þQ ð18Þ

Update: Correct the prediction stage estimates using the current moment measurements to

get the current moment a posteriori estimates.

Calculate the Kalman gain coefficient Vk at moment k.that is

Kk ¼
P�k HT

HP�k HT þR
ð19Þ

Corrective updating of the state using the Kalman gain yields the estimate bXk at moment k,

i.e.

bXk ¼
bX �k þ Kk

�
Zk � HbX �k

�
ð20Þ

The iteration that estimates the optimal value at the k + 1 moment performs the update

operation. That is

Pk ¼ ðI � KkHÞP
�

k ð21Þ

where I is the identity matrix.

In this study, since we are dealing with scalar variables, the matrix A, B, H, P, etc can then

be expressed as scalars, A, B,H, P, etc. Similarly, covariance matrices Q, R become variance of

system Q, and variance of measurement R. A andH are set to 1; the control variable Uk is set to

0. Therefore, the linear dynamic system can be described by state equation

Xk ¼ Xk� 1 þWk� 1

Zk ¼ Xk þ Vk

(

ð22Þ
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And the corresponding Kalman filtering process can be described as

bX �k ¼ bXk� 1

P�K ¼ Pk� 1 þ Q

Kk ¼
P�k

P�k þ R
bXk ¼

bX �k þ KkðZk � bX
�
k Þ

Pk ¼ ð1 � KkÞP�k

8
>>>>>>>>>><

>>>>>>>>>>:

ð23Þ

We set X0 to Z0, Q to 0.1, and R to 0.5.

Benchmark smoothing methods

Moving average. Moving average is a classical filtering algorithm, whose main idea is to

process the signal with a sliding window, in which the data are averaged. Moving average can

reduce the variance of the signal by eliminating the periodic noise [49].

In this study, we apply the moving average algorithm to sample entropy values. The specific

steps are as follows:

• Define the size of each window, i.e. the number of entropy points contained; the window

size is defined as 5.

• Move the window to the next position from the starting point of the entropy values.

• Calculate the mean value of the entropy values within each window.

• Update entropy values. Use the calculated mean value to represent the entropy values within

the window.

A series of smoothed entropy values can be obtained by constantly moving the window and

calculating the mean values. These smoothed entropy values reduce the measurement noise of

entropy.

Exponentially weighted moving average. Exponentially weighted moving average

(EWMA) is a commonly used time series data smoothing technique [30]. The core idea of

EWMA is that it gives a higher weight to the nearest data point, while its weight decreases

exponentially as the data point gets further away from the current time point. The calculation

formula is as follows [30]

• Initialize the first EWMA value as the first data point.

• For each time point t, the EWMA value is calculated according to the following formula:

EMAðtÞ ¼ a� xðtÞ þ ð1 � aÞ � EMAðt � 1Þ ð24Þ

where EMA(t) represents the EWMA value at time point t, EMA(t − 1) represents the

EWMA value at time point t − 1, x(t) represents the observed value at time point t, and α is

the smoothing factor (usually a decimal number between (0,1)). The initial value of α is set

to 1.

• The steps above are repeated until the EWMA values for all time points have been calculated.
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Variance reduction rate

We define the variance reduction rate (VRR) as

VRR ¼
Vbefore � Vafter

Vbefore
� 100% ð25Þ

where Vbefore stands for the variance of the entire time series of sample entropy measure calcu-

lated over the EEG waveforms; and Vafter stands for the variance of the entire time series of

sample entropy measures that have been smoothed by Kalman filer.

Statistical analysis

This distribution of entropy time series was tested using Shapiro-Wilk Normality test. One-

way ANOVA was performed to examine if the significant differences existed between the four

groups of thresholds r = 0.1σ, r = 0.15σ, r = 0.2σ, r = 0.25σ, as well as to examine if there are sig-

nificant differences in VRR values for parameters Q and P. If there is a statistically significant

difference between the means of groups, Bonferonni was used for post hoc multilpe

comparisons.

Results

Simulations

In the simulations, we applied the Kalman filtering to reduce measuring variance of entropy

on power noise. We generated power noise on β = 0 (Fig 1a), β = 0.5 (Fig 1b), β = 1 (Fig 1c) for

three examples. In order to quantify the differences before and after Kalman filtering, we first

calculated three entropy time series. Then we calculated the theoretical variance in the three

examples (Fig 1d–1f). Afterwards we applied Kalman filtering to reduce the measurement

noise. Compared with the original entropy time series, VRR values of smoothed entropy time

series by Kalman filtering were 73.97%, 79.87%, and 79.29% correspondingly.

Fig 1. Kalman filtering on sample entropy time series of different power noise. The first row (a-c): the generated

waveforms of power noise with different parameters, β = 0 (white noise), 0.5 (pink noise), and 1 (1/f noise). Segments

of 2 seconds were shown for clarity. The second row (d-f): theoretical variances of sample entropy of the

corresponding waveforms (a-c), which were calculated from Eq 10. The third row (g-i): the original and smoothed

sample entropy time series of the corresponding waveforms (a-c) by Kalman filtering.

https://doi.org/10.1371/journal.pone.0305872.g001
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Fig 2 shows the effects of Kalman filtering smoothing on different Logistic map signals.

Compared with the original entropy time series, VRR values of smoothed entropy time series

by Kalman filtering were 82.75%, 74.60%, and 74.71% correspondingly.

Similarly, Fig 3 shows the effects of Kalman filtering smoothing on different Rössler system

signals. Compared with the original entropy time series, VRR values of smoothed entropy

time series by Kalman filtering were 89.16%, 85.47%, and 79.07% correspondingly.

EEG of sleep-EDF expanded database

We analyzed the signals from selected EEG data from sleep-EDF Database Expanded. Fig 4

shows four subjects with subject numbers: SC4001E0, SC4011E0, SC4021E0 and SC4032E0. A

Fig 3. Kalman filtering on sample entropy time series of different Rössler system signals. The first row (a-c): the

generated waveforms of logistic map with different parameters, c = 2.5, 4, 5.7. The second row (d-f): the theoretical

variance of sample entropy time series of the corresponding waveforms (a-c) calculated from Eq 10. The third row (g-

i): the original and smoothed sample entropy time seires of the corresponding waveforms (a-c) by Kalman filtering.

https://doi.org/10.1371/journal.pone.0305872.g003

Fig 2. Kalman filtering on sample entropy time series of different logistic map signals. The first row (a-c): the

generated waveforms of logistic map with different parameters, r = 3.57, 3.77, 3.9. The second row (d-f): the theoretical

variance of sample entropy time series of the corresponding waveforms (a-c) calculated from Eq 10. The third row (g-

i): the original and smoothed sample entropy time seires of the corresponding waveforms (a-c) by Kalman filtering.

https://doi.org/10.1371/journal.pone.0305872.g002
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segment of EEG containing different stages of sleep was randomly selected for each subject.

Stages S1, S2 and S3 for subject SC4001E0 are shown in Fig 4a. Stages S1 and S2 for subject

SC4011E0 are shown in Fig 4b. Stages S1 and W for subject SC4021E0 are shown in Fig 4c. Two

stages containing S1 and S2 for subject SC4032E0 are shown in Fig 4d. We calculated the theo-

retical variance of the four subjects according to Eq 10 as shown in the second column of Fig 4.

We also calculated the sample entropy time series (marked as Original), and then applied Kal-

man filtering to produce the smoothed sample entropy time series (marked as Kalman filtering).

Fig 4 visiually shows that Kalman filtering reduces the variance for all four subjects. VRR values

by Kalman filtering were 33.16%, 51.06%, 52.73% and 39.14% for the four subjects (Table 1).

In parallel, we also compared the original sample entropy values with the ones smoothed by

Kalman filtering, moving average and EWMA for the four subjects respectively (Fig 5).

Table 1 shows that VRR vaules are highest for Kalman filtering comparing to moving average

and EWMA for most patients. Fig 6 shows that moving average takes more time than Kalman

filtering or EWMA; while Kalman filtering and EWMA are close.

EEG of CHB-MIT

EEG segments from four channels of a one-hour recording that contain seizures are illustrated

in Fig 7, which are: Fp1-F3 (Fig 7a), F3-C3 (Fig 7b), C3-P3 (Fig 7c), and P3-O1 (Fig 7d). The

seizure activities are highlighted in the insets (first row of Fig 7). The theoretical variance val-

ues of the sample entropy for the four channels were calculated according to Eq 10 (second

Fig 4. Kalman filtering on sample entropy time series of sleep signals. (a-d) demonstrate the smoothing effect on

S1, S2, S3 and W stages for subjects SC4001E0, SC4011E0, SC4021E0, and SC4032E0. First column: EEG waveforms;

second column: theoretical variance computed by Eq 10; third row: original sample entropy time series and the sample

entropy time series after smoothing by Kalman filtering. S1: sleep stage 1; S2: sleep stage 2; S3: sleep stage 3; W: wake

stage. From the third column, it is visually clear that Kalman filtering reduces the variance of sample entropy measures;

detailed values, see Table 1.

https://doi.org/10.1371/journal.pone.0305872.g004
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row of Fig 7). Kalman filtering, moving average and EWMA reduce the variance of sample

entropy for all channels (third row of Fig 7).

At the same time, we also compared entropy time series smoothed by Kalman filtering with

the original sample entropy, as well as sample entropy smoothed by moving average and

Fig 5. Visual comparison of three smoothing methods for sleep data. (a): subject SC4001E0, (b): subject SC4011E0, (c): subject SC4021E0, (d):

subject SC4032E0. VRRs are shown in Table 1.

https://doi.org/10.1371/journal.pone.0305872.g005

Table 1. Comparison of VRR by different methods for sleep data.

SC4001E0 SC4011E0 SC4021E0 SC4032E0

SampEn 6.74E-02 7.53E-02 1.24E-01 6.21E-02

SampEn after MA 4.47E-02 4.80E-02 7.44E-02 4.16E-02

SampEn after EWMA 4.73E-02 4.41E-02 7.13E-02 4.29E-02

SampEn after KF 4.50E-02 3.68E-02 5.26E-02 3.78E-02

VRR by MA 33.71% 36.17% 39.96% 33.09%

VRR by EWMA 29.85% 41.38% 42.43% 30.92%

VRR by KF 33.16% 51.06% 52.73% 39.14%

Note: SampEn stands for sample entropy; MA stands for moving average; KF stands for Kalman filtering.

https://doi.org/10.1371/journal.pone.0305872.t001
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EWMA. As shown in Fig 8a–8d, moving average and EWMA moderately reduce the variance

of the original entropy values, while Kalman filtering suppresses the variance to a larger extent.

Table 2 shows highest VRR values by KF and lowest by MA.

In terms of time consumption, different brain regions show that Kalman filtering takes sig-

nificantly less time than moving average and EWMA while moving average and EWMA are

similar (Fig 8e–8h).

Kalman filtering applied to other entropy measures

Kalman filtering is applied to approximate entropy and NNetEn entropy for sleep signals

(Fig 9) and epilepsy signals (Fig 10). VRR values for NNetEn entropy are higher than those for

approximate entropy and sample entropy, indicating that NNetEn has lower measurement

variance for both sleep and epilepsy signals.

The effects of parameters for sample entropy

Fig 11 shows the effects of threshold r and embedding dimensionm on VRR smoothed by Kal-

man filtering on sample entropy time series. Form = 2, the VRR values for r = 0.15, r = 0.15,

Fig 6. Comparison of cumulative computational time for sleep EEG data. Three smoothing methods for different subjects, as a function of iteration

number. (a) subject SC4001E0, (b) subject SC4011E0, (c) subject SC4021E0, (d) subject SC4032E0.

https://doi.org/10.1371/journal.pone.0305872.g006
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r = 0.2 and r = 0.25 are not significantly different (F = 0.0038, p = 0.99967, one-way ANOVA).

Similarly, form = 3, the VRR values for r = 0.15, r = 0.15, r = 0.2 and r = 0.25 are not signifi-

cantly different (F = 0.14755, p = 0.93059, one-way ANOVA).

Fig 12 shows the effects of hyperparameters Q and R on VRR smoothed by Kalman filtering

on sample entropy time series. When Q is set to 0.1, five groups (R = 0.1, 0.3, 0.5, 0.7, 0.9) are

significantly different (F = 4.93243, p = 0.0022, one-way ANOVA). When R is set to 0.5, five

groups (Q = 0.01, 0.05, 0.10, 0.15, 0.20) are significantly different (F = 4.36334, p = 0.00457,

one-way ANOVA).

Discussion

Entropy is a measure of the amount of uncertainty associated with a variable [20]. Most studies

on the entropy measurement of EEG focus on the values of entropy at some specific moments

while in some circumstances, continuous monitoring of entropy is crucial, e.g., in monitoring

depth of anesthesia [5], and epileptic EEG activity [10]. However, entropy as a measure suffers

from the inherent noise, which is similar to a sensor’s measurement noise [27]. We have vali-

dated the feasibility that Kalman filtering can be used to smooth entropy time series obtained

with a sliding window on simulated time series (power noise, Logistic map signals and Röslar

Fig 7. Kalman filtering on sample entropy time series of epilepsy signals. First row: waveforms of EEG recordings. Second row: theoretical variance

of sample entropy calculated according to Eq 10. Third row: original and Kalman-filtering-smoothed sample entropy time series. (a): channel FP1-F3;

(b): channel F3-C3; (c): channel C3-P3; (d): channel P3-O1.

https://doi.org/10.1371/journal.pone.0305872.g007
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system signals); see Figs 1–3. We have also applied Kalman filtering to sample entropy time

series of sleep EEG (Fig 4) and epilepsy EEG (Fig 7) to show the smoothing effects.

To investigate the power of different smoothing methods, we have compared Kalman filter-

ing to moving average, EWMA for sleep signals (Figs 5 and 6) and epilepsy data (Fig 8). The

results show that VRR vaules are highest for Kalman filtering comparing to moving average

and EWMA (Tables 1 and 2). Moving average and EWMA are commonly used with time

series data to smooth out short-term fluctuations and highlight longer-term trends or cycles.

There are other smoothing techniques, e.g., median average filtering or noise smoothing

method based on wavelet thresholding techniques [50].

Fig 8. Comparison of the three smoothing methods for the epilepsy data. First row: original sample entropy time series and those smoothed by

moving average, EWMA and Kalman filtering. Second row: cumulative computational time needed as a function of iteration number for channel

FP1-F3 (a,e), channel F3-C3 (b,f), channel C3-P3 (c,g) and channel P3-O1 (d,h).

https://doi.org/10.1371/journal.pone.0305872.g008

Table 2. Comparison of VRR by different methods in for epilepsy data.

FP1-F3 F3-C3 C3-P3 P3-O1

SampEn 2.52E-02 2.93E-02 4.77E-02 7.26E-02

SampEn after MA 1.97E-02 2.64E-02 4.21E-02 6.55E-02

SampEn after EWMA 1.91E-02 2.60E-02 4.20E-02 6.51E-02

SampEn after KF 1.75E-02 2.53E-02 4.08E-02 6.33E-02

VRR by MA 22.02% 9.99% 11.65% 9.89%

VRR by EWMA 24.19% 11.20% 11.89% 10.32%

VRR by KF 30.47% 13.77% 14.54% 12.86%

Note: SampEn stands for sample entropy; MA stands for moving average; KF stands for Kalman filtering.

https://doi.org/10.1371/journal.pone.0305872.t002
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In addition to sample entropy, Kalman filtering can also be applied to other entropy mea-

sures. This is verified by two entropy measures as examples, one is a long-lasting entropy, i.e.,

approximate entropy [16], and the other is a newly invented one, i.e., NNetEn [47]. We have

shown the applicability of Kalman filtering to these two entropy measures (Figs 9 and 10).

VRR values for NNetEn entropy are higher than those for approximate entropy and sample

entropy, indicating that NNetEn has lower measurement variance than approximate entropy

for both sleep and epilepsy signals. We acknowledge that there exist a lot entropy measures

(e.g., dispersion entropy [18], permutation entropy [51, 52], fuzzy entropy [53]), and expect a

future exploration of applicability to other entropy measures.

We have set the transition matrix A and measurement matrixH to identity matrix. This is

in accordance with the literature where, for the physiological time-series, the transition matrix

is usually replaced by an identity matrix [54, 55].

For a typical selection ofm = 2, there is no significant difference in the VRR of Kalman fil-

tering in the range of r = 0.15 * 0.25 (Fig 11). This means it is up to the users to choose r and

we would suggest r = 0.15 to follow conventions [35, 45].

The two hyperparameters Q and R are covariances that can affect the performance of the

Kalman filter (Fig 12). The process noise covariance Q reflexes the change of entropy measure.

When Q is zero, there is no change at all for the entropy measure; on the other extreme, when

Q is big enough, the entropy is allowed to change freely, which will lead to abrupt spikes. In

Fig 9. Kalman filtering applied to different entropy measures of sleep signals. Data are sleep signals from subjects SC4001E0 (a,b,

c), SC4011E0 (d,e,f), SC4021E0 (g,h,i) and SC4032E0 (j,k,l). Kalman filtering is applied to approximate entropy (first row) and

NNetEn (second row).

https://doi.org/10.1371/journal.pone.0305872.g009
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this study, we have empirically set values of Q and R. We notice a series of work using adaptive

methods in the determination of the two values [56]. In future work, we will explore adaptive

methods to optimize these two hyperparameters.

Due to the limit of paper length, the synthetic signals used in this study are limited to power

noise, Logistic map signals and Rösler signals. We note that there are some other synthetic sig-

nals that can be used for the evaluation of an algorithm, e.g., corrupted deterministic signal

(MIX process) [6].

To our best knowledge, this is the first study that uses the Kalman filtering to track the

change of entropy-based measures. The reason might be that the entropy-based measures are

nonlinear methods that can quantify the rate of generation of new information [57], while at

the same time, the Kalman filtering, in its initial form, is used for linear process. The rationale

behind our proposal is that the entropy is a physical measure (despite of its complex nature)

which may evolve with linear rules.

Conclusion

Estimating entropy has been known to suffer from variance that arises from its calculation,

producing measurement noise. We have for the first time addressed this issue and have used

Fig 10. Kalman filtering applied to different entropy measures of epilepsy signals. Data are epilepsy signals from channel FP1-F3

(a,b,c), F3-C3 (d,e,f), C3-P3 (g,h,l) and P3-O1 (j,k,l). Kalman filtering is applied to approximate entropy (first row) and NNetEn

entropy (second row).

https://doi.org/10.1371/journal.pone.0305872.g010
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Fig 11. The effects of embedding dimension m and threshold r on VRR smoothed by Kalman filtering on sample entropy time series. (a)m = 2. (b)

m = 3. The sleep EEG time series (10 subjects; data length of each subject: 50000 datapoints) were used for the sample entropy calculation. Error bars

indicate standard errors. σ is the standard deviation of the EEG time series.

https://doi.org/10.1371/journal.pone.0305872.g011

Fig 12. The effects of parameters Q and P on VRR smoothed by Kalman filtering on sample entropy time series. (a) VRR as a function of R values

when Q is fixed to 0.1. (b) VRR as a function ofQ values when R is fixed to 0.5. The data segment is the same as in Fig 11. Error bars indicate standard

errors. N = 10. The sign * indicates significance level p<0.05.

https://doi.org/10.1371/journal.pone.0305872.g012
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Kalman filtering technique to reduce the measurement noise. Kalman filtering is expected to

be used to reduce measurement noise when continuous entropy estimation (for example

anaesthesia monitoring) is essential with high accuracy and low time-consumption.

Database: https://doi.org/10.13026/C2X676.
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26. Dı́az D, Córdova F, et al. Visualization of EEG brain entropy dynamic maps in basal resting state condi-

tions. Procedia Computer Science. 2022; 199:1393–1400.

27. Kazemi M, Arefi MM, Alipouri Y. Wiener model based GMVC design considering sensor noise and

delay. ISA transactions. 2019; 88:73–81. https://doi.org/10.1016/j.isatra.2018.12.001 PMID: 30554894

28. Lake DE, Richman JS, Griffin MP, Moorman JR. Sample entropy analysis of neonatal heart rate vari-

ability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2002;

283:R789–R797. PMID: 12185014

29. Li Y, Zhuo Y, Yang S, Tang C, Luo E, Xie K. Low-variance power-law exponent modulated multiscale

entropy algorithm and its application. Journal of Air Force Medical University. 2022; 43(3):343–347,352.

30. Hunter JS. The exponentially weighted moving average. Journal of quality technology. 1986; 18

(4):203–210.

31. Yadav S, Saha SK, Kar R. An application of the Kalman filter for EEG/ERP signal enhancement with the

autoregressive realisation. Biomedical Signal Processing and Control. 2023; 86:105213. https://doi.org/

10.1016/j.bspc.2023.105213

32. Talwar P, Cecil K. Adaptive Filter and EMD Based De-Noising Method of ECG Signals: A Review.

American Journal of Multidisciplinary Research & Development (AJMRD). 2023; 5(03):09–14.

33. Cahyadi MN, Asfihani T, Mardiyanto R, Erfianti R. Performance of GPS and IMU sensor fusion using

unscented Kalman filter for precise i-Boat navigation in infinite wide waters. Geodesy and Geody-

namics. 2023; 14(3):265–274. https://doi.org/10.1016/j.geog.2022.11.005

PLOS ONE Kalman filtering to reduce measurement noise of sample entropy

PLOS ONE | https://doi.org/10.1371/journal.pone.0305872 July 29, 2024 19 / 21

https://doi.org/10.1371/journal.pone.0294772
https://doi.org/10.1371/journal.pone.0294772
http://www.ncbi.nlm.nih.gov/pubmed/38019798
https://doi.org/10.1109/ACCESS.2023.3321868
https://doi.org/10.1016/j.neuropsychologia.2023.108480
https://doi.org/10.1016/j.neuropsychologia.2023.108480
http://www.ncbi.nlm.nih.gov/pubmed/36621593
https://doi.org/10.3390/e24101348
http://www.ncbi.nlm.nih.gov/pubmed/37420367
http://www.ncbi.nlm.nih.gov/pubmed/12005759
https://doi.org/10.1073/pnas.88.6.2297
http://www.ncbi.nlm.nih.gov/pubmed/11607165
https://doi.org/10.3390/e23111432
http://www.ncbi.nlm.nih.gov/pubmed/34828130
https://doi.org/10.1109/LSP.2016.2542881
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
http://www.ncbi.nlm.nih.gov/pubmed/10843903
https://doi.org/10.3390/e21060541
http://www.ncbi.nlm.nih.gov/pubmed/33267255
https://doi.org/10.1016/j.physa.2013.07.075
https://doi.org/10.1016/j.physa.2013.07.075
https://doi.org/10.1016/j.cnsns.2016.08.019
https://doi.org/10.1109/ACCESS.2020.3000439
https://doi.org/10.1016/j.ins.2021.11.072
https://doi.org/10.1016/j.ins.2021.11.072
https://doi.org/10.1016/j.isatra.2018.12.001
http://www.ncbi.nlm.nih.gov/pubmed/30554894
http://www.ncbi.nlm.nih.gov/pubmed/12185014
https://doi.org/10.1016/j.bspc.2023.105213
https://doi.org/10.1016/j.bspc.2023.105213
https://doi.org/10.1016/j.geog.2022.11.005
https://doi.org/10.1371/journal.pone.0305872


34. Zitar RA, Mohsen A, Seghrouchni AE, Barbaresco F, Al-Dmour NA. Intensive review of drones detec-

tion and tracking: Linear Kalman filter versus nonlinear regression, an analysis case. Archives of

Computational Methods in Engineering. 2023; p. 1–20.

35. Zheng J, Li Y, Zhai Y, Zhang N, Yu H, Tang C, et al. Effects of sampling rate on multiscale entropy of

electroencephalogram time series. Biocybernetics and Biomedical Engineering. 2023; 43(1):233–245.

https://doi.org/10.1016/j.bbe.2022.12.007

36. Little M, Mcsharry P, Roberts S, Costello D, Moroz I. Exploiting nonlinear recurrence and fractal scaling

properties for voice disorder detection. Nature Precedings. 2007; p. 1–35. https://doi.org/10.1186/1475-

925X-6-23 PMID: 17594480

37. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series.

Physical review letters. 2002; 89(6):068102. https://doi.org/10.1103/PhysRevLett.89.068102 PMID:

12190613
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