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Abstract

The family Cyprinidae is the largest freshwater fish group with 377 genera and over 3,000

described species. However, this group of fish has very limited cytogenetics and advanced

molecular cytogenetics information. Therefore, in this study the karyotypes and other chro-

mosomal characteristics of 15 species in the tribe Systomini (Cyprininae) were examined

using Ag-NOR staining along with fluorescence in situ hybridization (5S and 18S rDNA). All

species share a similar karyotype (2n = 50; NF = 88–100) in both sexes and no differentiated

sex chromosome was observed. Chromosomes bearing NOR sites ranged from one to four

pairs among the species, mostly mapped adjacent to telomeres in the short arms of distinct

pairs in all analyzed species. This difference indicates an extensive rearrangement of chro-

mosomes including genomic differences. The use of the 5S and 18S rDNA probe confirmed

the Ag-NOR sites interstitially located in the telomeric regions of distinct chromosomes,

characterizing an interspecies variation of these sites. In most of its analyzed species, the

signals of 18S rDNA probe corresponded to the Ag-NOR regions, except in Barbonymus

altus, B. gonionotus, B. schwanenfeldii and Puntius brevis having these signals on the same

as Ag-NOR regions and other sites.
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Introduction

Cyprinidae is the largest and most diverse fish family with about 3,000 species and 370 genera

naturally distributed throughout most parts of the world [1]. More than 1,500 cyprinid species

have evolved highly adapted body shapes and mouth structures, allowing them to live in

almost any habitats throughout their range [2]. This group’s basic traits include that it only has

teeth in its throat, a single dorsal fin, pelvic fins in an abdominal position, pectoral fins low on

the side, and absence of adipose fin [3]. The scales are cycloid and usually absent in the head,

whereas the lateral-line system is typically well developed. The size and shape of the arch and

teeth are closely tied to the diet of the species. In most cyprinids the lips are usually narrow,

but they can be enlarged, sucker-like, or even lobed. Most cyprinids have a typical minnow-

like body shape and are sexually dimorphic [4]. In Thailand’s aquatic ecosystems, 36 to 39% of

all fish species are cyprinids [5].

Cytogenetics is an important tool for the detection of biodiversity [6, 7]. Many cytogenetic

studies have been performed to understand the evolution of the macro and micro karyotype

structures of different fish groups. Together, classical and molecular cytogenetic techniques

have contributed significantly to knowledge of this karyotypic diversity [8]. Classical chromo-

somal banding techniques include in fish the C-banding and silver nitrate staining to highlight

nucleolar organizer regions (Ag-NORs) [8]. These methods can detect chromosomal rear-

rangements, structural and/or numeric polymorphisms, sex chromosome systems, and popu-

lational variations [7, 9]. Although these techniques provide a good understanding of the fish

chromosomal diversity, conventional karyotyping is usually limited to detecting the DNA

rearrangements greater than 5 Mb. The fluorescence in situ hybridization (FISH) technique

strongly improved the transition from classical to molecular cytogenetics by allowing the iden-

tification of DNA sequences ranging in size from 100kb to 1Mb in the studied cytological

material [10]. As a result, this technique enables for the mapping of specific nucleotide

sequences in within chromosomes [11]. In the same way, the position of NORs in fish has

been widely documented, and polymorphisms within and among them have been discovered

[12–14]. These experiments used silver nitrate staining (Ag-NOR), which has recently been

verified or reinvestigated in light of FISH with 18S rDNA probe [15]. Furthermore, some fish

species have the 18S rRNA gene co-located with the 5S rRNA [16, 17], another ribosomal

sequence frequently investigated regarding its position on chromosomes.

The study of chromosomes in Cyprinidae reveals that the karyotypic evolution in this

family is marked by several polyploidization events occurred independently in many species

[18]. A diploid number ranging from 2n = 42 in Acheilognathus gracilis [19] to 2n = 446 in

Diptychus dipogon [20] is described for cypriniforms, but 2n = 50 is the most frequent num-

ber and is considered a plesiomorphic trait for the group [21–23]. Differentiated sex chro-

mosomes seem rare, with only one ZZ/ZW case described for Squalius recurvirostris [24–

26]. Recently, a study combining molecular and classical cytogenetics revealed that the sister

tribe Labeonini have a conserved 2n but with extensive structural chromosome rearrange-

ments [27]. Thus, the aim of the present study was to provide the first finer-scale cyto-

genetic investigation in cyprinids from the Systomini tribe using both by conventional

(Giemsa staining and Ag-NOR) and molecular (fluorescence in situ hybridization (FISH)

with 5S and 18S rDNA probes) methods in 15 species. The results added new informative

characters useful in comparative genomics at the chromosomal level and highlighted the

inner diversity present among the analyzed species.
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Materials and methods

Sample collection and mitotic chromosome preparation

Locations of sampling from the river basins in Thailand included the Chao Phraya River Basin

(Sing Buri Province (1)) in the central region, the Mekong River Basin (Nong Khai Province

(2)), Songkhram River Basin (Bueng Kan (3) and Nakhon Phanom Provinces (4)) Chi River

Basin (Maha Sarakham Province (5)) in the northeastern region, Yom River Basin (Phayao

Province (6)) in the northern region and Sirindhorn Peat Swamp Forest (To Daeng Peat

Swamp Forest) (Narathiwat Province (7)) in the southern region of Thailand (Fig 1). Fifteen

cyprinid species including Amblyrhynchichthys micracanthus, Barbonymus altus, Barbonymus
gonionotus, Barbonymus schwanenfeldii, Cyclocheilos enoplos, Cyclocheilichthys armatus, Cyclo-
cheilichthys repasson,Desmopuntius hexazona,Hampala dispar,Hampala macrolepidota,

Pethia stoliczkana, Poropuntius laoensis, Puntigrus partipentazona, Puntius brevis and Sikukia
stejnegeri were analyzed, with the number of individuals and sex compiled in Table 1. Mitotic

chromosomes were obtained from the classical air-drying method, with some adaptations as

described in previous works [28, 29]. The chromosome was stained with Giemsa’s solution pH

6.8 and the Ag-NOR banding was performed following the protocols of Howell and Black

(1980) [30]; modified by [29, 31]. All experiments followed the scientific laboratory animal

ethical conduct. This process has been approved by the Institutional Animal Care and Use

Committee of Khon Kaen University, based on the Ethics of Animal Experimentation of the

National Research Council of Thailand, record no. IACUC-KKU-40/64 and by the Royal

Golden Jubilee (RGJ) committee under no. PHD/0169/2560 (Thailand).

FISH analysis

Two probes were mapped using fluorescence in situ hybridization (FISH) in the mitotic meta-

phases. The 5S rDNA probe consisted of 120 base pairs (bp) of the 5S rRNA-encoding gene

and 200 bp of the non-transcribed spacer (NTS) [32]. On other hand, the 18S rDNA probe

corresponded to a 1400 bp segment of the 18S rRNA gene [33]. Both 5S and 18S rDNA probes

were fluorescence labeled with the Nick-Translation Labeling Kit (Jena Bioscience, Jena, Ger-

many) by Atto488-dUTP (18S rDNA) and Atto550-dUTP (5S rDNA), according to the manu-

facturer’s recommendations.

FISH was performed under high stringency conditions following the protocol of [34]. The

chromosome preparations were incubated with RNAse (40 μg/mL) for 1.5 h at 37 ˚C. After

denaturation of the chromosomes for 3 min in 70% formamide/2× SSC at 70 ˚C, spreads were

dehydrated in an ethanol series (70, 85, and 100%), for 2 min each. Then, 20 μL of the hybrid-

ization mixture (100 ng of each probe, 50% deionized formamide, 10% dextran sulfate) was

applied to the slides, and the hybridization was performed overnight at 37 ˚C in a moist cham-

ber containing 2× SSC. The post-hybridization wash was carried out with 1× SSC for 5 min at

65 ˚C and a final wash was performed at room temperature in 4× SSC/Tween for 5 min.

Finally, the chromosomes were counterstained with DAPI mounted in an antifade solution

(Vectashield from Vector laboratories).

Cytogenetic analysis

Approximately 30 metaphase spreads were analyzed per individual to confirm the diploid

chromosome number (2n), karyotype structure, and FISH results. Images were captured using

an Axioplan II microscope (Carl Zeiss Jena GmbH, Germany) with CoolSNAP and the images

were processed using Image-Pro Plus 4.1 software (Media Cybernetics, Silver Spring, MD,
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USA). Chromosomes were classified as metacentric (m), submetacentric (sm), subtelocentric

(st), and acrocentric (a) according to their arm length ratios based on [35].

Results

Standard karyotype and Ag-NORs analysis

As expected, all 15 investigated species presented a diploid number 2n = 50, with karyotypes

composed of metacentric (m) submetacentric (sm) subtelocentric (st), and acrocentric (a)

Fig 1. Thailand map indicating the seven collection sites of the 15 species studied herein. 1. Amblyrhynchichthys
micracanthus, Cyclocheilichthys armatus, Cyclocheilichthys repasson, Sikukia stejnegeri; 2. Cyclocheilos enoplos,
Poropuntius laoensis, Puntius brevis; 3.Hampala macrolepidota, Barbonymus altus, Barbonymus schwanenfeldii; 4.

Barbonymus gonionotus,Hampala dispar; 5. Puntigrus partipentazona; 6. Pethia stoliczkana and 7.Desmopuntius
hexazona. Map created with Natural Earth on QGIS 3.20. Scale Bar = 300 km.

https://doi.org/10.1371/journal.pone.0305828.g001
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chromosomes, with the NF ranging 88–100 in both sexes. Two species do not have all chromo-

some types in their karyotypes, following D. hexazona without acrocentric ones and P. stolicz-
kana, which only harbors meta- or submetacentric chromosomes. Commonly, the Ag-NOR

positive sites were observed in the telomeric region of the short arm of 1 (e.g., A.micracanthus)
to 4 chromosome pairs (e.g., C. repasson). In all species, no numerical or structural polymor-

phism between the sexes was observed, thus there was no evidence of differentiated sex chro-

mosomes (Figs 2–4).

Table 1. Collection sites and the number of specimens for chromosomal analysis.

Species Location No. of specimens
1. Amblyrhynchichthys micracanthus Chao Phraya River Basin 07♀ 09♂

14˚51’30”N 100˚24’42”E Ton Pho, Mueang Sing Buri District, Sing Buri

2. Barbonymus altus Songkhram River Basin 11♀; 08♂
18˚00’20.4"N 103˚28’23.6"E

So Phisai District, Bueng Kan

3. Barbonymus gonionotus Songkhram River Basin 06♀;06♂
17˚43’12.0"N 104˚06’55.9"E Sam Phong, Si Songkhram District, Nakhon Phanom

4. Barbonymus schwanenfeldii Songkhram River Basin 10♀:07♂
18˚00’20.4"N 103˚28’23.6"E

So Phisai District, Bueng Kan

5. Cyclocheilos enoplos Mekong River Basin 12♀;15♂
17˚52’42.0"N 102˚43’07.1"E Mi Chai, Mueang Nong Khai District, Nong Khai

6. Cyclocheilichthys armatus Chao Phraya River Basin 08♀;11♂
14˚51’30”N 100˚24’42”E

Ton Pho, Mueang Sing Buri District, Sing Buri

7. Cyclocheilichthys repasson Chao Phraya River Basin 04♀;10♂
14˚51’30”N 100˚24’42”E Ton Pho, Mueang Sing Buri District, Sing Buri

8. Desmopuntius hexazona To Daeng Peat Swamp Forest 05♀;06♂
6˚04’31”N 101˚57’45”E

Puyo, Su-ngai Kolok District, Narathiwat

9. Hampala dispar Songkhram River Basin 09♀;10♂
17˚43’12.0"N 104˚06’55.9"E Sam Phong, Si Songkhram District, Nakhon Phanom

10. Hampala macrolepidota Songkhram River Basin 09♀;09♂
18˚00’20.4"N 103˚28’23.6"E

So Phisai District, Bueng Kan

11. Pethia stoliczkana Yom River Basin 08♀;12♂
18˚54’07.0"N 100˚16’30.0"E Chiang Muan, Chiang Muan District, Phayao

12. Poropuntius laoensis Mekong River Basin 10♀;07♂
17˚52’42.0"N 102˚43’07.1"E

Mi Chai, Mueang Nong Khai District, Nong Khai

13. Puntigrus partipentazona Chi River Basin 11♀;09♂
16˚13’55.2"N 103˚15’59.0"E Tha Khon Yang, Kantharawichai District, Maha Sarakham

14. Puntius brevis Mekong River Basin 07♀;05♂
17˚52’42.0"N 102˚43’07.1"E

Mi Chai, Mueang Nong Khai District, Nong Khai

15. Sikukia stejnegeri Chao Phraya River Basin 08♀;09♂
14˚51’30”N 100˚24’42”E Ton Pho, Mueang Sing Buri District, Sing Buri

https://doi.org/10.1371/journal.pone.0305828.t001

PLOS ONE Chromosomal Evolution of Systomini

PLOS ONE | https://doi.org/10.1371/journal.pone.0305828 July 18, 2024 5 / 18

https://doi.org/10.1371/journal.pone.0305828.t001
https://doi.org/10.1371/journal.pone.0305828


Fluorescence in situ hybridization (FISH)-mapping

The existence of major ribosomal sites in these Ag-NOR regions was confirmed by FISH with

the 18S rDNA probe. The FISH signals coincided with the Ag-NOR regions (Figs 5–7 and

Table 2) in the majority of the species studied, with exception of Barbonymus altus, B. goniono-
tus, B. schwanenfeldii, and Puntius brevis which had additional rDNA loci not identified by the

classical Ag-NOR. The 18S probe hybridized to only one chromosomal pair in four species: A.

Fig 2. Karyotypes of five Systomini representatives. Amblyrhynchichthys micracanthus (1); Barbonymus altus (2);

Barbonymus gonionotus (3); Barbonymus schwanenfeldii (4); and Cyclocheilichthys armatus (5) karyotypes arranged

from Ag-NOR stained chromosomes. The Arrows indicate NOR-bearing chromosomes. Bar = 5 μm.

https://doi.org/10.1371/journal.pone.0305828.g002
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micracanthus, P. stoliczkana, P. partipentazona and S. stejnegeri, on the short arms of the meta-

centric chromosome pair 2, submetacentric pair 20, metacentric pair 1, and submetacentric

pair 6, respectively. Six species demonstrated positive FISH signals on two chromosome pairs,

namely C. enoplos, C. armatus, D. hexazona,H. dispar,H.macrolepidota and P. laoensis. Three

positive signals were detected in B. altus and B. schwanenfeldii. Furthermore, up to four pairs

were detected in B. gonionotus, C. repasson, and P. brevis. 18S rDNA sites were found in telo-

meric regions of short arms except for the chromosome pair 21 of B. altus whose signal is accu-

mulated in the telomeric region of its long arms. Moreover, a sub-telomeric distribution of 18S

rDNA could be observed at chromosome pair 9 ofH. dispar.
The hybridization with the 5S rDNA probe revealed signals in one chromosomal pair in

most species: A.micracanthus, B. altus, C. enoplos, C. armatus, C. repasson, D. hexazona,H.

Fig 3. Karyotypes of five Systomini representatives. Cyclocheilichthys repasson (6); Cyclocheilos enoplos (7);
Desmopuntius hexazona (8);Hampala dispar (9); andHampala macrolepidota (10) chromosomes arranged in

karyotypes from Ag-NOR stain technique. Arrows indicate NOR-bearing chromosomes. Bar = 5 μm.

https://doi.org/10.1371/journal.pone.0305828.g003
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dispar, P. stoliczkana, P. laoensis, P. brevis, and S. stejnegeri. In addition, four other species had

remarkably increased the number of chromosomes displaying 5S rDNA sequences, namely B.

schwanenfeldii with two, P. partipentazona with three, B. gonionotus with five, andH.macrole-
pidota with six chromosome pairs. Almost all fish species have shown that hybridization sig-

nals of 5S rDNA are abundantly distributed in telomeric regions of the short arm.

Pericentromeric regions of chromosome pair 2 ofH.macrolepidota, pair 2 of P. stoliczkana,

pair 1 of P. partipentazona and pair 1 of S. stejnegeri were also detected by FISH (Figs 5–7 and

Table 2). Moreover, the long arms of the chromosome pair 5 in P. partipentazona have intersti-

tial signals of the 5S rDNA. In addition, the syntenic arrangement of 5S and 18S rDNAs could

Fig 4. Karyotypes of five Systomini representatives. Chromosomes of Pethia stoliczkana (11); Poropuntius laoensis
(12); Puntigrus partipentazona (13); Puntius brevis (14) and Sikukia stejnegeri (15) arranged in karyotypes from Ag-

NOR stain. Arrows indicate NOR-bearing chromosomes. Bar = 5 μm.

https://doi.org/10.1371/journal.pone.0305828.g004
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be observed in B. gonionotus. We compiled the distribution of both rDNA probes in cyprinids

karyotypes on a comparative idiogram (Fig 7).

Discussion

Analysis of karyotypes and Ag-NORs

The use of the 18S rDNA probe confirmed the previous Ag-NOR sites identified of one up to

four other sites located in the telomeric regions of distinct chromosomes, characterizing an

interspecific variation. Our results showed that the karyotype patterns of 15 fishes in the Systo-

mini tribe are similar to those considered basal and preserved in most Cyprininae. These

Fig 5. Karyotypes of Systomini species after double-FISH mapping of rDNA sequences. Chromosomes of Amblyrhynchichthys
micracanthus (1); Barbonymus altus (2); B. gonionotus (3); B. schwanenfeldii (4); Cyclocheilichthys armatus (5); C. repasson (6)

Cyclocheilos enoplos (7) andDesmopuntius hexazona (8) arranged after double FISH with 5S (red) and 18S (green) rDNAs. Scale

Bar = 5 μm.

https://doi.org/10.1371/journal.pone.0305828.g005
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symplesiomorphies are characterized by a diploid number (2n) equal to 50, as also observed

for this subfamily in previous reports [23, 36–40], and most Cyprinidae groups [26, 41–43].

Karyotypes of cyprinids are usually composed of all four chromosome classes, mainly of 2–24

metacentric, 2–26 submetacentric, 2–44 subtelocentric, and 2–8 acrocentric chromosomes,

without distinguishable sex chromosomes [23, 37, 38, 44–49]. Sex chromosomes may be pres-

ent but at an early stage of differentiation that cannot be detected by classical cytogenetic anal-

yses [50], or either by FISH mapping with ribosomal sequences as herein shown. Indeed, we

couldn’t observe cytogenetical differences among sexes.

Homologous Ag-NOR variations are found in the species studied here and these variations

are common in fish chromosomes, either representing structural polymorphisms [12] or due

to genetic regulation of their ribosomal cistrons [15]. The presence of the heterochromatin in

these chromosome regions can promote structural alterations as well as may be an important

element in the probable genetic control of these cistrons [51]. Our findings demonstrated that

NORs can be detected between 1–4 chromosome pairs (Figs 2–4) in most Systomini fish. The

single NOR-bearing chromosome pair in P. partipentazona is consistent with previous

Fig 6. Karyotypes of Systomini species after double-FISH mapping of rDNA sequences.Hampala dispar (9);H.

macrolepidota (10); Pethia stoliczkana (11); Poropuntius laoensis (12); Puntigrus partipentazona (13); Puntius brevis
(14) and Sikukia stejnegeri (15) chromosomes arranged after double FISH with 5S (red) and 18S (green) rDNAs as

probes. Scale Bar = 5 μm.

https://doi.org/10.1371/journal.pone.0305828.g006
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investigations [41], while the Ag-NOR pattern previously reported for the genus Barbonymus,
including B. schwanenfeldii [52], indicates the NOR exclusive to one pair, which was not equal

to the current reported two pairs (Fig 2). Some species had two pairs, including C. enoplos
[45], and C. armatus consistent with the results of Chaiyasan (2018) [23]. Our mapping also

revealed three marked pairs in Puntius brevis, which is inconsistent with previous studies [53]

that reports one pair of NOR at the telomeric region on the short arm of a subtelocentric chro-

mosome. Differences in the number of Ag-NOR and 18S rDNA sites is a common feature of

fish karyotypes, as well as in other vertebrates [54, 55]. The nucleolus organizers regions

Fig 7. Representative idiograms of the distribution of rDNA sequences in Systomini. Each line corresponds to the

representation of the haploid set (n) of a species, following: Amblyrhynchichthys micracanthus (1); Barbonymus altus
(2); B. gonionotus (3); B. schwanenfeldii (4); Cyclocheilichthys armatus (5); C. repasson (6); Cyclocheilos enoplos (7);

Desmopuntius hexazona (8);Hampala dispar (9);H.macrolepidota (10); Pethia stoliczkana (11); Poropuntius laoensis
(12); Puntigrus partipentazona (13); Puntius brevis (14); and Sikukia stejnegeri (15). Red and green circles indicate the

position of 5S and 18S rDNA, respectively.

https://doi.org/10.1371/journal.pone.0305828.g007
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(NORs) represent the location of genes (loci) responsible for ribosome synthesis (18S, 5.8S,

and 28S ribosomal RNA). NORs produce a large number of gene expressions and contain

more non-histone proteins than any other chromosome region [56]. It is recognized that the

appropriate substance that has an affinity for silver and is stained by this element is a collection

of nucleolar argentophilic proteins [57–59]. Nevertheless, certain species could have additional

argentophilic proteins outside the nucleolar region, which might additionally stain with silver

nitrate and impede accurate Ag-NOR identification. Ag-NOR sites have been thoroughly

examined in many species of various groups, including fish [60–62], birds [63, 64], frogs [65],

and mammals [66, 67], for example. Besides their simple description as a character of the spe-

cies, the Ag-NORs have been largely utilized in several other investigations, such as compara-

tive and evolutionary studies, identification of sex chromosome systems [68], and

phylogenetic relationships [69]. The development of molecular cytogenetic techniques, espe-

cially FISH, made significant progress in chromosomal research possible. Here, the quantity

and distribution of ribosomal sequences inside chromosomes are demonstrated using appro-

priate probes designed for this purpose. This approach, however, does not lessen the validity of

Ag-NORs identification because it is still a quick and helpful marker to examine the primary

rDNA cistrons and to confirm those that were transcriptionally active during the previous cell

cycle interphase [70].

Chromosomal mapping of 18S and 5S rDNAs

The position of both 5S and 18S rDNA sequences on chromosomes was compiled in the idio-

grams (Fig 7) and Table 2. Although a high variability in the number of chromosomes carrying

the 18S rDNA occurred in B. gonionotus, C. repasson and P. brevis, this sequence is highly con-

served regarding its position on the other species. On the other hand, the inverse pattern is

found in 5S rDNA sites, in which the loci are located in different pairs in representatives of the

Systomini. Two species, P. partipentazona and B. gonionotus, have sequences of both 5S and

18S that appear on the same chromosome. In particular, there is a strong hybridization pattern

in P. partipentazona for 18S rDNA probe. this same species, both 5S and 18S rDNAs appeared

Table 2. Cytogenetic and FISH studies on fifteen cyprinids in Thailand (m = metacentric, sm = submetacentric, st = subtelocentric, a = acrocentric chromosomes,

NOR = nucleolar organizer region).

Species Ag-NOR pair (type) rDNA pair (site)

5S rDNA 18 rDNA

Amblyrhynchichthys micracanthus 2 (m) 10 (telomeric) 2 (telomeric)

Barbonymus altus 13 (sm), 20 (st) 19 (telomeric) 13, 20, 21 (telomeric)

B. gonionotus 8 (sm), 18 (st) 6,17, 20, 21, 22 (telomeric) 8, 9, 17, 18 (telomeric)

B. schwanenfeldii 4 (sm), 7 (sm) 9, 12 (telomeric) 4, 7, 8 (telomeric)

Cyclocheilichthys armatus 2 (m), 7 (sm) 10 (telomeric) 2,7 (telomeric)

C. repasson 1 (m), 9,12 (sm), 18 (st) 19 (telomeric) 1, 9, 12, 18 (telomeric)

Cyclocheilos enoplos 9 (sm), 19 (st) 20 (telomeric) 9,19 (telomeric)

Desmopuntius hexazona 1 (m), 18 (sm) 23 (telomeric) 1, 18 (telomeric)

Hampala dispar 9 (sm), 21 (st) 17 (telomeric) 9 (sub-centromeric), 21 (telomeric)

H.macrolepidota 8 (sm), 12 (a) 2 (sub-centromeric), 6, 13, 14, 15, 22 (telomeric) 8, 12 (telomeric)

Pethia stoliczkana 20 (sm) 2 (sub-centromeric) 20 (telomeric)

Poropuntius laoensis 10, 12 (sm) 8 (telomeric) 10, 12 (telomeric)

Puntigrus partipentazona 1 (m) 1 (sub-centromeric), 5 (interstitial), 17 (telomeric) 1 (telomeric)

Puntius brevis 10, 11, 17 (a) 8 (telomeric) 4, 10, 11, 17 (telomeric)

Sikukia stejnegeri 6 (sm) 1 (sub-centromeric) 6 (telomeric)

https://doi.org/10.1371/journal.pone.0305828.t002
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to be quite conservative and located in the same pair of chromosomes. Moreover, in B. gonio-
notus, some but not all 5S loci are coincident with the 18S rDNA loci. Although Ag-NORs

sites are productive cytotaxonomic sites in conservative karyotypes, in some cases rDNA may

seem limited to identifying specific differences in its location and frequency, especially among

species from families with outstanding chromosomal conservation and hence low evolutionary

dynamics [71, 72]. The two most frequently repetitive sequences used in fish chromosomal

evolution investigations are the 18S and 5S ribosomal genes [73]. The 5S ribosomal DNA

(rDNA) is made up of one transcription unit of around 120 base pairs, and non-transcribed

spacer regions (NTS) divide each transcription unit from the next [74]. The 18S rDNA probe

hybridized to only one chromosomal pair in several species, namely A.micracanthus, B. altus,
C. enoplos, C. armatus, C. repasson, D. hexazona,H. dispar, P. stoliczkana, P. laoensis, P. brevis
and S. stejnegeri. This site is located in the telomeric region of the short arms of that chromo-

some pair in all species, as also observed in other cyprinids [75]. On other hand, the 5S rDNA

probe hybridized in 5, 2, 6, and 3 chromosomes of B. gonionotus, B. schwanenfeldii,H.macro-
lepidota and P. partipentazona, respectively. FISH physical mapping in rare situations has

revealed a large distribution of 5S rDNA in most of the chromosomes of some species, espe-

cially in families with conservative evolutionary patterns [76].

Ribosomal DNAs (rDNAs) represent an important source of information on genome struc-

ture and evolution in several vertebrates [77]. In fish, studies with rDNAs demonstrate the

chromosome homologies by identifying syntenic groups conserved or rearranged during kar-

yotype evolution [33, 78, 79]. For example, the results of Rossi (2012) [79] studies suggest that

the observed high variability of 5S rDNA loci is an effective tool for investigating karyotype dif-

ferences in Leuciscinae (Cyprinidae) species with conservative 2n. For the genus Osteochilus
(Cyprinidae, Labeoninae), although also presenting the conserved pattern for cyprinids of

2n = 50, the investigation of rDNAs and microsatellite motifs demonstrate that extensive chro-

mosomal rearrangements occurred along their evolutionary process [75].

The structure of the karyotype and the mapping of the ribosomal DNA sequence demon-

strate the evolutionary dynamics of Systomini karyotypes. We demonstrate that 2n = 50 is the

common diploid number, following the pattern of Cyprinidae, with variation in the number

and position of rDNA sequences. Two species presented a syntenic association of both 5S and

18S rDNAs, an uncommon condition of fish karyotypes. The use of repetitive DNA in combi-

nation with other chromosomal analysis procedures is useful for knowledge of the heterochro-

matic composition of genome and karyotype evolution for a wide variety of fish species, and

the results herein described and discussed increased the knowledge on the evolution of the

largest freshwater fish family.
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