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Abstract

Climate variability has become one of the most pressing issues of our time, affecting various

aspects of the environment, including the agriculture sector. This study examines the impact

of climate variability on Ghana’s maize yield for all agro-ecological zones and administrative

regions in Ghana using annual data from 1992 to 2019. The study also employs the stacking

ensemble learning model (SELM) in predicting the maize yield in the different regions taking

random forest (RF), support vector machine (SVM), gradient boosting (GB), decision tree

(DT), and linear regression (LR) as base models. The findings of the study reveal that maize

production in the regions of Ghana is inconsistent, with some regions having high variability.

All the climate variables considered have positive impact on maize yield, with a lesser vari-

ability of temperature in the Guinea savanna zones and a higher temperature variability in

the Volta Region. Carbon dioxide (CO2) also plays a significant role in predicting maize yield

across all regions of Ghana. Among the machine learning models utilized, the stacking

ensemble model consistently performed better in many regions such as in the Western,

Upper East, Upper West, and Greater Accra regions. These findings are important in under-

standing the impact of climate variability on the yield of maize in Ghana, highlighting regional

disparities in maize yield in the country, and highlighting the need for advanced techniques

for forecasting, which are important for further investigation and interventions for agricultural

planning and decision-making on food security in Ghana.

Introduction

Background of the study

The variability of the climate has emerged as a critical concern in our era, impacting different

facets of our surroundings, such as the agricultural industry. According to Porter et al. [1], cli-

mate variability has a greater impact on agricultural production as compared to other factors

due to their interaction. The extent of these effects is determined by different climate variables
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such as temperature, precipitation, sunshine, humidity, carbon dioxide (CO2), water vapor,

rainfall, and greenhouse gases. Although crop yield can be impacted by climatic variables

including rainfall, solar radiation, and wind speed [2, 3], precipitation, temperature, and car-

bon dioxide (CO2) are seen as the most influential climatic variables on crop yield [4, 5]. Crop

production is hampered by low temperatures [6] and crop yields are significantly affected by

high temperatures [7]. Similarly, high precipitation, which leads to flooding, damages crops

[8], and low precipitation, which leads to drought, damages crop as well [9]. Therefore, any

variations on these climate variables may also have a major impact on the agricultural sector

[10].

Agriculture is significant to Ghana’s economy and livelihoods, hence understanding the

influence of climate variability on agricultural production is critical. Maize production is one

of the most significant agricultural products, ranking third place behind rice and wheat in

terms of production of cereal crops in the world [11]. In Ghana, maize is a staple crop and con-

tributes to most of the agricultural production and consumption in the country. According to

research, Ghana produced more than 2.9 million metric tons of maize in 2019, the most since

2010, and 3 million metric tons of maize in 2020, continuing a rising trend that has been evi-

dent since 2016 [10]. Maize is grown in all the country’s agro-ecological zones, and it is fre-

quently grown by smallholder farmers in rain-fed conditions [12]. As a result, any aggravation

of climate-related factors, such as drought, altered precipitation patterns, and heat stress, is

accountable for some of the major issues with maize production in Ghana. The results, how-

ever, vary by zone. Ghana has six main agro-ecological zones, which are the Guinea savannah

zone, Sudan savannah zone, transitional zone, deciduous forest zone, coastal savannah zone,

Rain Forest zone [12]. These agro-ecological zones can be grouped into four subgroups [13]

based on maize yield in Ghana (i.e., Transitional Zone, Rain Forest Zone, Guinea Savannah

Zone, and Coastal Savanna Zone). Temperature and sunshine are likely to have major impact

on maize yield in the Guinea savanna zone since they are the hottest zones in the country [14],

and precipitation is also likely to have a major impact in the rain forest zone and the coastal

savanna zone [10, 15]. Moreover, average temperature is likely to have a major impact in the

transitional zone [10].

The impact of climate change on cereal harvests, such as wheat, rice, and maize, has been

extensively studied in Asia [16–20] and North America [21–23]. However, there are limited

studies in sub-Saharan Africa, especially considering their regional differences, which is of

great concern given the region’s high dependence on agriculture for food security and eco-

nomic development. Given the dependency of maize yield on rainfall in many parts of the

African continent, Gachene et al. [24] emphasized the vulnerability of cereal yields in the sub-

Saharan regions. They reviewed numerous elements, such as extreme weather events,

increased CO2, weed competition, and insect pests, that may lead to a probable decline in crop

production. According to their findings, crop yields in Sub-Saharan Africa (SSA) are projected

to decline by more than 10% by 2055. This decline was attributed primarily to the increased

occurrence of extreme weather events and the interaction of elevated CO2 levels with tempera-

ture and rainfall. According to the findings from studies in [4, 7, 25], even though temperature

is a significant factor influencing maize production, rainfall and water availability are more

restrictive elements. Nevertheless, rising temperatures can make some regions crop yield more

vulnerable [7]. An interesting study is the one by Acquah and Kyei [26], who discovered in

their paper that, an increase in temperature in Ghana is probably going to make maize output

variability worse, whereas an increase in rainfall is probably going to address the problem. A

study by Adjei and Kyerematen [27] also found that over the previous five years, rainfall in

Ghana’s transitional zone (Nkoranza South Municipality) had significantly decreased, which

had a detrimental effect on maize agricultural operations. Even though the study by Atiah et al.
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[25] highlighted that climate factors, such as rainfall, only contribute to a minor portion

(about 4.2% of the fluctuations in annual maize output in Ghana). Their findings do indicate

that climate factors account for 40.8% of maize yield under drier-than-normal rainfall condi-

tions, indicating that rainfall does have a significant impact on crop productivity in Ghana.

The effect of specific climate factors (temperature and rainfall) on maize production in the

Ejura-Sekyedumase Municipality, Ghana, was examined by Cudjoe et al. [12] utilizing trend

analysis, regression analysis, and chi-square analysis. The research’s conclusions show that

there is clear climate variability in the study area and that it significantly affects crop produc-

tivity. Another study by Baffour-Ata et al. [28] investigated how climate factors, such as yearly

rainfall, its onset and cessation, the number of dry days, and temperature, affect the growth of

a few different crops, including millet, sorghum, rice, groundnuts, and maize in northern

Ghana. They discovered that number of dry days, temperature, onset, yearly precipitation, and

cessation explained about 25% of the variation in maize production using the Mann-Kendall

trend test and multiple regression analysis. Evidently, there is a lack of research addressing the

impact of climate variables on maize yield across all agro-ecological zones and administrative

regions in Ghana. Consequently, it is essential to fill this gap, and this study aims to do so.

Given the necessity of assessing the impact of climate variability on crop yield, various tech-

niques have been developed that enable the analysis of complex interactions between climate

variables and crop yield. These techniques involve the use of statistical models, machine learn-

ing algorithms, and remote sensing data, among others. Lobell and Burke [29] predicted the

possible impacts of climate variabilities on crop yield using three statistical models (time series,

panel, and cross-sectional models). They discovered that depending on the climate variable

and spatial scale being considered, the performance of statistical models differs. The responses

to temperature change were more accurately predicted by panel and cross-sectional models

than the responses to precipitation change, which only used data from a single site. The histor-

ical period utilized for training was less important for the models based on numerous sites,

and performance improved when individual sites were averaged across countries. However,

according to Gyamerah et al. [30], it can be difficult to precisely quantify and estimate the

impact of climate variability on crop output using statistical techniques because of the com-

plexity and non-linear relationship between crop yield and climate variables. Crane-Droesch

[31] utilized a semiparametric deep neural network variant, employed as a machine learning

technique to account for the nonlinear interactions in high-dimensional datasets as well as

known parametric structure and undiscovered cross-sectional variability. According to their

study, the machine learning technique outperforms the classical statistical methods in forecast-

ing the yields of years withheld during model training, according to data on maize yields from

the US Midwest, which they used to demonstrate the efficacy of their methodology. In addi-

tion, their findings revealed significant adverse impact of climate variability on maize yield,

while these effects are less severe than those predicted using conventional statistical techniques.

They did this by employing scenarios from a variety of climate models. Appiah-Badu et al. [32]

used a methodical and exacting approach to evaluate the effectiveness of several classification

algorithms in predicting rainfall in various ecological zones of Ghana. The study employed

five well-known machine learning techniques for classification: multilayer perceptron, deci-

sion tree, extreme gradient boosting, random forest, and K-nearest neighbor. In their investi-

gation, MLP, XGB, and RF all performed well at the three training-to-testing ratios of 90:10,

80:20, and 70:30 whereas KNN did poorly in all zones. Cedric et al. [33] also suggested a

machine learning-based prediction method to forecast the yield of six crops at the national

level in West African countries throughout the course of the year. The prediction system was

developed using a decision tree, k-nearest neighbor, and multivariate logistic regression mod-

els. They combine agricultural yields, chemical data, climate, and weather data in their
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analysis. According to the study, all three machine learning models produced favorable accu-

racy, with the decision tree model performing best with 95.3% accuracy. To prevent overfitting

during cross-validation, they additionally used a hyper-parameter tuning strategy. The predic-

tion of the K-Nearest Neighbor model and the decision tree model were shown to relate to the

expected data when the authors examine the relationship between the predicted results and

the expected outcomes, suggesting that the models function as expected. However, using clus-

ters for small datasets may result in overfitting when using forecasting models [34]. To over-

come this issue, they used the stacking ensemble learning method (SELM), which helped them

increase their generalization capacity. Li et al. [35] also used the Stacking Ensemble Learning

framework to integrate three effective machine learning algorithms: support vector machine,

random forest, and K-nearest neighbors as base-models. Over the course of 34 years, the study

collected daily weather information as well as information on soybean output from 173

county-level administrative districts and meteorological stations in China’s two primary soy-

bean-growing regions. Their findings suggested that the stacking model provides more accu-

racy and versatility. They also discovered that the stacking prediction model of soybean

meteorological yield provides a novel method for successfully predicting soybean production

with a MAPE of less than 5%. Based on the findings presented above, the stacking ensemble

learning model has demonstrated promising results for reliably predicting maize yield using

meteorological data and machine learning techniques. With our data spanning 27 years, the

stacking ensemble model can be used to develop a high-precision and reliable model to analyze

the impact of climate variabilities on maize yield prediction.

This study considers all the regions in Ghana. This fills a large information void by includ-

ing all the four ecological zones in Ghana, which encompass all the regions in the country, as

opposed to prior studies that only focused on only one region [12, 28, 36], only one zone [27,

37], or selected zones [38, 39]. The study provides a more thorough assessment of the effect of

climate change on maize yields in Ghana by considering all ecological zones and all the regions

within each zone, making its conclusions reliable and applicable to the entire nation. Even

though Atiah et al. [25] found that weather variables significantly influence maize yield vari-

ability, the effects of climatic variability on crop production are complex and poorly under-

stood. Machine learning algorithms have the capacity to examine intricate connections

between climatic and weather variables and crop productivity. Machine learning algorithms

for predicting agricultural output based on numerous meteorological and climatic elements

have a better level of accuracy than the current time-consuming statistical procedures since cli-

mate variables are nonlinear [33]. Even though machine learning (ML) approaches have a

high level of accuracy, their potential applications in agricultural yield prediction have not

been realized due to a lack of more reliable methods [40]. By including different model types

and architectural characteristics across the models, ensemble learning model forecasts can

increase generalization and prediction accuracy [41]. To address the problem of agricultural

yield prediction, it is advantageous to introduce an ensemble learning method [35]. Based on

the review of related literature, SSA nations, including Ghana, have paucity of ensemble-based

ML algorithms in analyzing the impact of climate variability on crop yields. Additionally, due

to its superior prediction accuracy, the stacking ensemble model algorithm is suggested in this

paper to combine the algorithms of the LR, SVM, DT, RF, and GB to assess the impact of cli-

mate variables on maize yield and to fill the previously mentioned study gap.

Our study aims at achieving the following goals: (i) to identify the key climatic variables

that have the most significant impact on maize yield in each region; (ii) to assess the impacts of

climate variability on the yield of maize in each region of Ghana; (iii) to develop a reliable pre-

dictive model using machine learning algorithms that can capture the volatile, non-stationary,

and non-linear nature of the climate variables and accurately forecast maize yield under
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different climatic conditions; (iv) to provide policymakers in Ghana with evidence-based rec-

ommendations on how to address the challenges posed by climate change and ensure food

security for the country’s growing population; and finally, (v) to add to the growing literature

of the predictive power of stacking ensemble machine learning model to agricultural and cli-

mate change studies.

Paper structure

This study is divided into five primary sections. Aside from the study’s background, the paper

is arranged in the following manner. The second section outlines the empirical data, the data

preprocessing techniques applied, the machine learning models suggested for maize yield pre-

dictions, and the methods used for empirical evaluation. After that, the main results of the

study are presented in the third section. We then present a discussion of key findings in section

four. Finally, we conclude the study and present some recommendations for future studies in

section five.

Materials and methods

Areas under study

Table 1 shows the districts under each region in Ghana, and the agro-ecological zones are pre-

sented in Table 2.

Data collection

Monthly data for the climate variables (average temperature, minimum temperature, maxi-

mum temperature, precipitation, and CO2) were obtained from the Ghana Meteorological

Agency for all the regions in Ghana from 1992 to 2019. The reason for incorporating average,

minimum, and maximum temperatures as predictors in the same model stemmed from the

Table 1. The regions in Ghana and major districts where there is maize production.

Region Major Districts

Western Wassa Amanfi, Aowin-Suaman, Wassa East, Shama Ahanta East, Sefwi-Wiaso, West Ahanta,

Mporhor, Wassa West, Bibiani-Anhwiaso-Bekwai, Juabeso-Bea, East Nzema, Jomoro

Central Awutu-Efutu-Senya, Upper Denkyira, Twifo-Herman/L.Den, Komenda-Edina-Equafo, Assin-Fosu,

Gomoa, Mfantsiman, Ajumako-Essiam-Enyana, Cape Coast, Agona, Asikuma-Odoben-Brakwa,

Abura-Asebu-Kwamankese

Volta Kpando, Adidome, Sogakope, Akatsi, Keta, Denu/Dzodze (Ketu), Hohoe, Jasikan, Nkwanta, Kadjebi,

Keta-Krachi

Northern Tonlon/Kumbugu, Gushiegu/Karaga, Damango, Zabzugu/Tatale, Yendi, Bimbila, Walewale,

Gambaga, Tamale, Sevelugu/Nanton, Salaga, Bole, Saboba/Chereponi

Ashanti Adansi-North, Amansie East, Amansie West, Ahafo Ano North, Asante Akim North, Ejura

Sekyeredumase, Sekyere West, Kumasi Metropolitan Assembly, Sekyere East, Adansi West, Ahafo

Ano South, Atwima, Ejisu Juaben, Bosumtwe Kwanwoma, Kwabre Sekyere, Offinso, Adansi East,

Asante Akim South, Afigya Sekyere

Eastern Kwahu North, Birim South, Fanteakwa, Birim North, West Akim, Akwapim North, Suhum/Kraboa/

Coalta, Akwapim South, New Juabeng, East Akim, Kwahu South, Manya Krobo, Yilo Krobo,

Kwaebibirim/Kade, Asuogyaman

Greater

Accra

Tema, Ga, West Dangbe, East Dangbe

Brong Ahafo Dorma Ahenkro, Sunyani, Asutifi, Wenchi, Berekum, Tano, Kintampo, Sene, Nkoranza, Jaman,

Atebubu, Techiman, Asunafo

Upper West Wa, Lawra, Tumu, Jirapa, Nadowli

Upper East Builsa, Kasina/Nankani, Bongo, Bolgatanga, Bawku East, Bawku West

https://doi.org/10.1371/journal.pone.0305762.t001
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intention to encompass a thorough depiction of temperature dynamics and their potential

influence on the response variable, motivated by existing studies [10, 25, 42]. For this study,

the ten (10) administrative regions that existed between 1992 and 2019 were used. The Statis-

tics, Research, and Information Directorate (SRID) of Ghana’s Ministry of Food and Agricul-

ture provided the yearly average maize yield in metric tons per hectare (MT/ha) for each

district from 1992 to 2019. The average maize yield for each district corresponds to the ratio of

the district’s estimated production to the district’s estimated cropped area. Motivated by Preety

et al. [43], the LINEST function in Excel is used to handle missing values in the original data

before aggregating it further. The specific software used for this interpolation task was Excel

because of its user-friendly interface and built-in features for linear interpolation. It is worth

noting that although Excel was used for interpolation, the subsequent analysis and modeling

were carried out using Python with pandas and scikit-learn.

Data preprocessing

The data from May to September were aggregated to create the annual data for each climatic

variable in the major regions in the Guinea Savannah zone since that is the cropping season

for maize in the Upper West, Upper East, and Northern parts of Ghana. From Table 2, the

Transitional, Rain Forest, and Coastal Savannah zones have two major cropping seasons for

maize (March–August/September and July–December); therefore, the data from March to

December is aggregated to obtain the annual cropping season climate data. To perform this

aggregation, the values of the pertinent variables for each month during the time were added

up, and the mean value for the entire period was then determined. As a result, each variable

for every year of the study had a single value. In addressing the temporal structure of the data,

we conducted an Augmented Dickey-Fuller (ADF) test to evaluate the stationarity of the

’maize yield’ time series. Based on the ADF test, it was determined that the series from all

regions exhibited nonstationarity, as indicated by p-values exceeding 0.05. Subsequently,

detrending was performed using the ‘detrend’ function from ‘scipy.signal’ library in Python,

and the detrended variable was further deseasonalized by subtracting its lagged value, assum-

ing a yearly seasonality. To achieve stationarity, differencing was applied to the deseasonalized

data. This comprehensive approach aimed to mitigate temporal patterns, trends, and seasonal-

ity in the ’maize yield’ time series, ensuring that the data is suitable for subsequent analysis and

modeling using the fixed-effect regression models.

We utilized both the MinMaxScaler and the StandardScaler from the sklearn library in

Python to scale the input variables. It became evident that the StandardScaler yielded superior

results compared to the MinMaxScaler. Consequently, we opted to standardize the input

Table 2. The agro-ecological zones and their maize cultivation calendar in Ghana.

Agro-Ecological

Zone

Administrative Seasons for

cultivation of Maize

Planting

period-onset

length of the

cropping cycle

Harvesting

period-endCoverage areas

Guinea

Savannah zone

Northern region, Upper west Region, Upper East region One season 20-May 90–120 days 10-September

Transitional

Zone

Major part of Brong Ahafo, northern part of Ashanti Region, part

of Volta region

First season 20-March 90–120 days 20-August

Second season 20-July 90–120 days 10-December

Rain Forest Zone Eastern region, southern part of Ashanti, and Western region,

parts of Volta, Brong Ahafo, Greater Accra, and Central region

First season 10-March 90–120 days 10-August

Second season 20-July 90–120 days 20-December

Coastal zone Parts of Central region, Greater Accra region, Eastern and Volta

region

First season 20-March 90–120 days 20-September

Second season 20-July 90–120 days 20-December

https://doi.org/10.1371/journal.pone.0305762.t002
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variables using the standard scaler. Besides, since the climate variables have different units, the

standard scaler become the appropriate choice. The decision for standardization was made to

ensure that all variables were aligned on a consistent scale, aiming to fit them within a stan-

dardized range. Subsequent to making predictions, an inverse scaling procedure was employed

to transform the standardized predictions back to their original scales, maintaining the

interpretability of the results in the context of the original data units. The datasets were arbi-

trary divided into two subsets, one comprising the test set (20%) for validating and the other

containing the training set (80%) for modeling. The entire analysis was conducted using the

Python programming language.

Model establishment

Assessing the impact of climate variability on crop yield is an important task in agricultural

research because it provides useful insights into how climate variability affects food security.

The goal of this study is to develop a model for measuring the impact of climate variability on

maize yield. To accomplish this, we employed a variety of machine learning algorithms,

including multiple linear regression, random forest, support vector machines, decision trees,

and gradient boosting. These algorithms were used to construct a single model (the stacking

ensemble model) that offers high accuracy in assessing the impact of the climate variables on

maize. Previous research [35, 40, 44–47] have shown that ensemble learning can perform bet-

ter than individual machine learning methods. The machine learning models under consider-

ation are established in this section.

The base models establishment

Multiple linear regression. A supervised learning strategy designed specifically for regression is

linear regression. A linear function is used to depict the relationship between the input and

output variables. By minimizing the sum of the squared deviations between the expected and

actual output values, a straight line is found. In this study, since our independent variables are

more than one, we use the multiple linear regression model. The general equation of a multiple

linear regression is given in Eq (1).

Yt ¼ β0 þ
Xn

i¼1
βi � xi;t þ εt ð1Þ

Where, Yt is the response variable at time t xi,t is the predictor variable i at time t, βi is the

regression coefficients that determines the impact of each climate variables, β0 is the intercept,

and εt is the error term at time t. For this studies, Eq (1) can be reformulated as shown in Eq

(2)

Yt ¼ b0 þ b1x1;t þ b2x2;t þ b3x3;t þ b4x4;t þ b5x5;t þ εt ð2Þ

where Yt is the maize yield; x1,t = average temperature; x2,t = maximum temperature; x3,t =

minimum temperature; x4,t = precipitation; x5,t = CO2 at time t, εt is the error term at time t or

residual representing the difference between the predicted value and the actual value of Yt also

known as the unobservable factors affecting Yt; β1, β2, β3, β4, β5 captures respectively the effect

of x1,t, x2,t, x3,t, x4,t, x5,t on Yt, and β0 is the intercept of the equation.

Decision trees. A decision tree is a supervised learning method that may be applied to both

classification and regression problems. The tree is created by recursively dividing the data

according to the values of the input variables. Each leaf node of the tree represents a class label

(in the case of classification) or a prediction (in the case of regression), and each internal node

of the tree represents a test on an input variable. We formulated the decision tree regression
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for this model given the dependent variable Y as:

Y ¼
XK

j¼1
Cj � 1Rj Xð Þ ð3Þ

Where Y is the predicted value which is maize in this case, K is the number of terminal nodes

or leaves in the decision tree, Cj is the constant value assigned to the jth leaf node, representing

the predicted value of Y for that region, 1Rj Xð Þ represent an indicator function that takes the

value 1 if the output vector X falls within the rectangular region Rj and 0 otherwise.

Random forest. The ensemble learning method known as a random forest produces numer-

ous decision trees during training and outputs the mean prediction (regression) or mode of

the classes (classification) of the individual trees. Each tree in a random forest is trained using

a different subset of the characteristics and a different portion of the training data. By averag-

ing all the trees’ projections, the final prediction is produced. In this study, the Random Forest

regression was considered. Mathematically, given an input vector X (Climate variables), the

random forest model predicts the output ŷ (maize yield) as:

ŷ ¼
1

T

XT

t¼1
ft Xð Þ þ ε ð4Þ

In this study, Eq 4 can be written as:

Yt ¼
1

T

XT

t¼1
ft x1;t; x2;t; x3;t; x4;t; x5;t

� �
þ εt ð5Þ

Where T represents the number of decision trees in the ensemble, ft is the function that maps

the independent variables (climate variables) to the dependent variable Y(maize yield). Yt is

the maize yield; x1,t = average temperature; x2,t = maximum temperature; x3,t = minimum tem-

perature; x4,t = precipitation; x5,t = CO2, εt is the error term or residual that represents the dif-

ference between the predicted value and the actual value of the dependent variable and ft(x) is

the prediction of the tth tree. In a random forest model, the function is a combination of multi-

ple decision trees that each provide a prediction for the dependent variable.

Support vector machine. A support vector machine is a type of supervised learning tech-

nique that can be used for classification as well as regression. The SVM finds a hyperplane that

optimally separates the input into various groups (in classification) or predicts the output val-

ues (in regression). The hyperplane is chosen in such a way that the margin between the differ-

ent classes is maximized. Mathematically, the hyperplane is defined by the equation:

w � xþ b ¼ 0 ð6Þ

Where w is the weight vector, x is the input vector, and b is the bias term. The prediction ŷ for

a new input vector x is given by:

ŷ ¼ sign w � xþ bð Þ ð7Þ

The "sign" refers to the sign of the output of the decision tree model. The output of a deci-

sion tree is a discrete set of values based on the rules and splits that the tree has learned from

the training data. The sign function is used to map these discrete values to either +1 or -1. The

positive sign (+1) indicates that the sample is predicted to belong to the positive class (or have

a positive target value), while the negative sign (-1) indicates that the sample is predicted to

belong to the negative class (or have a negative target value).

Gradient boosting. Gradient Boosting is an ensemble technique that combines predictions

generated by different weak models to produce a powerful forecasting model. The "gradient"

in the term "gradient boosting" refers to the fact that the technique iteratively adds new models
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to the ensemble to minimize a loss function. Each new model is taught to fix the errors com-

mitted by the existing ensemble. The direction and size of the ensemble updates are chosen by

the algorithm using gradient descent optimization. Given a training dataset with input features

(Climate variables) represented by X and corresponding target values (maize yield) repre-

sented by y, where X = {(xm, ym), for m = 1, 2, . . .n}, gradient boosting aims to construct an

ensemble model say F(x) that approximates the true target values of y. With an initial model

F0(x), the training for each iterationm = 1 toM is represented in Eq 8 which computes the

negative gradient of the loss function with respect to the current ensemble model’s prediction.

With a weak model say, wm(x), the updated ensemble model can be represented in Eq 8, where

wm(x) approximates the negative gradients and corrects the errors made by the current ensem-

ble model, ρm is the optimal learning rate or step size which controls the contribution of the

weak model to the ensemble. The final ensemble model in the gradient boosting is shown in

Eq 10.

gm ¼ � rgLðy; Fm� 1 xð ÞÞ ð8Þ

Fm xð Þ ¼ Fm� 1 xð Þ þ rm � wmðxÞ ð9Þ

F xð Þ ¼ F0 xð Þ þ r1 � w1 xð Þ þ r2 � w2 xð Þ þ � � � þ rm � wm xð Þ ð10Þ

The stacking ensemble learning model establishment. Stacking is a type of ensemble

learning technique that combines multiple base models to improve the overall performance of

the model. The predictions from various base models are used as input in the stacking ensem-

ble learning model, which learns how to combine the predictions to make the final prediction

through a secondary learning process known as meta-learning, which improves the accuracy

and stability of the prediction [48]. The predictive performance of models in the available

input subsets is estimated and evaluated in this work using cross-validation techniques. This

technique is effective in avoiding overfitting and would be helpful in handling small datasets

[34]. Motivated by studies in [40, 47, 49], this study employs a 5-fold cross-validation. This is a

well-known cross-validation strategy for optimizing model hyperparameters and evaluating

model performance [47]. Each model is trained on ’k-1’ folds of the k-folded input training

dataset before being validated on the fold that was not used in training. The technique is

applied k times, with the validation fold being changed each time. The forecasts are then stored

in train-meta so that they can be utilized as features or inputs for the stacking model.

We defined parameter grids for the base models’ hyperparameter tuning. For the linear

regression model, we kept the default values for its parameters, setting "fit intercept" to true

and "normalize" to false. In the case of the decision tree model, we specified the options for the

maximum depth, which could be none, 5, 10, or 15. The minimum sample split had choices of

2, 5, or 10, and the minimum sample leaf could be 1, 2, or 4. Regarding the random forest

model, we provided options for the number of estimators: 100, 200, or 500. We also set the

maximum depth to none, 5, 10, or 15, and the minimum sample split and minimum sample

leaf had the same choices as the decision tree model. For the support vector machine model,

we set the degree parameter to select from 2, 3, or 4. The kernel had options of linear, poly, rbf,

or sigmoid. Additionally, the ’C’ parameter, representing the size of the margin value for the

support vector regression model to select from either 0.1, 1, or 10. In the gradient boosting

model, we defined the learning rate to select from 0.1, 0.05, or 0.01, and the number of estima-

tors could be 100, 200, or 500. To fine-tune each base model’s hyperparameters, we utilized

GridSearchCV with 5-fold cross-validation and evaluated them using the negative mean
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squared error scoring parameter. GridSearchCV is an approach in machine learning that

focuses on tuning hyperparameters to identify the most effective combination for a given

model systematically. This method necessitates the definition of a parameter grid, which out-

lines the potential values for each hyperparameter to be explored. In our investigation, the

selection of the parameter grid is influenced by the recommendations outlined in [35, 42, 47].

We also employed the linear kernel support vector regression method as the meta regressor

motivated by Panigrahi et al. [50].

The basic idea behind stacking is to use the strengths of multiple base models to compen-

sate for their weaknesses. Each base model is trained on the training data using a different

algorithm and generates predictions for the validation or test data. The predictions from the

base models are then combined using a meta-model, which is trained on the predictions gen-

erated by the base models. The meta-model learns how to weigh the contributions of the base

models based on their past performance, and generates the final prediction as shown in Fig 1.

The evaluation metrics of the model performances. In this study, statistical measures

were utilized as metrics to assess the performance of the proposed stacking ensemble predic-

tion model. To evaluate the model’s ability to fit the data, performance evaluation metrics

were employed. The proposed stacking ensemble model and the base models were evaluated

based on the mean square error (MSE) and the mean absolute error (MAE). The formulas for

MSE and MAE can be found in Eqs 11 and 12, respectively. Hence, the preference is for

smaller values as they signify improved model performance in minimizing the discrepancies

between predicted and actual values.

MSE ¼
Pn

i¼1
yi � ŷið Þ

2

n
ð11Þ

MAE ¼
Pn

i¼1
jyi � ŷij

2

n
ð12Þ

Fig 1. The model framework of stacking ensemble learning model.

https://doi.org/10.1371/journal.pone.0305762.g001
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Empirical evaluation

The descriptive statistics of maize yield are shown in Table 3. From the Table, the yield of

maize ranged from 0.33 MT/Ha in 1992 in the Upper West Region to a maximum of 5.57 mt/

ha in 2019 in the Greater Accra Region. The average yield of maize varied across all the

regions. The highest (2.01 MT/Ha) and lowest (1.17 mt/ha) average maize yields were detected

in the Eastern and Greater-Accra regions, respectively. This indicates that the production of

maize was more stable in the Eastern Region than in the Greater Accra Region. To compare

the variability of maize yield in all the Regions in Ghana, the coefficient of variation (CVar) is

employed. From the coefficient of variation as shown in Table 3, Around the mean maize yield

of 1.17 mt/ha, the Greater Accra region has the largest coefficient of variation (CVar), at 77%.

This implies that the yield of maize in this region is subject to significant variability over time.

In comparison to other regions, the yield of maize in the Greater Accra region exhibits a more

annual uneven performance. The Western region, on the other hand, exhibits the lowest coef-

ficient of variation (CVar), which is 8% around the mean yield of 1.40 mt/ha. This suggests

that compared to other regions, maize output in the Western Region is more consistent and

has lesser variability over time. This means that a more dependable and predictable production

pattern is shown by the constancy of maize yield in this region.

Although there is a lot of variability in the Greater Accra region, it is vital to remember that

its mean yield (1.17 mt/ha) is lower than that of all the regions in Ghana (see Table 3). This

indicates that, on average, the Greater Accra region produces less maize than the other nine

(9) regions. Low average yield and high variability indicates that there may be difficulties or

variables affecting maize cultivation in the Greater Accra region that cause both low average

yield and high yield variability. Therefore, future research should analyze the variables affect-

ing maize yield in this region (Greater Accra Region).

Analysis of the climate variables. Climate variables are essential for understanding and

appreciating the dynamics of climate patterns and environmental conditions in different

regions. Analyses of climate variables such as average temperature, maximum temperature,

minimum temperature, precipitation, and CO2 levels, provide vital insights into the changes

and trends that influence Ghana’s maize yield. We can quantify the central tendency and rela-

tive variability of these climate variables using key statistical measures such as the coefficient of

variation and mean. The extent of fluctuations in temperature, precipitation, and carbon diox-

ide levels is analyzed by looking at the coefficient of variation and mean as shown in Table 4.

Table 4 shows the mean and coefficient of variation for each climate variable across Ghana’s

regions.

Table 3. Descriptive statistics of the maize yield for each of the regions in Ghana.

Region Count Min Max Mean CVar (%)

Ashanti 28.00 1.13 3.02 1.57 26.0

Northern 28.00 0.60 1.97 1.34 26.0

Eastern 28.00 1.36 2.98 2.01 22.0

Volta 28.00 0.99 2.36 1.65 18.0

Central 28.00 0.80 2.82 1.73 30.0

Upper East 28.00 0.50 2.98 1.36 37.0

Upper West 28.00 0.33 2.69 1.53 29.0

Brong Ahafo 28.00 1.41 2.45 1.88 12.0

Greater Accra 28.00 0.62 5.57 1.17 77.0

Western 28.00 1.03 1.55 1.40 8.0

https://doi.org/10.1371/journal.pone.0305762.t003
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According to the analysis in Table 4, with a mean temperature of 27.42˚C, the Volta region

has the highest coefficient of variation (CVar) of 1.19%, while the Upper East region has the

highest mean temperature (28.95˚C) of all the regions with a coefficient of variation of 1.03%.

This signifies that the temperature in the Volta region experiences more significant fluctua-

tions over time compared to other regions. The Upper East region, on the other hand, has the

highest mean temperature, indicating that it experiences greater temperature on average than

the other regions. However, the coefficient of variation in the Upper East region (1.03%) is

lower than in the Volta region (1.19%), indicating that the temperature in the Upper East

region is less variable than in the Volta region. In comparison to the other regions, the North-

ern, Upper East, and Upper West regions are noted to have higher average temperatures. This

is since these areas are in the Guinea Savannah Zone, which is regarded as the warmest region

in the nation and does not have frequent rainfall.

With a mean precipitation of 950.9 mm, the Greater Accra region has the highest coefficient

of variation (CV) of 13.17%, whereas the Western region has the highest mean precipitation of

all regions with 1491.63 and a coefficient of variation of 11.39%. That is, the precipitation in

the Greater Accra region is more volatile than in the other regions. This means that precipita-

tion in the Greater Accra region varies more significantly over time. The Western region, on

the other hand, has the greatest mean precipitation of all the regions, suggesting that it receives

more rainfall on average than the other regions. However, the coefficient of variation in the

Western region (11.39%) is lower than in the Greater Accra region (13.17%), indicating that

precipitation in the Western region is less variable than in the Greater Accra region. The aver-

age CO2 level across all regions is 0.39, with a coefficient of variation (CV) of 35.06%. The

Table 4. Mean and coefficient of variation analysis of the climate variables.

Regions Measures Climate Variables

Avg Temp Min Temp Max Temp Precip CO2

Ashanti mean 26.98 22.34 31.67 1316.83 0.39

CVar (%) 0.99 1.18 0.96 10.33 35.06

Volta mean 27.42 22.67 32.22 1238.68 0.39

CVar (%) 1.19 1.57 0.99 12.17 35.06

Eastern mean 27.01 22.39 31.67 1236.59 0.39

CVar (%) 1.08 1.34 0.99 12.34 35.06

Northern mean 28.28 22.69 33.92 1133.44 0.39

CVar (%) 1.01 1.31 0.92 8.52 35.06

Upper East mean 28.95 23.02 34.94 997.57 0.39

CVar (%) 1.03 1.41 0.92 8.92 35.06

Upper West mean 28.61 22.92 34.35 1010.48 0.39

CVar (%) 1.04 1.29 1.00 9.04 35.06

Central mean 26.82 22.98 30.7 1230.02 0.39

CVar (%) 1.00 1.15 0.97 11.93 35.06

Western mean 26.92 22.89 31.01 1491.63 0.39

CVar (%) 0.92 1.07 0.92 11.39 35.06

Brong Ahafo mean 27.39 22.45 32.36 1209.11 0.39

CVar (%) 0.98 1.20 0.94 8.53 35.06

Greater Accra mean 27.34 23.50 31.23 950.9 0.39

CVar (%) 1.08 1.35 0.98 13.17 35.06

Note: The bold values represent the highest and precip represents precipitation.

https://doi.org/10.1371/journal.pone.0305762.t004
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mean value of 0.39 represents the average carbon dioxide concentration throughout the

regions under consideration. Carbon dioxide is a greenhouse gas that contributes significantly

to climate change. This mean number indicates that the regions have a given level of carbon

dioxide in the atmosphere on average. The coefficient of variation of 35.06% shows the

regional variability in carbon dioxide levels. The comparatively high coefficient of variation of

35.06% suggests that carbon dioxide concentrations in Ghana’s various regions vary signifi-

cantly over time.

Results

Trends of maize yield for each region in Ghana

In this section, we investigate the variation and trends in maize yield for each region over the

period under study in Ghana. Fig 2 clearly show that the yield of maize has increased signifi-

cantly across all the regions in Ghana. In Fig 2, the maximum maize yield in all the regions we

observed in 2019 except for the Upper East and the Western region which recorded the maxi-

mum maize yield in 2003 and 2012 respectively. However, it is observed that it started rising

after the year 2015. This increasing trend of maize yield in the regions can be attributed to sev-

eral factors which are discussed subsequently.

Impact of climate variables on maize yield

Although there are numerous climate factors that affect maize output, temperature and precip-

itation have the greatest effects on crop productivity [4]. Fig 3 shows how average temperature

and precipitation affect maize yield in each region. We fixed the threshold for maximum

maize yield (see Fig 3) at 2.0 mt/ha for all the regions apart from the Northern and Western

regions, where the thresholds for maximum maize yield were set at 1.8 mt/ha and 1.5 mt/ha,

respectively. This is because the maximum yields of maize in either of these two regions never

exceeded 2.0 mt/ha.

In the Ashanti region of Ghana, the maize yield is influenced by specific temperature and

precipitation conditions. Based on the data presented in Fig 3a, it is observed that higher

maize yields are obtained when the average temperature ranges between 27.10˚C and 27.30˚C,

and the precipitation amounts fall between 1388.80 mm and 1593.53 mm. The optimal combi-

nation is found at an average temperature of 27.15˚C and a precipitation total of 1593.53 mm,

which leads to the maximum maize yield. In the Central region as shown in Fig 3d, it is evident

that higher maize yields are obtained when the average temperature ranges between 26.60˚C

and 27.50˚C, and the precipitation amounts fall between 1217 mm and 1495.00 mm. The opti-

mal combination is found at an average temperature of 26.98˚C and a precipitation total of

1489.66 mm, which leads to the maximum maize yield. In the Eastern region as depicted in

Fig 3b, the production of higher maize yields is associated with average temperatures between

26.86˚C and 27.61˚C and precipitation amounts ranging from 1168.53 mm to 1615.79 mm.

The maximum maize yield occurs at an average temperature of 27.19˚C and a precipitation

total of 1615.79 mm. In Volta region as shown in Fig 3c, it is observed that higher maize yields

are obtained when the average temperature ranges between 27.64˚C and 27.76˚C, and the pre-

cipitation amounts fall between 1314.30 mm and 1600.11 mm. The optimal combination is

found at an average temperature of 27.64˚C and a precipitation total of 1600.11 mm, which

leads to the maximum maize yield. In the Brong Ahafo region as shown in Fig 3e, higher

maize yields are obtained when average temperatures range from 27.16˚C to 27.81˚C and pre-

cipitation amounts fall between 1204.32 mm and 1437.83 mm. The maximum maize yield

occurs at an average temperature of 27.53˚C and a precipitation total of 1437.83 mm. In the

Greater Accra region (Fig 3f), a maximum maize yield is produced with an average
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temperature of 27.53˚C and a precipitation total of 1262.70 mm. This region clearly benefits

from higher precipitation, as it is a significant factor for achieving higher yields. In the Upper

East region (Fig 3i), maize yield increases with average temperatures between 28.98˚C and

29.03˚C and precipitation amounts ranging from 1124.53 mm to 1142.28 mm. The optimal

maize yield is observed when the average temperature is 28.98˚C, and the precipitation mea-

sures 1142.28 mm. Similarly, in the Upper West region (Fig 3j), maize yield increases with

average temperatures ranging from 28.68˚C to 28.92˚C and precipitation between 1168.38

mm and 1242.41 mm. The optimal maize yield in the region is achieved at an average tempera-

ture of 28.68˚C and a precipitation total of 1242.41 mm. In the Northern region (Fig 3h), a

maximum maize yield is produced with average temperatures ranging from 28.58˚C to

28.79˚C and precipitation ranging from 1030.30 mm to 1166.60 mm. The data in Fig 3h clearly

Fig 2. Trend of maize yield in each of the regions of Ghana.

https://doi.org/10.1371/journal.pone.0305762.g002
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illustrates the beneficial effect of higher average temperatures on maize yield in this region. In

the Western region (Fig 3g), maximum maize yields are obtained when average temperatures

range from 26.72˚C to 27.33˚C and precipitation amounts fall between 1223.53 mm and

1663.42 mm. The optimal combination occurs at an average temperature of 26.92˚C and a pre-

cipitation total of 1223.53 mm, resulting in the maximum maize yield.

Based on the findings from Fig 3, it can be concluded that increased precipitation is benefi-

cial for maize yield in Ghana. Additionally, the optimal range of average temperatures for

maize yield varies depending on the region, ranging from 26.00˚C to 28.00˚C. Conversely,

lower average temperatures and less precipitation do not contribute to the production of a

good maize yield, as evidenced by the data presented in these figures.

Fig 3. Combined impact of average temperature and precipitation on maize yield in the different regions of Ghana.

https://doi.org/10.1371/journal.pone.0305762.g003
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Machine learning models implementation

Using 5-fold cross-validation and Grid Search, the results of the stacking ensemble learning

model, which includes the optimal parameters of the base models (Gradient Boosting, Linear

Regression, Decision Tree, Support Vector Machine, and Random Forest), are shown in

Table 5. Table 5 provides a thorough summary of these ideal parameter values, showing the

precise setups that produced the best results when used with the stacking ensemble building.

Utilizing the unique capabilities of each base model, the stacking ensemble learning employs

the prediction of the optimal outcomes of each base model to build the final prediction. Each

region’s unique ideal parameters were achieved (see Table 5), and the optimal parameter for

each region was identified. This will be useful in predicting maize yield based on climate

variables.

Results of the performance metrics for the models

The statistics in Table 6 demonstrate that, in terms of MSE and the MAE, the LR and the SVM

models perform much worse than other single models. As a result, the nonlinear relationship

between the climate factors and maize production makes it difficult to predict using either the

linear regression model or the support vector machine. The performance of various machine

learning models in predicting maize yield across different regions demonstrates notable varia-

tions. By evaluating the MSE and the MAE, it is evident that the linear regression model dem-

onstrates excellent performance in the Ashanti region. Additionally, the decision tree

outperforms other models in the Eastern region. In the Central region, the random forest

model emerges as the most effective. Meanwhile, the support vector machine model shows

effectiveness in the Northern and Brong Ahafo regions. The gradient boosting model also

stands out as the optimal choice in the Volta and Central regions.

The Stacking ensemble model also emerged as a top performer in regions many regions like

Western, Upper East, Upper West, and Greater Accra, achieving the lowest MSE and MAE

values. It is essential to highlight that the regions, particularly Greater Accra, Upper East, and

Upper West, exhibit relatively high coefficients of variation, as shown in Table 3. This

Table 5. The results of the optimal parameters for each base model after performing Grid Search.

Regions Optimal parameters values of each base model after Grid Search with 5-fold CV

DT RF SVM GB

max

depth

min

sample_split

min_sample_leaf n_estimators max

depth

min

sample_split

min_sample_leaf C Kernel Degree n_estimators Learning

rate

Ashanti 5 10 4 100 15 5 4 1 poly 3 100 0.01

Eastern 5 10 4 200 5 10 1 1 rbf 2 100 0.01

Volta 5 2 4 100 15 10 2 1 sigmoid 2 100 0.01

Central 5 10 4 500 5 10 1 1 linear 2 100 0.01

Brong

Ahafo

15 2 1 100 5 2 1 0.1 poly 3 100 0.01

Greater

Accra

5 5 2 100 10 10 1 0.1 poly 2 100 0.01

Western 5 10 4 200 5 10 4 1 rbf 2 100 0.01

Northern 5 2 4 100 10 10 1 10 poly 2 100 0.01

Upper

east

5 2 1 200 10 10 4 1 sigmoid 2 100 0.01

Upper

west

15 2 2 100 15 10 4 10 poly 4 100 0.01

https://doi.org/10.1371/journal.pone.0305762.t005
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observation emphasizes the stacking ensemble model’s capability to effectively manage data

instances characterized by significant variability in these regions. However, due to the nature

of the stacking ensemble learning model, where the deficiencies of underperforming models

are compensated by the strengths of other models, the MSE of some base models tended to be

slightly lower compared to the MSE of the stacking ensemble learning model in some regions.

This emphasizes the importance of careful consideration when choosing the base models for

the stacking ensemble approach. As indicated by the findings in Table 6, it becomes apparent

that the stacking ensemble learning model excels in predicting maize yield based on diverse cli-

matic variables across various regions in Ghana. Our findings corroborate the impactful per-

formance of the Stacking ensemble model as documented in the study by LI et al. [35].

Moreover, our observations underscore its proficiency in effectively handling small datasets

[34], reaffirming its practical utility in diverse scenarios. The stacking ensemble learning

model has also proved its effectiveness in handling nonlinear data as suggested by Wang et al.

[51].

Feature importance of the climate variables in predicting maize yield

Maize yield in Ghana have been experiencing an upward trend as shown in Fig 2. This increas-

ing trend can be attributed to the favorable climatic conditions and optimal policies in maize

cultivation. Fig 4 illustrates the feature importance of climate variables in forecasting maize

yield. Since random forest performs better across all regions, we base our feature importance

calculations for the climatic variables on the random forest Regressor. The statistics below

show that CO2 is a key factor in predicting maize output throughout all of Ghana’s regions,

Table 6. Performance metric of machine learning models.

REGIONS METRIC MACHINE LEARNING MODELS

LR DT RF SVM GB STACKING

ASHANTI MSE 0.208 0.258 0.254 0.219 0.241 0.300

MAE 0.328 0.376 0.377 0.336 0.357 0.497

EASTERN MSE 0.051 0.041 0.049 0.053 0.044 0.052

MAE 0.148 0.133 0.145 0.155 0.135 0.143

VOLTA MSE 0.148 0.170 0.152 0.145 0.135 0.047

MAE 0.258 0.280 0.262 0.272 0.238 0.281

WESTERN MSE 0.028 0.028 0.027 0.026 0.027 0.025

MAE 0.116 0.118 0.112 0.111 0.115 0.109

CENTRAL MSE 0.244 0.214 0.153 0.178 0.148 0.200

MAE 0.381 0.374 0.307 0.350 0.311 0.401

NORTHERN MSE 0.085 0.088 0.083 0.082 0.085 0.083

MAE 0.220 0.226 0.222 0.220 0.225 0.224

UPPER WEST MSE 0.160 0.278 0.143 0.136 0.157 0.133

MAE 0.332 0.434 0.299 0.279 0.328 0.270

UPPER EAST MSE 2.259 2.915 1.268 0.953 1.178 0.866

MAE 1.080 1.328 0.818 0.725 0.865 0.725

BRONG-AHAFO MSE 0.209 0.282 0.211 0.165 0.232 0.215

MAE 0.441 0.515 0.443 0.359 0.449 0.410

GREATER ACCRA MSE 0.397 0.079 0.090 0.077 0.085 0.065

MAE 0.500 0.225 0.246 0.245 0.246 0.244

Note: The numbers in bold indicate the best performing model in the particular region.

https://doi.org/10.1371/journal.pone.0305762.t006
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having a strong positive impact on maize yield. This supports the findings of Baffour-Ata et al.

[28] which found that the benefit of maize yield across the climate variables is attributed to the

positive impact of CO2. All the climate variables are crucial and have a positive impact on

maize yield with none showing negative importance. However, some of them have a stronger

impact on maize yield in the regions. The Greater Accra region, the Brong Ahafo region, and

the Upper east region all consider precipitation to be a crucial factor in predicting maize yield.

Minimum temperature has less impact in the regions that are part of the Guinea savanna zone

Fig 4. The feature importance of the climate variables in predicting maize yield in each region of Ghana.

https://doi.org/10.1371/journal.pone.0305762.g004
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(Upper West region, Upper East region, and Northern region) and the Rain Forest zone

(Ashanti region, Eastern region), but has a strong impact on maize yield in the transitional

zone, as evidenced by the prominent position of the feature in the Brong Ahafo region. Addi-

tionally, the Brong Ahafo and western areas’ temperatures are more significant compared with

those in the rest of the nation.

The upward trend in maize yield can also be attributed to the advancements in agricultural

technology and practices. Farmers have gained access to better-quality seeds, improved irriga-

tion systems, and modern farming machinery, all of which have contributed to higher maize

yields. Additionally, the government’s focus on agricultural development and support pro-

grams has had a positive impact. Through initiatives such as subsidized fertilizer distribution,

extension services, and training programs, farmers have been empowered with knowledge and

resources to enhance their farming techniques, leading to increased yields. However, the

maize yield in the northern region of Ghana (Fig 2h) has been experiencing a downward trend

since 2016, therefore, future research should look at the cause of the declining maize yield in

the region. The rise in maize yield across all regions in Ghana is not only significant from an

agricultural standpoint but also holds economic and food security implications. Higher yields

contribute to increased food production, reducing dependency on imports, and ensuring food

self-sufficiency. Moreover, surplus maize production can be sold in markets, generating

income for farmers, and stimulating economic growth at both local and national levels.

Discussion

Summary of Key findings

The agricultural sector of Ghana is heavily dependent on maize production, which also has a

significant impact on both economic growth and food security. However, variabilities in maize

output across the nation’s regions can pose complications for farmers and decision-makers.

We go over the main findings and implications of our assessments on maize yield, climate var-

iables, and their importance in Ghana.

The Greater Accra region shows a high degree of fluctuation in maize production when

assessed, which suggests a lack of consistency over time. The Western region, on the other

hand, has the lowest coefficient of variation, indicating maize output that is more dependable

and predictable. Notably, the Greater Accra region also has a lower average yield in compari-

son to other regions, suggesting possible factors affecting maize farming there. Further investi-

gation is required to determine and address the variables affecting maize production in the

Greater Accra region considering this study. Even though there are variabilities in maize yield

in all regions, all of Ghana’s regions have seen a substantial increase in maize output, according

to our data. The development of agricultural technology, better farming methods, and govern-

ment support programs are all responsible for this growing tendency. Productivity has signifi-

cantly increased because of improved irrigation systems [28], access of high-quality seeds, and

sophisticated equipment. Furthermore, measures like subsidized fertilizer delivery, extension

services, and training courses have helped farmers become more independent and improved

their farming practices [39]. The increase in maize output has implications for the economy

and food security, lowering reliance on imports and promoting regional and national eco-

nomic growth.

Among the climate variables, precipitation patterns, and temperature have significant

impact on the productivity of maize. The higher average temperatures are brought on by the

Guinea Savannah Zone’s connection to the Upper West, Upper East, and Northern areas. The

average temperature in these regions was higher than the average for the rest of the regions,

revealing its position as the warmest zone in the nation with less precipitation. The variability
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in temperature in this region is small indicating how the temperature in the regions vary less

over time. The region with the highest variability is the Volta region which experiences signifi-

cant variations in temperatures. In all regions of Ghana, carbon dioxide (CO2) also plays a sig-

nificant role in predicting maize production. In some areas, additional climate factors like

precipitation and minimum temperature are also quite crucial. For instance, the Brong Ahafo,

Greater Accra, and Upper East regions place a significant emphasis on precipitation. When

compared to the Guinea savanna and Rainforest zones, the relevance of lowest temperature is

more obvious in the transitional zone (such as Brong Ahafo).

Policy implications

Our research focuses on maize yield variability in all the regions in Ghana and its contributing

components (climate variables), with the employment of machine learning algorithms. We

employed machine learning algorithms because of the abilities in handling nonlinear data. Pol-

icymakers should enhance agricultural technologies, farming techniques, and assistance pro-

grams to maintain maize production. They should also be aware of the factors influencing

maize output in Greater Accra and investigate climate-resilient farming methods. As maize

yields increase across the country, these initiatives will also help to mitigate Ghana’s agricul-

ture sector’s low average yield and significant yield variability. Overproduction and market

sales that arise from this produce economic opportunities and food self-sufficiency, but it’s

important to take sustainability and climate change into account. Although greater production

is a good thing, it is crucial to prioritize sustainable agriculture and the reduction of green-

house gases, ensuring that climate-smart agriculture practices reduce the sector’s carbon foot-

print and boost climate resilience. The information highlights the need to modify agricultural

practices to local weather patterns to improve crop output and highlights the complexity of

connections between climate and maize yield. Since Ghanaian maize yield assessments provide

information on regional variability, yield determinants, and climate variables, this emphasizes

the value of localized agriculture that considers regional weather variations and crop growth.

The findings of these analyses show the importance of implementing targeted programs and

regulations to address local issues, giving Ghana the chance to boost maize production, food

security, economic development, and environmental sustainability.

This study’s conclusions are based on analysis and facts based on our data span. To further

understand Ghanaian maize yield patterns, new data and studies may require additional analy-

sis. This study lays the groundwork for evidence-based decision-making and measures to

boost maize production and agricultural resilience in the country employing the stacking

ensemble learning model as an optimal predictive model.

Conclusion

This study sought to assess the impact of climate variability on all the regions in Ghana’s maize

yield and to develop an accurate prediction model by employing five machine learning tech-

niques (SVM, GB, RF, DT and LR) to establish a high-precision prediction model using the

Stacking Ensemble Learning model. Our model is optimized using hyperparametric optimiza-

tion and validated using 5-fold cross-validation to improve its generalizability. We found that

CO2 is a crucial factor in predicting maize yield in all regions of Ghana. Precipitation is impor-

tant for maize yield in the Greater Accra, Brong Ahafo, and Upper East regions. Minimum

temperature is less significant in the Guinea savanna and Rain Forest zones shows a greater

impact in the transitional zone, particularly in the Brong Ahafo region. The Stacking model

showed higher accuracy and robustness compared to SVM and linear regression models, as

confirmed by MSE and MAE evaluation metrics. Stacking outperformed other models in the
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western and Upper East regions, as well as in the Ashanti region, except for slightly higher

MSE in the Eastern region. The Stacking model provides a reliable and accurate approach for

predicting maize yield based on climate variables, especially with limited data.

There exist certain constraints within this investigation that pave the way for future explo-

ration. Primarily, the data at our disposal is constrained, potentially impacting the model’s per-

formance. Consequently, future research endeavors could leverage extensive datasets to

enhance the accuracy of machine learning models in this field. Moreover, specific machine

learning models, such as Linear Regression, are susceptible to multicollinearity. Given that the

temperature variables (minimum temperature, maximum temperature, average temperature)

may contribute to multicollinearity, alternative regression models should be considered. For

instance, one might explore penalized linear regression models like Ridge (L2 regularization),

Lasso (L1 regularization), and/or Elastic Net (a combination of L1 and L2 penalties).
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