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Abstract

Ad hoc teamwork is a research topic in multi-agent systems whereby an agent (the “ad hoc

agent”) must successfully collaborate with a set of unknown agents (the “teammates”) with-

out any prior coordination or communication protocol. However, research in ad hoc team-

work is predominantly focused on agent-only teams, but not on agent-human teams, which

we believe is an exciting research avenue and has enormous application potential in

human-robot teams. This paper will tap into this potential by proposing HOTSPOT, the first

framework for ad hoc teamwork in human-robot teams. Our framework comprises two main

modules, addressing the two key challenges in the interaction between a robot acting as the

ad hoc agent and human teammates. First, a decision-theoretic module that is responsible

for all task-related decision-making (task identification, teammate identification, and plan-

ning). Second, a communication module that uses natural language processing to parse all

communication between the robot and the human. To evaluate our framework, we use a

task where a mobile robot and a human cooperatively collect objects in an open space, illus-

trating the main features of our framework in a real-world task.

Introduction

Recent decades have witnessed a significant shift in the use of robots. While robotic platforms

still find extensive use in industry, advances in hardware and software have enabled the devel-

opment of various robotic platforms for everyday use. For instance, robots are being used in

healthcare [1], assisted living [2], entertainment [3], and even for mundane tasks such as clean-

ing [4]. Moreover, as the use of robots broadens beyond industrial applications, the ability of

these platforms to naturally interact with users who have no technical expertise becomes a

mandatory requirement. Thus, it is not surprising that the area of human-robot interaction

has seen impressive growth in the last decades.

In this paper, we are particularly interested in collaborative human-robot interaction. This

topic is not novel, and a significant body of literature has investigated human-robot collabora-

tion from many different perspectives [5, 6]. However, very few works focus on the problem of

ad hoc teamwork involving a human and a robot.
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Ad hoc teamwork was proposed originally in the multi-agent systems community [7] and

addresses the problem of an agent (henceforth called the “ad hoc agent”) that must successfully

cooperate with a group of unknown “teammates”—i.e., other agents about which the ad hoc

agent has little or no information. This group of agents must now act as a team, even if they

have no prior cooperation or coordination mechanisms. The role of the ad hoc agent is to

understand or infer what is the task that the other agents are performing, who among the other

agents is doing what, towards the completion of the task, and then decide how to contribute.

These three challenges were identified in Melo and Sardinha [8] as fundamental sub-tasks of

the ad hoc teamwork problem, dubbed task identification, teammate identification and

planning.
So far, research in ad hoc teamwork has focused primarily on agent-agent interaction sce-

narios [9], and rests on strong assumptions regarding what the ad hoc agent is able to perceive

regarding the environment, the teammates, or the task to be addressed. Dealing with teams of

humans and robots brings forth several critical challenges that current research on ad hoc

teamwork has not considered yet. For example:

• Robots, as embodied agents, have to deal with perceptual and actuation challenges that vir-

tual agents seldom consider. In particular, the robot’s perception of its state is often imper-

fect, and its actuation is prone to failure;

• The teammate—being a human—does not behave according to a well-defined model (for

example, it is not necessarily optimal or rational);

• Decision-making must be conducted at run-time.

These challenges are common in human-robot interaction scenarios but rarely considered

in the ad hoc teamwork literature (if at all). Additionally, humans can communicate through

natural language, and such communication channels can be rich and informative if the robot

can take advantage of them. However, dealing with natural language is another challenge for

robot developers, although the potential applicability of ad hoc teamwork in everyday tasks is

enormous and mostly untapped.

This paper’s main contribution is a framework for ad hoc teamwork between a human and

a robot. The ad hoc robot knows there is a human performing an unknown task and that there

is no pre-coordination between them, for instance, with the human telling the robot any infor-

mation regarding the correct task. Instead, the robot must rely on prior knowledge to identify

what the human is doing and assist the human effectively. In this work, we model the robot’s

prior knowledge base as a library of possible tasks that the robot may have performed in the

past. We leave beyond the scope of the work, scenarios where the task being performed by the

human was never performed by the robot. Our framework, which we dub HOTSPOT (HOT-

SPOT stands for “Human-robOt TeamS without PrecoOrdinaTion”.), instantiates the prob-

lem of ad hoc teamwork in human-robot teams as follows. A human and a robot co-exist in a

shared environment and must perform a collaborative task that requires them to coordinate

their actions. The human knows the task, but the robot (the ad hoc agent in our setting) does

not. From observations of the human, the robot must infer the task (among a set of possible

tasks), understand how the human user is performing it, and adapt its decision process toward

completing the task.

In our scenario, we consider tasks in an open space (i.e., a lab), where the human and the

robot must move around. This requirement poses additional challenges to the robot due to the

semi-unstructured interaction, where the robot will not know the location of the human user

most of the time. To address this ad hoc teamwork problem, we propose a decision-theoretic
approach that extends the one proposed by Ribeiro et al. [10] to account for the perceptual
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limitations of the ad hoc agent (the robot). At the same time, to take advantage of the fact that

human users can communicate using natural language, we endow the robot with the ability to

communicate with them. In particular, the robot can communicate through spoken utterances,

querying the user about the task’s current state, interpreting the human’s response using natu-

ral language processing, and considering the inherent uncertainty in that interpretation

process.

We evaluate the HOTSPOT framework in a real-world scenario involving the interaction

between a human and a robot in an open space, evaluating the performance of each module

individually and of the whole framework. To summarize, the contributions of this work are

three-fold.

• We contribute a decision-theoretic model for ad hoc teamwork with limited perception. We

describe the decision problem faced by the ad hoc agent (the robot) as a partially observable
Markov decision problem and use a standard heuristic solution to efficiently compute an ade-

quate policy for the robot. Our results show that our approach can infer and complete the

task in a near-optimal number of steps while still using partial and imperfect information.

• We demonstrate that via a natural language processing model our framework allows the

robot to understand the utterances issued by the human, use that information to locate itself

in the environment, and express itself in an easy way that the human can understand. Our

results show that these models achieved an accuracy of about 80% in every task performed.

• We contribute an empirical validation of our approach in a real-world ad hoc teamwork sce-

nario involving a human and a mobile robot.

Related work

This section frames our contribution in the context of existing research both on ad hoc team-
work and natural language processing since these are the two areas of research most relevant to

our present work.

Regarding ad hoc teamwork, the problem was originally proposed in the pioneering work

of Stone et al. [7] and has spanned a significant volume of research [8, 10–12]. Following Melo

and Sardinha [8], we can break down the ad hoc teamwork problem into three main sub-prob-

lems: task identification, teammate identification, and planning.
Early research into ad hoc teamwork focused on the planning step. For example, Stone and

Kraus [13] proposed one of the first planning algorithms for ad hoc teamwork, by formulating

the problem as a cooperative k-armed bandit with known teammates. Similarly, Stone et al.

[14] and Agmon and Stone [15] looked at ad hoc teamwork as a problem of “leading” known

teammates to perform actions that yield optimal joint performance.

Genter et al. [16] focused on the problem of teammate identification, proposing a role-

based approach allowing an agent to identify a role, within m roles, that yields optimal perfor-

mance for the team. Chakraborty and Stone [17] presented a learning algorithm and a theoret-

ical analysis regarding optimal cooperation in the presence of unknown teammates.

Nikolaidis et al. [18] proposed a framework, for learning human user models in collabora-

tive tasks with robots through joint-action demonstrations, that assumes a limited number of

dominant strategies, capturing most demonstrated sequences and modeling human preference

as a partially observable variable in a mixed-observability Markov decision problem. These

demonstrated sequences are then clustered into human types, and a reward function represen-

tative of each kind is learned using inverse reinforcement learning. Experiments conducted
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with a human subject indicate stronger agreement that the robot anticipated actions with the

proposed framework compared to a manual annotation process, improving team efficiency,

and increasing the responsiveness to human actions compared to hand-coded policies.

Barrett et al. [9] introduced the PLASTIC framework to address ad hoc teamwork when fac-

ing both unknown tasks and teammates, using a reinforcement learning approach. To this

day, the PLASTIC algorithms remain among the state-of-the-art in ad hoc teamwork, address-

ing both task and teammate identification.

On the other hand, Reddy et al. [19] discussed how suboptimal behavior can result from a

disconnect between an individual’s mental model of the world and its actual dynamics, indi-

cating that what seems suboptimal in reality may align closely with a user’s internal beliefs. It

emphasizes humans’ reliance on intuitive theories to navigate complex environments, which

can lead to behaviors deviating from optimal outcomes due to simplified internal models. It

also proposes an algorithm for inferring users’ intents based on their internal dynamics model,

which is learned from observed behaviors. The method’s effectiveness is presented through

simulations and a user study, suggesting potential applications in shared autonomy and

inverse reinforcement learning, however, limitations exist regarding the size of parameteriza-

tions for internal dynamics, suggesting avenues for future research to explore broader applica-

tions and scientific inquiries, such as understanding children’s intuitive theories and

enhancing brain-computer interfaces.

Bobu et al. [20] presented a novel approach, named LESS (Limiting Errors due to Similar

Selections), that generalizes the Luce axiom to trajectory spaces by considering trajectory simi-

larity’s influence on probability. Through experiments and simulations, the authors showed

that LESS improves the prediction of human decision-making, better explaining human

behavior, while also enhancing inference accuracy and robustness compared to a simple Boltz-

mann model. Nevertheless, limitations such as reliance on pre-specified robot features for sim-

ilarity selection and the need for further experiments to clarify outcomes are pointed out.

Despite these, this highlights the importance of developing alternatives to Boltzmann rational-

ity for continuous robotics domains.

Li et al. [21] discussed the challenge of an agent collaborating with an unknown human,

addressing the issues of predicting human behavior and choosing actions towards a common

goal. Considering multiple human types with diverse models, it employs self-play to identify

optimal partnerships between agent types in a strategic game scenario called Team Space For-

tress. The proposed method treats human behavior as a factored Markov decision problem,

while also introducing a new adaptive agent framework based on cross-entropy similarity mea-

sures and a pre-trained policy library. Their evaluation confirms the effectiveness of the adap-

tive agents, although limitations exist, suggesting future work could improve the

representativeness of this library for better estimation of human policies.

Melo and Sardinha [8] addressed the three sub-problems of ad hoc teamwork by proposing

two distinct approaches. Specifically, one approach is based on sequential prediction [22] and

the other one on decision-theoretic planning [23]. The two approaches consider one-shot

problems and, as such, are not suited for sequential problems. Along the same lines, Ribeiro

et al. [10] extended the previous work to address sequential tasks under uncertainty.

Most previous works, however, consider only agent-agent interaction in that they disregard

critical difficulties found when an embodied agent (such as a robot) must interact with human

teammates. A human-robot interaction setting must consider the limitations of using a robotic

platform (such as unreliable and limited perception and unreliable actuation) and the interac-

tion with a human user.

Nevertheless, some recent works take important steps towards bringing ad hoc teamwork

closer to human-robot interaction scenarios. For example, in terms of ad hoc teamwork
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involving robots, Genter et al. [24] investigated the use of ad hoc algorithms in the RoboCup

World Championship, in the context of the Drop-in Player Competition [25].

Fern et al. [26] addressed the problem of assistance which, although not formulated as an ad

hoc teamwork problem, shares many of its challenges. Specifically, in assistance problems, an

agent (the “assistant”) aims to assist a teammate in solving a given sequential task under uncer-

tainty. In a closely related work, Ribeiro et al. [10] already considered ad hoc teamwork involv-

ing a human teammate. However, both works consider perfect observability and do not

leverage the communicating capabilities of human users.

The two modules in our proposed architecture extend, on one hand, the decision-making

process of Ribeiro et al. [10] to accommodate partial observability. On the other hand, the

communication module enables our robot to leverage the communication capabilities of the

human user toward the completion of the joint task.

Regarding Natural Language Processing (NLP), this is a field of computer science that

enables machines to understand and process human communication [27] by transforming

unstructured data, like audio or text, into structured data, which are more suitable for

machines. It can also work in the opposite direction by generating communication for humans

to understand easily.

Many works address the use of NLP in interaction with robots. Scheutz et al. [28] presented

the challenges of designing mechanisms that allow robots to develop human dialogues in inter-

actions between humans and robots. In addition to building a small survey of the area, its

main objective is to help build better, more flexible robotic architectures that can enable more

natural language dialogues between humans and robots. Furthermore, the authors briefly pro-

pose DIARC, a Distributed, Integrated, Affective, Reflective, and Cognitive architecture that

allows robotic systems to conduct human dialogues without providing much detail about the

techniques involved in the process.

On the other hand, Kilicaslan and Tuna [29] explored the use of NLP resources to improve

human-robot interaction through the use of ontologies that represent the grammatical and lex-

ical structures of the language. Implementations have been generated for English and Turkish

languages to allow the robot to express the spatial motions of observed objects. Through the

use of these ontologies, a representation of the robot’s observation can be described by a tuple

<Location, Source, Goal, Path>, where Location refers to the position of the observed

object, Source represents where the object moved from, Goal refers to the target position of

the object, and Path represents the trajectory that the object has made. A prototype was built

using the ROS framework, where a camera captures object movements in front of the robot to

describe the movement in natural language.

Briggs et al. [30] used pragmatic and dialogue-based mechanisms to understand typical

human directives and create suitable responses. Specifically, utterances are used to represent

the speech act classification, as well as the speaker, robot, and semantics analysis. Then, rules

associate the utterances with a tuple containing the set of inferred beliefs based on the intended

meaning of the utterance. For instance, a question inquiring whether some assertive is true or

false. Finally, a dialogue-based mechanism handles and generates the responses based on

expectations generated by the utterances. Experiments were then conducted to show the viabil-

ity of the proposed methodology in identifying indirect speech acts and coverage of the utter-

ance forms.

Li et al. [31] used NLP to infer human-given commands for robots, by using keyword

extraction, visual object recognition, and similarity computation. Its main intent is to use

visual semantic information to allow a robot to deduce task intents, avoiding simple keywords

that map predefined tasks explicitly. The proposed method uses rule matching and conditional

random fields to analyze and extract information from the processed sentences.
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Despite several works that use NLP in robots, none of them are tailored to the ad hoc team-

work scenario. Our work thus presents a novel contribution to the scientific literature, namely

an architecture that combines decision-making and NLP for human-robot collaboration

within ad hoc teamwork settings.

The HOTSPOT framework

This section presents the HOTSPOT framework for ad hoc teamwork involving humans and

robots, which is the key contribution of this paper. When performing ad hoc teamwork

between humans and robots, three main challenges arise.

First, the environment is not fully observable, as the robot has to rely on sensors to obtain

its perceptions. In fully observable environments, agents are assumed to have access to the cur-

rent state of the environment, without any errors or imperfect information. With a properly

modeled fully observable state (i.e., one that contains all information relevant to the task at

hand) given to an agent, optimal planners can be used to compute optimal actions. In a par-

tially observable environment, a state is still assumed to exist, but not observable to the agent

(or in this case, the robot). In real-world environments, it is not feasible to, in real time, com-

pute the current state of the environment to allow the robot to plan for optimal action. By

using the robot’s sensors, however, one may compute a partial observation of such state, and

use internal models within the robot to infer the most-likely states and act accordingly. In the

HOTSPOT framework, we assume the robot to have only access to partial observations,

acquired via its sensors.

Secondly, when interacting with humans as teammates, it is not feasible to assume they will

explicitly communicate their actions in real time, as robots would possibly communicate

between them if they all shared the same communication protocol (even though in the setting

of ad hoc teamwork communication between agents is also assumed to not be always possible

due to the fact that the robot knows nothing about the team’s members). For this reason, the

robot has to rely on other information to infer what the human teammate is doing. In the

HOTSPOT framework, we mitigate this issue with two solutions: (i) we assume the human

may sometimes communicate with the robot (even though this may never happen at all), and

the robot has to be fully prepared to understand the human’s voice and (ii) the actions of the

human influence the state of the environment, which in turn influences the partial observa-

tions made by the robot. We propose, respectively, a module capable of parsing the human’s

voice and converting it into a possible action and an approach to infer the most likely action

given the partial observations of the environment.

Furthermore, it is also not feasible to assume the behavior of the human user will always be

optimal and efficient (as humans may stop what they are doing without warning or even act

inefficiently). This challenge requires robots to be robust to sub-optimal behavior. In the

HOTSPOT framework, we assume that even though human teammates know the task being

performed, they may suddenly not act or act sub-optimally, evaluating how we are able to miti-

gate this issue by using teammate models of the humans.

Fig 1 presents the two main modules in the HOTSPOT architecture, namely:

• A decision module that is responsible for ad hoc teamwork decisions with the human. This

module receives as input the robot and environment information from the sensors and the

relevant information from the human speech (i.e., the information processed by the commu-

nication module). The decision module then uses such information to reconstruct/estimate

the current state of the environment and the human-robot team. Finally, the robot uses the

state information to estimate the current task (task identification), to identify how the

human is executing such task (teammate identification), and to act accordingly (planning).
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• A communication module that is responsible for the communication with the human user. It

receives queries from the decision module and translates them into spoken utterances that

the robot must execute (verbalize and animate). It is also responsible for processing human

utterances, as perceived by the sensors, providing the decision module with their relevant

information.

In the remainder of this section, we describe both modules in greater detail.

Decision module

The decision module is depicted in Fig 2. The module processes the information coming from

the sensors and communication module to estimate the state of the current task. Specifically,

HOTSPOT maintains a distribution over possible states—a belief—which is updated from the

perceived information using a standard Bayesian update.

The robot then uses information about possible tasks (stored in a task library) to infer the

current task by checking which tasks in the library are most likely to yield the perceived infor-

mation from the environment and the teammate. Finally, using the belief and task

Fig 1. HOTSPOT diagram. Diagram depicting the interaction between the different modules in HOTSPOT.

https://doi.org/10.1371/journal.pone.0305705.g001

Fig 2. HOTSPOT decision module diagram. Diagram depicting the decision module of HOTSPOT.

https://doi.org/10.1371/journal.pone.0305705.g002
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information, the robot plans the actions to complete the task. It also determines which (if any)

communication actions it should perform toward the human.

In the continuation, we formalize each of these processes in detail.

Task description. We build on the works of Ribeiro et al. [10] and Melo and Sardinha [8]

to formalize the possible tasks of the human-robot team using a decision-theoretic framework

that accommodates the inherent uncertainty in scenarios involving robots in a principled

manner.

We represent each possible task in the agent’s library as a Multiagent Markov Decision Prob-
lem (MMDP) [32], consisting of a tuple Mm ¼ ðX ;A0;A� 0;Pm; rm; gÞ, where X is the set of all

possible states, A0 is the set of actions available to the robot, A−0 is the set of actions available

to the teammate (the human user), Pm describes the dynamics of the task m, rm is a reward

function, describing the goal of task m, and γ is a discount factor.

The states encode all task-relevant information, i.e., all information that, at each time step,

the agents (the robot and the human) require to decide the next action. We write Xt to denote

the state at time-step t, and A0,t and A−0,t to denote the actions of the robot and the human

user at time-step t, respectively. The state evolves according to the transition probabilities in

Pm, i.e., if T denotes the (unknown) current task,

Pmðx0 j x; a0; a� 0Þ ¼ P½Xtþ1 ¼ x0 j Xt ¼ x;A0;t ¼ a0;A� 0;t ¼ a� 0;T ¼ m�; ð1Þ

with x; x0 2 X , a0 2 A, and a� 0 2 A� 0. The transition probabilities describe the effect that the

actions of the robot and the human user have on the state, given that the current task is m.

Similarly, the reward function rm encodes the goal of the human-robot team: the value

rm(x, a0, a−0) measures the instant utility of the robot executing action a0 and the human exe-

cuting action a−0 in the state x, when the task is m.

Together, the human and the robot want to select their actions to maximize the total sum of

rewards which, if T = m, can be written as

J ¼ E
X1

t¼0

gtrmðXt;A0;t;A� 0;tÞ

" #

; ð2Þ

where γ 2 [0, 1) is a discount factor assigning greater value to rewards arriving earlier than

those arriving later. Solving an MMDP thus consists of computing two individual policies for

the two agents, π0 and π−0, each prescribing an action for each possible state so that the pre-

scribed actions jointly solve the MMDP—i.e., maximize the value in (2). Solving an MMDP

can be done using standard dynamic programming techniques such as value or policy iteration

[33].

In our setting, we consider that there is a set of M possible tasks, each described as an

MMDP Mm ¼ ðX ;A0;A� 0;Pm; rm; γ), where all tasks share the state and action spaces but

may have different dynamics and goals. Furthermore, we assume that the robot does not know

beforehand which task is being performed—henceforth referred to as the target task T—but

the human user does know. Task identification thus consists of inferring the target task from

the information that the robot can observe during the interaction.

Bayesian state estimator. During the interaction, the robot can observe the information

available through its sensors and information provided by the communication module regard-

ing the human spoken utterances. We denote by Zt the information observed by the agent—

which we assume takes values in a finite set of possible observations, Z. We also denote by O

the observation probabilities, which essentially provide a probabilistic description of the
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sensing process of the robot. In particular,

Oðz j x; a0Þ ¼ P½Ztþ1 ¼ z j Xtþ1 ¼ x;A0;t ¼ a0�;

with z 2 Z and x 2 X . The observation probabilities describe how likely it is for the robot to

observe z in state x, given that the last action of the robot was a0.

Let bt(x) denote the probability that, at time step t, the state is x 2 X , given the history of

observations and actions of the robot up to that time step (henceforth Ht). Let us further

assume that, at time step t, the robot performs the action a0, and the human user performs the

action a−0. As a consequence, the environment will transition to state Xt+1 and the robot will

observe Zt+1 = z. Then, if the target task is m, we can update our belief bt using a standard

Bayesian update to have

btþ1ðxÞ ¼ P½Xtþ1 ¼ x j Htþ1�

¼
1

r

X

x02X

Pmðx j x
0; a0; a� 0ÞOðz j x

0; a� 0Þbtðx
0Þ;

where ρ is a normalization constant.

There are two difficulties with using this update: first, we do not know which is the action

of the human teammate, a−0; and second, we do not know which is the target task, m.

To address the first difficulty, and since we assume that the teammate knows the target task,

we consider that—if the target task is m—the action of the teammate can be any optimal action

for the task m. Then, if we average out the action selection of our human teammate, we get the

(task-dependent) transition probabilities

�Pmðx0 j x; a0Þ ¼
1

jA∗
� 0
ðxÞj

X

a� 02A
∗
� 0
ðxÞ

Pmðx
0 j x; a0; a� 0Þ;

where A∗
� 0
ðxÞ denotes the set of optimal teammate actions in state x. This yields a task-depen-

dent belief update

bm;tþ1ðxÞ ¼ P½Xtþ1 ¼ x j Htþ1;T ¼ m�

¼
1

r

X

x02X

�Pmðx j x
0; a0ÞOðz j x

0; a� 0Þbm;tðx
0Þ;

ð3Þ

where ρ is, again, a normalization constant.

Regarding the second difficulty, since the robot does not know beforehand the target task,

it maintains a distribution pt over the set of possible tasks. In other words, we write pt(m) to

denote the probability that the target task is m given the history of observations and actions of

the robot up to time step t. Then, given the distribution pt, we can write the “average” belief at

time step t as

btðxÞ ¼
XM

m¼1

ptðmÞbm;tðxÞ: ð4Þ

Task inference. We now describe how to maintain the distribution pt, used to perform

Bayesian state estimation. Much like with the state estimation, we adopt a Bayesian framework.

Let T denote the unknown target task. Then, if the agent observed z at time step t + 1 after
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executing a0 at time step t,

ptþ1ðmÞ ¼ P½T ¼ m j Htþ1�

¼
1

r
P Ztþ1 ¼ z j A0;t ¼ a0;T ¼ m;Ht

� �
P A0;t ¼ a0 j Ht

� �
ptðmÞ;

where, once again, ρ is the necessary normalization constant. We used the fact that the action

selected by the agent at each moment depends only on the history of observations and not on

the target task T. Then,

P½Ztþ1 ¼ z j A0;t ¼ a0;T ¼ m;Ht� ¼
X

x;x02X

Oðz j x0; a0ÞPmðx
0 j x; a0Þbm;tðxÞ:

Decision-theoretic planning. To decide what action to take, and given the uncertainty in

the robot’s perception of its state, we adopt as the planning approach a well-established infor-

mation-gathering heuristic [34]. In particular, at each time step t, the robot selects its actions

to balance information gathering and task completion.

Information gathering consists of selecting actions that decrease the uncertainty in the state

estimation, bt. Task completion actions are selected to solve the target task, T.

To this purpose, we compute the normalized entropy of bt, given by

�HðbtÞ ¼ �
1

log jX j

X

x2X

btðxÞ log btðxÞ:

The normalized entropy measures the uncertainty in the agent’s belief. Let bmax(z, a0) denote

the robot’s belief upon observing z after executing a0 in task m from a belief with maximum

entropy, i.e.,

bm;maxðz; a0Þ ¼
1

r

X

x2X

�Pmðx
0 j x; a0ÞOðz j x

0; a0Þ
1

jX j
:

We define the information gain associated with (z, a0) as

DHmðz; a0Þ ¼ 1 � �Hðbm;maxðz; a0ÞÞ:

We also define the reward gain associated with (z, a0) as the maximum reward that the robot

can get upon observing z after executing a0 in task m from a belief with maximum entropy,

i.e.,

DRmðz; a0Þ ¼ max
a0

0
2A0

X

x;x02X

�Pmðx
0 j x; a0ÞOðz j x

0; a0Þ
�rmðx0; a0Þ

jX j
;

with

�rmðx; a0Þ ¼
1

jA∗
� 0
ðxÞj

X

a� 02A
∗
� 0
ðxÞ

rmðx; a0; a� 0Þ:

Following Melo and Ribeiro [34], we define an information gathering reward function as

rm;infoðx; aÞ ¼
X

z2Z

P½Ztþ1 ¼ z j Xt ¼ x;A0;t ¼ a0;T ¼ m�DHmðz; a0ÞDRmðz; a0Þ:

Then, for each task m, we can now define two standard MDPs, ðX ;A0;
�Pm; rm; gÞ and
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ðX ;A0;
�Pm; rm;info; gÞ, which can be solved to yield two optimal Q-functions [33], Q∗

m and

Q∗
m;info.

Finally, the action selected at each step t is given by

a0;t ¼ argmax
XM

m¼1

ptðmÞ
X

x2X

btðxÞ½ð1 � �HðbtÞÞQ
∗
mðx; aÞ þ �HðbtÞÞQ

∗
m;infoðx; aÞ�:

When the uncertainty in bt is high (close to 1), the robot selects an information-gathering

action, i.e., an action that maximizes Q∗
m;info; when the entropy is low (close to 0), the robot

selects a task competing action, i.e., an action that maximizes Q∗
mðx; aÞ.

Communication module

Fig 3 depicts the communication module, which plays two roles in the overall HOTSPOT

architecture. First, it plays a sensing role, transforming the human speech (captured through a

microphone) into state information that is then used by the decision module. Second, it also

plays an acting role, converting the communication actions received from the decision module

into utterances that the robot then speaks to the human user. Each role corresponds to a well-

defined pipeline, as depicted in Fig 3.

Concerning the sensing pipeline, the communication between the robot and the human

user occurs through speech, captured by a microphone, and transformed into audio data, usu-

ally in the form of a .wav file containing the recorded human spoken utterances. Next, the

audio data is transcribed by a speech-to-text block into a text format that better represents the

audio in the language being spoken. Subsequently, in the state identification block, the tran-

scribed text is passed into an NLP processor to extract semantic information, which is then

translated into a partial state description.

The description of the state is then used as one of the several inputs to the decision module,

which returns action(s) based on the behavior explained in the Decision Module section.

These actions are mapped both into task-level and communication actions. The latter actions

are passed to the communication module once again (i.e., the acting pipeline).

On the other hand, the acting pipeline is responsible for converting the communication

actions into a text string, which is then sent to the robot. Specifically, this is done by the order

Fig 3. HOTSPOT communication module diagram. The communication module, comprising both a sensing pipeline

that converts speech to state information, and a actuation pipeline, converting communicating actions to text to be then

spoken by the robot.

https://doi.org/10.1371/journal.pone.0305705.g003
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parsing module, which provides the utterances to the robot, thus closing the cycle of commu-

nication between HOTSPOT and the robotic platform.

Interaction with the robot

The interaction between HOTSPOT and the robot relies on the robot operating system (ROS)

[35], which is responsible for sensor handling (namely, processing all sensor readings), robot

control, and communication. In other words, ROS supervises all sensing and actuation of the

robot, and it is through a ROS interface that HOTSPOT interacts with the robot.

In particular, ROS collects all sensor data, arriving both from the robot sensors—such as

odometry sensors used in dead-reckoning, lasers, contact sensors, etc.—and environment sen-

sors—such as microphones, cameras, and other sensors that may exist in the environment.

The speech data is sent to the communication module, while the remaining sensor data is pro-

cessed and sent to the decision module.

ROS is also responsible for the actuation of the robot. In particular, it receives the task-level

actions (such as moving) from the decision module and the text strings (corresponding to the

utterances that the robot should speak) from the communication module and performs these

on the robot.

Experimental setup

To evaluate the effectiveness of our approach, we created a controlled environment where a

live robot interacts with a human teammate. In this environment, the robot aims to assist the

human in cleaning up a room, with the interaction being restricted by a set of rules from the

Toxic Waste Domain.

The toxic waste domain

The Toxic Waste domain has a two-agent team composed of a human cleaner and a robot con-

tainer. The team is in a building with several rooms and has to clean three rooms with toxic or

radioactive waste. A specific task from this domain lays out the rooms in a topological map,

where the nodes represent the rooms, and the edges represent the doors that connect them. In

addition, some rooms may contain toxic material on the ground. Hence, in each time step,

both the human and the robot may choose to move from one room (node) to another or stay

in the same node (i.e., no-op).

Whenever it finds itself in a node containing toxic waste, the human can pick it up from the

ground or release it (if already holding it). After picking up the toxic waste, the human must

remain standing still on his current node and wait for the robot to get close to disposing of the

toxic material into the robot’s container. The robot also has an additional action to query the

human by location (which the human may or may not respond to). Finally, in each time step,

the robot receives its current location as an observation, inferred by the dead reckoning

module.

Fig 4 shows the Toxic Waste domain that we created within our laboratory. Precisely, we

recreate two tasks by dividing our laboratory room into five distinct areas, representing sepa-

rate rooms: 0—door, 1—open space, 2—robot station, 3—single workbench, and 4—double

workbench. To represent the toxic waste that humans can collect, we use three colored balls

placed in three different nodes, as depicted in Fig 5. The location of the three balls models each

task; that is, there are two possible tasks, each with the three balls placed in three respective

areas, as shown in Fig 6.

To represent the human cleaner, we rely on people from a small focus group who have been

told the goal in advance and know how to act according to the domain’s rules, namely: i) they
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may only make one move at a time, ii) they may reply to the robot’s questions, and iii) they

may only move from one area to the another if they are connected. We rely on Astro (Fig 4—

left) to be the robot container. It is a robot from our laboratory capable of moving around the

room and possessing a front recipient equipped with an RFID sensor to detect when a ball is

placed inside the recipient. For each person in the focus group, we randomly chose a task from

the two possible tasks, with the human starting in the area of their preference and the robot

always starting at the door.

Fig 4. Lab room setup. Lab room used to simulate the Toxic Waste domain (left) and respective layout (right). Each area is

represented as a node in a topological map.

https://doi.org/10.1371/journal.pone.0305705.g004

Fig 5. Toxic waste materials. The three balls representing the toxic waste materials.

https://doi.org/10.1371/journal.pone.0305705.g005

Fig 6. Task configurations. The two task configurations (i.e., locations of the three balls representing the toxic waste

materials).

https://doi.org/10.1371/journal.pone.0305705.g006
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The decision module

We instantiate the decision module as a Python 3 ROS node running on a laptop (connected

via wifi to a ROS master node running on the robot). The implementation of the module

requires only a library of possible tasks, which are then used by our Bayesian state estimator,

task inference, and decision-making algorithm.

To model the tasks in the Toxic Waste domain in our framework, we must specify each cor-

responding MMDP, as well as the observation space and probabilities, describing the sensing

process of the robot. Each MMDP is a tuple ðX ;A0;A� 0;Pm; rm; gÞ with distinct transition

probabilities and reward functions. Together with the specification of the observation space

and observation probabilities for the robot, they provide all the necessary information required

by the decision-making module.

In our experiments,

• the state space X contains information regarding both agents’ nodes and the status of the

three toxic materials (i.e., on the ground, picked up, or disposed of). In particular, a state x 2
X is a tuple (nr, nh, w1, w2, w3), where nr and nh represent the node of the robot and human,

respectively, and wi represents the status of the toxic waste material i.

• the action space for the robot, A0, has five possible actions available: move the lowest-index
node, move the second lowest-index node, move the third-index node, stand still, and ask the
human for his location. The human action space, A� 0, has similar move actions and, addi-

tionally, a pick waste and drop waste actions.

• the transition probabilities Pm describe how the robot and human move as a consequence of

their movement actions, and the status of the waste material as a consequence of the actions

of the human user.

• the reward functions rm assign a penalty of −1 for each toxic waste on the ground, −2 for

each toxic waste on the human’s hands, and 0 for each toxic waste material disposed of.

• we use a discount γ = 0.95.

• the observations describe what the robot can observe regarding the state of the environment

and the human user. Specifically, each observation z 2 Z corresponds to a tuple

ðn̂r; n̂h; rfidÞ, where n̂r represents the robot’s node (determined via dead reckoning) and n̂h

represents the human’s node (determined from speech). rfid is a boolean flag indicating that

the container detected the collection/disposal of toxic waste.

• as for the observation probabilities O, regarding the location of the robot and RFID sensor,

we empirically assessed that the error in these measurements was negligible. As for the posi-

tion of the human (perceived from human speech), we ran a preliminary study where, for

each possible human node, we script out several phrases from a small focus group (i.e., 4 dif-

ferent speakers reading 257 different phrases). We then build a confusion matrix (Fig 7)

using Python’s machine learning library scikit-learn, which tells, for each true node, the

probability of identifying every other node or even failing to identify any node. Finally, to

handle live errors, we smooth the probabilities when loading the model using the confusion

matrix to ensure that no entry has an absolute zero.

The human teammate. When it comes to modeling human behavior in the toxic waste

domain, we model the human teammate as an agent that knows the task being performed and
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fully observes the environment, unlike the ad hoc robot which has to identify the task and is

only able to partially observe the environment.

In each time step t, the human teammate has a probability � of not selecting the optimal

action a∗
� 0

, computed from the optimal policy p∗
� 0
ðxtÞ. This parameter represents the probabil-

ity of the human not moving, simulating distractions such as looking at the phone, talking

with someone, or moving to a non-optimal node by mistake. Furthermore, and although the

option of replying to the robot’s action ‘locate human’ is not part of the human’s MMDP

action space A� 0, in the POMDP’s observation probabilities O for the robot action locate
human, we consider an additional probability of the human not successfully replying to the

robot. This takes into consideration situations where, for any particular reason, the human

doesn’t reply at all or situations where the communication module fails to correctly interpret

the human’s reply.

Metrics

Given that our approach has several independent modules, we evaluate the system with the fol-

lowing metrics: i) the number of steps it takes to solve a task, ii) TEBOPA’s number of steps to

identify the correct task, iii) entropy in TEBOPA’s belief over tasks, iv) communication mod-

ule’s speech recognition accuracy, v) communication module’s named entity recognition

accuracy, vi) communication module’s node location recognition accuracy and vii) robot’s

dead-reckoning accuracy in identifying the correct node. We now break down each individual

metric.

Metric 1—The number of steps it takes to solve a task. Our first and main metric used

was the number of steps to solve a task. This metric is used to assess the performance of the

team, and the fewer the number of steps it takes the team to solve a task, the better. In our real-

world scenario, a third-party human assistant, observing the experiment, registers the number

Fig 7. Confusion matrix. Communication module’s pipeline confusion matrix.

https://doi.org/10.1371/journal.pone.0305705.g007
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of steps until the task is considered complete, i.e., when all three balls have been placed within

the robot’s compartment.

Metric 2—TEBOPA’s number of steps to identify the correct task. Our approach,

TEBOPA, keeps a belief over the possible tasks, as it interacts with the environment. Each

entry in this belief vector measures the likelihood of the respective task. As the robot interacts

with the environment, our algorithm TEBOPA, performs a Bayesian update to these probabili-

ties using the observations made in each step. We log, in each step, the task with the highest

belief, which represents the task our approach ‘guesses’ as being the correct one. When, in a

given time step T, the likelihood of the correct task becomes the highest in the belief vector,

and stays so until the end of the interaction, we consider it took our approach T steps to iden-

tify the correct task.

Metric 3—Entropy in TEBOPA’s belief over tasks. As detailed in our description of our

second metric, our approach, TEBOPA, keeps a belief over the possible tasks, as it interacts

with the environment. One metric we can therefore use to measure the ‘uncertainty’ of our

agent, is the entropy of the belief vector. The lower the entropy, the more ‘certain’ our agent is

of the task being performed. We compute the entropy for a trial after the trial ends, relying on

the belief vectors logged by our decision module.

Metric 4—Communication module’s speech recognition accuracy. Our fourth metric

measures the accuracy of the first component of our communication module, the speech rec-

ognizer. The speech recognizer takes as input the audio of a speaker and outputs the respective

text. Unlike the prior metrics, this metric is computed prior to the experiments, when setting

up the confusion matrix for the model of the environment that needs to take into account the

probability of failing to interpret the human’s utterances. Each speaker is told to read a list of

phrases, and then the resulting text output matched against the original phrase. Some nuances

such as the difference in capital letters of punctuation were ignored if they did not grammati-

cally change the phrase.

Metric 5—Communication module’s named entity recognition accuracy. Our fifth

metric measures the accuracy of the named entity recognition component of our communica-

tion module. Like the previous metric, it was also measured prior to the experiments, as

required by the model of the environment to take into account the probability of failure when

modeling the POMDP. Taking as input the text output of the speech recognition component,

the named entity recognition component outputs a location entity, such as ‘door’ or ‘table’.

Associated with each human phrase, the correct entity is labeled. If the output of the named

entity recognition component matched the location entity for the respective phrase, we would

consider the entity correctly identified.

Metric 6—Communication module’s node location recognition accuracy. Another

communication module’s metric is the node location recognition accuracy. The node location

recognition component of our communication module takes as input the entity from the

named entity recognition component, which it then uses to predict the correct node. A node

label is given to each phrase and used to check if the output is correct. Like our previous two

metrics, this metric was also assessed prior to the trials, when computing the confusion matrix

and failure probabilities for the models used by the agent.

Metric 7—Robot’s dead-reckoning accuracy in identifying the correct node. Our sev-

enth and final metric measures the number of correct node identifications made by the robot’s

dead-reckoning system. Each time the robot moves from one node to another, it computes the

new position by adding the required offset into its current one. Afterward, the robot moves

into the new position and assumes to be there, a process known as dead-reckoning. Each point

from the robot’s internal referential is then mapped into the area of the nodes from the Toxic

Waste domain, and, as such, the robot is able to ‘guess’ its own node. A third-party human
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observer then registers the nodes the robot navigates throughout the trial, while the decision

module also registers the ‘guessed’ nodes. These two lists are then used to compute the accu-

racy of the dead-reckoning sensors.

Participants and procedure

In this section, we describe how our participants were recruited and briefed, and how our

experimental procedure was conducted.

Selection of the focus group. We recruited a total of seven members from our laboratory,

pro bono, for the empirical evaluation of the HOTSPOT framework. The minimum age was 23

years and the maximum was 42. When contacting each participant, no details regarding the trials

were discussed, only a date scheduled. On the date and at the time of the trial, participants were

told by an experiment moderator what the task consisted of—having to pick up the three balls

from the floor and deposit them on the robot only when the robot would share the node with

them. They were told they were unable to move if they had picked up any balls and the dynamics

were turn-based. No two participants from the focus group observed each other’s trials.

Monitoring of the trials. Every trial was monitored by one of the authors (João G.

Ribeiro) in the role of a moderator. The moderator starts by briefing the participant on what

the task consisted of, and the aforementioned rules. The moderator then attached the micro-

phone to the participant’s clothes and told the participant it was free to answer the robot when

asked questions. Afterward, the moderator would ask the participant to select a starting loca-

tion, and chose, at random, both a task and a starting location for the robot which did not

match the location of the human. The trial would then start. Finally, the moderator manually

registered both the node of the robot and the node of the participant in each time step. After

the task was completed, the moderator would also register the total number of steps it took the

human and the robot to complete the task.

Selection of the task and starting positions. All tasks were chosen at random by the

moderator before knowing the starting position of the robot and participants. Before placing

the balls on the task’s location nodes, the participants would be allowed to choose their own

location and move to their starting position. After the participants reached their starting posi-

tion, the moderator manually controlled the robot to its randomly chosen starting position,

ensuring it did not contain any balls. The trial would then start.

Choice of performing more than a single trial. We allowed participants who wished to

run additional trials to do so, after completing their first trial. In such cases, these participants

would perform a different task, excluding the performed one from being selected at random

by the moderator. The same procedure would then be repeated. Out of the 7 participants

recruited, only 2 decided each to run an additional trial.

Additional baseline approaches. Finally, to assess the introduced difficulties associated

with live robotic experiments, we evaluate three agents in a simulated environment: (i) our

own approach, TEBOPA, to compare how the results from the simulated environment differ

from the ones obtained in the real-world experiments; (ii) an agent following an optimal pol-

icy, able to fully observe the state of the environment, used as a reference for best possible per-

formance; (iii) an ablation of TEBOPA which knows the task beforehand, used as a reference

for optimal behavior under partial observability and (iv) an agent following a random policy,

used as a reference for worst possible performance.

Results

Fig 8 shows the average number of steps our approach took to complete the task assigned to

the team. It also plots the number of steps required for our approach to identify the correct
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task from two possible tasks. We also present the number of steps it takes for four baseline

agents to run in a simulated environment, namely (i) an agent following an optimal policy,

representing the best possible performance (ii) an agent following a random policy, represent-

ing the worst possible performance, (iii) our approach in the simulated environment, to com-

pare with the results obtained in the real world, further validating both our simulated

environment and human model, and (iv) an ablation of our approach which knows the task

beforehand and therefore represents an optimal agent under partial observability.

From the results presented in Fig 8, we observe that our approach always completed the tar-

get task in a near-optimal number of steps and quickly identified the target task using only par-

tial observations (without observing the human’s actions). As expected, the agent following the

optimal policy solved the tasks in fewer steps than the random policy under partial observabil-

ity (p = 0.0000018, α = 0.05), our approach, TEBOPA, (p = 0.00757, α = 0.05) and the random

policy (p = 0.00000000007, α = 0.05). Our approach, TEBOPA, was able to not only solve tasks

in fewer steps than the random policy (p = 0.0000000001887, α = 0.05), but was also able to

solve tasks in the same average number of steps as the optimal policy under partial

Fig 8. Average number of steps required to solve and identify the target task was analyzed across different scenarios, considering the use of the

communication module. All simulated trials started from the same initial states as those in the live trials. Error bars correspond to a confidence interval

with the confidence of 95% (α = 0.05%), calculated over all trials, encompassing 9 real-world trials and 32 trials in the simulated environment).

https://doi.org/10.1371/journal.pone.0305705.g008
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observability (p> α = 0.05). We can also observe that, on average, our approach can identify

the correct task quicker than an optimal policy can solve it (p = 0.0028, α = 0.05).

Furthermore, our results for the multiple participants, which were allowed to pick their

starting nodes, do not hint at any benefits or disadvantages of starting at any specific node.

Finally, we can observe that the results obtained for our approach in the simulated environ-

ment matched the results obtained by our approach in the real world, with no statistically sig-

nificant difference (p> α = 0.05). This demonstrates the validity of not only our simulated

environment but also our model of the human teammate.

We can look deeper into the task identification by plotting the average entropy of the beliefs

at each time step, as shown in Fig 9.

We can first observe in Fig 9 that the average entropy decreases with each passing time step.

This is expected because the agent has more information to infer the correct task as the agent

interacts with the environment. The second observation is that the average entropy does not

reach 0.0, although it has dropped from 1.0 to almost 0.20. This result shows that our approach

may end a trial without being 100% sure what the correct task is. However, this also indicates

that our approach effectively solves the most likely task. Additionally, the fact that the average

entropy is not 0.0 means that it may recover from task changes.

We also break down the evaluation of the NLP modules into three parts: i) the speech rec-

ognition module, ii) the NER module, and iii) the node identification module. Then, having

recorded all the human’s spoken phrases plus the outputs of the three modules, in all time

steps of the trials, we start reporting the accuracy of the speech recognition module. We also

Fig 9. Beliefs entropy. Entropy of the beliefs at each time step, averaged over all nine trials;

https://doi.org/10.1371/journal.pone.0305705.g009
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recorded, for each sentence, whether or not the sentence contained the information necessary

to identify the human’s location. Finally, from this set of informative phrases, we evaluate the

accuracy of the NER module and, subsequently, of the node identification module. The values

depicted in Fig 10, which plots the accuracies for these three modules in a live environment,

average over all iterations of the seven experiment participants.

From Fig 10, we observe that perfectly recognizing human speech is the hardest task of the

three, with only a performance of 58.62%. From the spoken phrases that are informative

enough to infer the correct human location, NER was able to identify the correct location in

77.77% of them. At last, the node identification module, which takes as input the NER location

string, was able to correctly output the right human nodes 74.07% of the time.

Additional studies

In this section, we present two additional experiments to assess both the impact of information

sharing on team performance and the scalability of our decision approach, TEBOPA, to larger

domains.

Disabling communication. To further evaluate the impact of communication on team

performance, we conducted an additional experiment where we removed the possibility of

communication between the robot and the human. The same modeling described in The

Fig 10. NLP modules accuracies. The accuracies for the three NLP modules—Speech Recognition (58.62%), NER (77.77%), and Node

Identification (74.07%).

https://doi.org/10.1371/journal.pone.0305705.g010
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Decision Module section holds, with the exception that there is now no locate human action

available to the ad hoc robot. The same previous tasks are kept as well as the human model.

Given that the location of the human, when queried, is given to the ad hoc robot as part of

its observation, this ablation can be seen as a setting where the available information to the

robot is reduced. Given that our approach deals with the task identification problem of ad hoc

teamwork by using any information available, we expect that the less information we have, the

better. To test this hypothesis, we evaluate a total of four approaches:

• TEBOPA: Our original ad hoc approach which doesn’t know the correct task beforehand

and is able to query the human for its location;

• Optimal policy under partial observability: A non-ad hoc ablation of our approach which

knows the correct task beforehand and is able to query the human for its location;

• TEBOPA without communication: Our original ad hoc approach which doesn’t know the

correct task beforehand and doesn’t have the action for locating the human within its action

space;

• Optimal policy under partial observability without communication: A non-ad hoc ablation

of our approach which knows the correct task beforehand and doesn’t have the action for

locating the human within its action space.

All agents are evaluated for 32 independent trials. We conduct this experiment in the simu-

lated environment, given its shown reproducibility of real-world results in our main evaluation

section. Fig 11 displays the average steps to solve the tasks over the 32 independent trials. We

keep as a reference, the optimal policy (which has full observability of the environment) and

random policy, for best and worst possible performances, respectively.

From these results, two main observations can be made. First, when the task is known, fol-

lowing the optimal policy (under partial observability) showcases no statistical difference when

communication is disabled (α = 0.05). This result is expected, since going directly to the nodes

containing the waste and waiting for the human is an optimal strategy if the location of the balls

is known beforehand, rendering the problem as a problem of self-location instead of coordina-

tion with another teammate. The second and most important observation we can make from

these results is that when we’re dealing with an unknown task in an ad hoc setting, removing

the possibility of querying the human for its location yields a significant drop in performance,

as shown by the results obtained by our approach, TEBOPA, and our approach without com-

munication (p = 0.000656, α = 0.05). The most plausible explanation for this observation is that

the availability of the human’s location in each time step allows the ad hoc robot to substantially

enhance its belief in the correctness of the task being executed. Without communication, the

robot is only able to observe where it is and when a ball is placed within its compartment,

which happens at most three times throughout the episode and may not be enough information

to immediately identify the correct task. These results show that without communication, the

problem of ad hoc teamwork under partial observability becomes even harder.

Scaling to larger problems. We conclude our evaluation by conducting an additional

experiment to assess the scalability of our decision module. The Toxic Waste domain has envi-

ronments with a total of jX j ¼ 260 possible states, jZj ¼ 36 possible observations, and jA0j ¼

5 actions. Given that these spaces are relatively small, we conduct an additional experiment in

the Predator-Prey (or Pursuit) domain [36], a benchmark from the multi-agent systems com-

munity where a team of predator agents has the goal of capturing a moving prey. This domain

is relatively larger for a team of two agents, with environments now with a total of jX j ¼ 626

states, jZj ¼ 81 possible observations, and jA0j ¼ 6 actions.
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Similar to the Toxic Waste domain, we compare, in the Predator-Prey domain, our

approach against (i) an optimal agent, which has full observability of the environment, (ii) an

approach that knows the correct task and acts optimally under partial observability, and (iii) a

random baseline. All approaches are evaluated in N = 32 independent trials. Fig 12 showcases

the average steps to complete the tasks over the 32 trials. Tasks are selected randomly in each

trial, and in the predator-prey domain, corresponding to the direction from which each preda-

tor must surround the prey for the team to capture it.

As expected, results show the optimal agent to have completed, on average, trials in 6.75

steps, solving episodes in fewer steps than the optimal agent under partial observability

(p = 0.007, α = 0.05), TEBOPA (p = 0.00012, α = 0.05) and the random baseline

(p = 0.00000001, α = 0.05). The results for the optimal agent under partial observability and

our approach, TEBOPA, show no statistical difference for p> α = 0.05, showcasing similar

performances by solving episodes in an average of 10.22 and 12.84 steps, respectively. They

both solve episodes in fewer steps than the random baseline (p = 0.00000004, α = 0.05 for the

optimal agent under partial observability and p = 0.000000088, α = 0.05 for TEBOPA). Finally,

as expected, the random baseline took significantly longer steps to solve episodes, with an

Fig 11. Disabled communication experiment. Average steps to complete a task for different approaches in the disabled communication experiment. Error

bars correspond to a confidence interval with confidence of 95% (α = 0.05), calculated over a total of 32 independent trials.

https://doi.org/10.1371/journal.pone.0305705.g011

PLOS ONE HOTSPOT

PLOS ONE | https://doi.org/10.1371/journal.pone.0305705 June 28, 2024 22 / 27

https://doi.org/10.1371/journal.pone.0305705.g011
https://doi.org/10.1371/journal.pone.0305705


average of 76.06 steps. These results allow us to conclude that even in a significantly larger

domain, our approach is able to correctly identify the correct task being performed by a team-

mate and solve it in a near-optimal number of steps.

Conclusions and future work

Ad hoc teamwork addresses the decision-making problem of an agent when teamed to work

with other unknown agents. Without any prior coordination or communication protocol, the

agent must infer the cooperative task being performed, identify the teammates, and act to

complete the task effectively. This demands the agents to adapt and engage in dynamic prob-

lem-solving without prior knowledge or extensive planning.

In this work, we present HOTSPOT, a novel framework for ad hoc teamwork in human-

robot teams. Specifically, our framework has two main modules, addressing the two key chal-

lenges in the interaction between a robot and a human teammate within ad hoc teamwork sce-

narios. The first module handles all the task-related decision-making challenges (i.e., task

identification, teammate identification, and planning), and is responsible for orchestrating the

Fig 12. Predator-Prey domain results. Average number of steps to complete a task in the Predator-Prey domain. Error bars correspond to a confidence

interval confidence of 95% (α = 0.05), calculated over all trials.

https://doi.org/10.1371/journal.pone.0305705.g012
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robot’s contributions to the collaborative effort. The second module deals with the communi-

cation challenge between robots and humans by employing NLP techniques, which enables

the exchange of information between the robot and the human being, therefore enhancing the

overall efficiency of the collaborative effort.

To evaluate our framework, we use a task that involves a mobile robot and a human team-

mate in a cooperative task of collecting objects in an open space, illustrating the main features

of our framework in a real-world task. The Results section shows that our approach always

identified and completed the task with a near-optimal number of steps while using partial and

imperfect information. We also observe that, on average, the proposed approach identified the

task faster than the optimal policy, showing the potential that this approach has in a real task

environment and highlighting the practicality and robustness of our framework in addressing

the challenges of ad hoc teamwork.

Although our approach has shown excellent results, we can always incorporate enhance-

ments to further improve the proposed methods’ performance.

The main limitation of our work is its evaluation in a turn-based scenario, where the

human and the robot act in turns. The next logical line of work would be to extend our

approach to real-time tasks, where both the human and the robot are free to move when they

want. In this sense, the exploration of real-time collaborative scenarios presents a promising

avenue for future research and development, and adapting our framework to such dynamic

environments will require the integration of responsive and adaptive decision-making pro-

cesses that can handle the complexities of simultaneous human and robot actions. This aligns

with the evolving landscape of human-robot interaction and will extend the applicability of the

approach to real-world scenarios.

Another limitation is the speech recognizer, which currently uses an online recognition ser-

vice, that is not customized for the restricted vocabulary used in human-robot conversation

and is not suitable for the noisy environment of human-robot interactions. Moreover, besides

the low average performance, any instability in the robot’s Internet connection makes its use

unfeasible. In this sense, developing an offline system customized for our domain would bring

enormous advantages, both for the classifier performance and the response speed of the deci-

sion module.

Another possibility for future work is to explore domains with arbitrarily large continuous

state spaces, for which tabular methods like the ones used do not scale well. In such domains,

function approximation methods can be employed, such as feed-forward neural networks

combined with long short-term attention cells or attention-based mechanisms to extract latent

states directly from observations.

Also, we plan to invest in other types of sensors for the robot, especially those that capture

360-degree scenes. This will empower the robot to gain a comprehensive view of its surround-

ings, enabling more robust and context-aware decision-making processes. That way, indepen-

dent of the robot’s position and orientation, it will be possible to apply computer vision

techniques to enhance the robot’s observation of the environment.

Methods

Ethics statement

Human Subject Research (involving human participants and/or tissue)

• Name of the ethics committee that approved the study: Ethics Committee of Instituto Supe-

rior Técnico (EC-IST)

• Approval number: 20/2019 (EC-IST)
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• Form of consent obtained: Oral, after the invitation to participate in the study and before

conducting the trials. If an individual did not consent, they would not participate in the

study (no cases).

Author Contributions

Conceptualization: João G. Ribeiro, Luis Müller Henriques, Sérgio Colcher, Julio Cesar

Duarte, Francisco S. Melo, Ruy Luiz Milidiú, Alberto Sardinha.
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