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Abstract

The method of partial differential equations for image inpainting achieves better repair

results and is economically feasible with fast repair time. Addresses the inability of Curva-

ture-Driven Diffusion (CDD) models to repair complex textures or edges when the input

image is affected by severe noise or distortion, resulting in discontinuous repair features,

blurred detail textures, and an inability to deal with the consistency of global image content,

In this paper, we have the CDD model of P-Laplace operator term to image inpainting. In

this method, the P-Laplace operator is firstly introduced into the diffusion term of CDD

model to regulate the diffusion speed; then the improved CDD model is discretized, and the

known information around the broken region is divided into two weighted average iterations

to get the inpainting image; finally, the final inpainting image is obtained by weighted averag-

ing the two image inpainting images according to the distancing. Experiments show that the

model restoration results in this paper are more rational in terms of texture structure and out-

perform other models in terms of visualization and objective data. Comparing the inpainting

images with 150, 1000 and 100 iterations respectively, Total Variation(TV) model and the

CDD model inpainting algorithm always has inpainting traces in details, and TV model can’t

meet the visual connectivity, but the algorithm in this paper can remove the inpainting traces

well, TV model and the CDD model inpainting algorithm always have inpainting traces in

details, and TV model can’t meet the visual connectivity, but the algorithm in this paper can

remove the inpainting traces well. Of the images used for testing, the highest PSNR reached

38.7982, SSIM reached 0.9407, and FSIM reached 0.9781, the algorithm not only inpainting

the effect and, but also has fewer iterations.

Introduction

Digital image inpainting is an important part of digital image processing. The final presenta-

tion result of digital image inpainting technology must meet the connectivity principle of the

human and the fluency of the overall image. On the basis of guaranteeing inpainting of cracks

or removal of contaminants, the person or landscape in the inpainting image looks as natural

as before.
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Image inpainting is the process of restoring missing pixels in digital images in a plausible

way. The challenge is that the recovery processes themselves introduce noticeable artifacts

within and around the restored image regions. The curvature-driven diffusion model repairs

the lost region by diffusing the data near the lost region during image transmission, and uses

the edge information of the region to be repaired to diffuse the information outside the region

to be repaired into the region to be repaired along the vertical direction of the gradient. The

curvature-driven diffusion model introduces a curvature term to make its partial differential

equation of higher order, and applies the fast marching method to the boundary of the region

to be repaired to gradually advance it from outside to inside, and while advancing it uses the

correlation between the pixel to be repaired and its neighboring pixels around it to repair the

various discrete pixel points on the boundary. On this basis, the P-Laplace operator is intro-

duced to fill the damaged region by using the performance of the nonlinear anisotropic diffu-

sion of the P-Laplace operator, combining the P-Laplace operator with the diffusion term of

the curvature-driven diffusion model to discretize the improved curvature-driven diffusion

model model, and dividing the known information around the broken region into two

weighted average iterations to obtain the final repair image.

Current restoration methods:

Deep learning-based image restoration methods

With the gradual improvement and development of deep learning algorithms, researchers

have started to apply deep learning algorithms to the field of image restoration. Researchers

have successively proposed Convolutional Neural Networks such as AlexNet, VGG-NET, and

ResNet [1–4], which are used to train data to restore images and predict the structure of

images efficiently [5–7]. Goodfellow proposed generative adversarial networks [8] in 2014,

which consist of a generator and a discriminator, where the generator synthesizes data from a

given noise data, and the discriminator discriminates the similarity between the synthesized

data and the real data, and if the computationally generated sample image is similar enough to

the image of the area to be restored, image restoration can be achieved. With the work of deep

learning in the field of image restoration, recurrent neural networks have been applied in the

automatic generation of unmarked images, and further research results have been achieved by

combining them with convolutional neural networks for image restoration. However, there

are the following shortcomings: CNN is widely researched, but there is a shortage for texture

restoration; GAN can be applied to image restoration with a large amount of missing data, but

the instability problem in the training phase of GAN needs more in-depth research to solve;

RNN has excellent performance in processing sequential data, but it is not so good for process-

ing large sample data. Since then, many excellent networks have been proposed. The literature

[9] proposed a novel two-stream network for image restoration is proposed, which models

structure-constrained texture synthesis and texture-guided structure reconstruction in a cou-

pled manner so that they can better utilize each other for more rational generation. In addi-

tion, to enhance global consistency, a bidirectional gated feature fusion (Bi-GFF) module is

designed to exchange and combine structural and texture information, and a contextual fea-

ture aggregation (CFA) module is developed to refine the generated content affinity learning

and multi-scale feature aggregation by region.

In 2023, the literature [10] proposed a U-Net-based latent diffusion model that performs

diffusion in a low-resolution latent space while retaining high-resolution information from the

original input for the decoding process. Compared to previous latent diffusion models that

train VAE-GAN to compress images, the proposed U-Net compression strategy is more stable

and can recover highly accurate images without relying on adversarial optimization, aiming to

improve the applicability of diffusion models in real-world image recovery. the literature [11]

proposed a lightweight single-image super-resolution network that fuses multi-level features.
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The components are mainly two-level nested residual blocks. To better extract features and

reduce the number of parameters, each residual block adopts an asymmetric structure. More-

over, the selection of the appropriate loss function of the neural network requires high hard-

ware requirements, and the network training is time-consuming and other problems. Partial

differential equation based image restoration algorithm can avoid these shortcomings.

Partial differential equation based image restoration algorithm

The image restoration method of repairing lost areas through known areas originated from

the restoration techniques used by craftsmen for damaged artworks, i.e., diffusion restoration

based on local information, which mainly revolved around anisotropic filtering until 2000.

Malik [12] proposed various anisotropic diffusion equations. These methods can achieve good

results in small scratches, small object removal, etc. However, for applications such as restora-

tion of larger areas of broken images, removal of large objects from images, etc., it is difficult

to achieve the desired restoration results in these applications.

And essentially, the first consideration in large region restoration is definitely the high-level

semantic information of the restored object, and then the repair is based on the large amount

of a prior information it has accumulated. For large region restoration, there are mainly two

types of effective methods: one is based on texture synthesis techniques [13–17], which can

achieve good results in texture detail restoration, but it is difficult to capture the global struc-

ture of the image, and the semantics of the image; the other is based on external database

search methods [18], which assume that regions surrounded by similar contexts may have sim-

ilar content, which is very effective when sample images with sufficient visual similarity to the

image to be restored can be found, but when the restored image is not well represented in the

sample database, false restoration occurs, making the final restoration unsatisfactory.

In 2000, researchers thus proposed early image restoration algorithms based on partial dif-

ferential equations, which use the idea of diffusion, where the data near the lost region during

image transmission arrives to repair the lost region by diffusion, and in 2000 Bertalmio, Sapiro,

Caselles, and BallesterIl [19] first proposed a BSCB repair model, which uses the edge informa-

tion of the region to be repaired to diffuse the information outside the region to be repaired

into the region to be repaired along the gradient vertical direction. This process is an iso-illu-

mination line extending along the tangent direction. The algorithm does not require the topol-

ogy inside the repaired region and is well adapted, but defects such as too slow repair speed

and easy blurring after repair hinder its application prospects. In 2001, Chan et al. improved a

total variation model(TV) by applying it to image restoration and proposed a new repair

model, namely Curvature-Driven Diffusion (CDD) [14], which can overcome the “deficien-

cies” of TV. It is an extension of the total variance model and the main improvement is the

introduction of curvature information in the process of image information diffusion. In 2007,

the literature [20] proposed a fast image restoration algorithm for the traditional classical res-

toration method, which has the disadvantages of slow restoration speed and does not maintain

strong edges, by applying a fast marching method to the boundary of the region to be restored.

The fast marching method gradually advances from the outside to the inside, and the advance-

ment uses the correlation between the pixel to be repaired and its surrounding neighboring

pixels to repair each discrete pixel point on the boundary until the end of the restoration. In

the literature [21], the P-Laplace operator is applied to image repair to establish the P-Laplace

model for image repair. The model uses the performance of nonlinear anisotropic diffusion of

the P-Laplace operator to fill the damaged area, and controls the diffusion direction and time

by taking a P value between 1 and 2 to achieve improved repair results and shorter repair time.

In 2013, the paper [22] proposed a new tensor diffusion-based wavelet repair model(TDWI) to

recover lost or damaged wavelet coefficients. A hybrid model was developed by combining

structural adaptive anisotropy regularization with wavelet representation. The shape of the
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diffusion kernel adaptively changes according to the features of the image, including sharp

edges, corner points, and homogeneous regions. Compared with existing wavelet restoration

models, this model can more adaptively and accurately control the geometric regularity in the

image and has better robustness to noise. In 2016, the literature [23] established a new class of

image restoration models based on fractional-order nonlinear anisotropic diffusion equations

that employ the P-Laplace norm of the fractional-order gradient of the image intensity func-

tion. This model can effectively enhance the texture details of the image and eliminate the step

and speckle effect, in addition to effectively removing noise and non-linearly maintaining the

high-frequency edges of the image. In 2017, the literature [24] proposed a new TV-Stokes

model for image deblurring with a better geometric interpretation. In the image reconstruc-

tion, we first calculate the smoothed part of the image from the smoothed tangential field, and

then use the anisotropic TV model to obtain the “textured” part of the deblurred image. Solv-

able properties of the two-step minimization problem are established, and a fast algorithm is

given. The new deblurring model is able to capture image details hidden in blurred and noisy

images, and the fast algorithm is efficient and robust. In 2018, the literature [25] proposed a

wavelet repair model using fractional-order full-variance regularization method. The compu-

tational efficiency is improved and the convergence of the new algorithm is ensured. In 2023,

the literature [26] proposed a fine inpainting method of incomplete image based on features

fusion and two-steps inpainting (FFTI), Firstly, the dynamic memory networks (DMN+) are

used to fuse the external features and internal features of the incomplete image to generate the

incomplete image optimization map. Secondly, a generation countermeasure generative net-

work with gradient penalty constraints is constructed to guide the generator to rough repair

the optimized incomplete image and obtain the rough repair map of the target to be repaired.

Finally, the coarse repair graph is further optimized by the idea of coherence of relevant fea-

tures to obtain the final fine repair graph.

Image repair methods based on partial differential equations can repair small-scale broken

images well and can also repair multiple broken fields simultaneously, but the repair results

are not satisfactory for images with a large range of missing information, and with the applica-

tion of image repair in new fields such as biomedicine and face image repair, the quality

requirements of the repaired images are getting higher and higher, and the researchers pro-

posed a dynamic weighted matching image restoration algorithm, which better utilizes the

known information of the image, improves the image restoration quality, and uses the local

average gray-scale entropy fast image restoration algorithm to speed up the computer to per-

form the restoration of structural information, connect the edges, and later repair the texture

components, which can improve the consistency of the image structure, texture, etc.

Embodiment of the advantages of the algorithm in this paper: The algorithm in this paper

mainly repairs old photos with scratches and images covered by text. Theoretical analysis and

experimental results show that the model has shorter repair time than the CDD model and can

obtain visually more natural repaired images.

CDD inpainting model

CDD inpainting model is built on TV model. As practiced in the variational methodology, it is

very convenient to solve the TV inpainting problem. Fig 1 indicates that E (Extended Area), D
(inpainting Area), etc.

Jl½u� ¼
Z

E[D
jrujdxdyþ

l

2

Z

E
ju � u0j

2dxdy ð1Þ

Where plays the role of the Lagrange multiplier for the constrained variational problem. The
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Euler-Lagrange equation for the energy functional is

div
ru
jruj

� �

þ le u � u0ð Þ ¼ 0 ð2Þ

for all, adding Neumann boundary conditions. Here the extended Lagrange multiplier is given

by

leðoÞ ¼
l; o 2 E

0; o 2 D

(

The infinitesimal steepest equation for is therefore given by

@u
@t
¼ r

ru
jruj

� �

þ le u
0 � uð Þ ð3Þ

Since takes two different values. (2) or (3) is a two-phase problem, and the interface is the

boundary P of the inpainting domain. From the numerical point of view, in all of the above

differential equations, we replace the curvature term.

Let D be an inpainting domain with piecewise smooth boundary, and E any fixed closed

domain in the complement Dc, so that lies in the interior of E [ D. To satisfy the connectivity

principle of human, Chan and Shen [15] proposed a new PDE model based on curvature

driven diffusions(CDD). Which is closely inspired by the TV inpainting model. The CDD

inpainting model is governed by the following PDE:

� r
gðjkjÞ
jruj

ru
� �

þ lo u � u0ð Þ ¼ 0;lo ¼
l; ðx; yÞ 2 E

0; ðx; yÞ 2 D

(

ð4Þ

where k is the scalar curvaturer ru
jruj

h i
. The new ingredient of the CDD model, compared with

the TV inpainting model. The choice of a coefficient value of 1 outside the inpainting domain

indicates that the model carries out the regular TV denoising task outside D. Meanwhile, g(s)

Fig 1. Inpainting domain.

https://doi.org/10.1371/journal.pone.0305470.g001
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can be any appropriate function that penalizes large curvatures and stabilizes small curvatures

inside the inpainting domain. In Chan and Shen [15], it is argued that g(s) must satisfy.

gð0Þ ¼ 0; gðþ1Þ ¼ þ1

Thus, for example, one can choose for some g(s) = sp for some p� 1. Under this condition, the

model stretchesout bent level lines inside the inpainting domain, outputs connected objects,

and therefore realizes the connectivity principle. For better repair effect, we replace the diffu-

sion function g(s) with Δpu where Δpu = div (|ru|p−2ru), 1� p<1. Using P-Laplace opera-

tor to fill the damaged domain can make the image edge transition more natural and improve

the inpainting effect. Then, the CDD model with P-Laplace operator is

@u
@t
¼ div

jDpuj
ru
ru

� �

þ leðoÞ u
0 � uð Þ ð5Þ

Using the variational method to solve the extremum question, the following equations are

solved

div
jDpuj
ru
ru

� �

þ leðoÞ u0 � uð Þ ¼ 0 ð6Þ

The inpainting algorithm of this paper

Various image inpainting algorithms based on CDD model only make use of the reference

information of four neighborhood pixels. Therefore, they cannot keep shape edges and their

inpainting precisions high enough. To conquer these difficulties, the image inpainting algo-

rithm based on improved CDD was presented in which the reference information for damaged

pixel was extended from 4 into 16 neighborhood pixels. The improved CDD algorithm can

effectively improve the inpainting precision and keep shape edeges. Extending the method of

repairing damaged points with information from known pixel points in the damaged point

domain was inspired by the literature [27], where the CDD model was used to repair damaged

points using information from 8 points on P = {N, S, W, E, NW, NE, SW, SE} only. In this

paper, we first introduce the P-Laplace operator to modify the diffusion coefficient of the

CDD, and then use the improved CDD model to repair the damaged points using the known

information of a total of 16 points on p and p0 = {N, S, W, E, N1, S1, W1, E1}.

An improved CDD inpainting algorithm is proposed to inpaint the image twice. Experi-

ments show that the algorithm proposed in this paper not only has good quality of image

inpainting, but also the inpainting time takes less, so it is a better algorithm for fast image

inpainting. Fig 2 let E, N, W, S denote four adjacent pixels of the pixel O, and e, n, w, s the cor-

responding four midway points. Write

L0 ¼ fE;N;W; Sg L
0

0
¼ fe; n;w; sg P0 ¼ N; S;W;E;N1; S1;W1;E1

Usually, the noise is ignored in the missing or damaged areas. then Eq (3) can be modified as

@u
@t
¼ div

jDpuj
ru
ru

� �

ð7Þ

Eq (7) can be simplified as @u
@t ¼ r � v, where v ¼ v1; v2ð Þ ¼

divðjrujp� 2
z ruÞru
jrujε

, the curvature

k ¼ div ðjrujp� 2

ε ruÞ. We can also use the half-point center difference method to discretize

formula (7), as shown in Fig 2.
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Then the divergence is first discretized by central differencing:

r � v ¼
@v1

@x
þ
@v2

@y
¼
v1
e � v

1
w

h
þ
v2
n � v

2
s

h
ð8Þ

where h denotes the grid size, which is always taken to be 1 in image processing. Next, we gen-

erate further approximations at the midway points, where image information is not directly

available. Take the midpoint e, for example:

v1
e ¼

jkej
jruejε

@u
@x

� �

e

¼
jkej
jruejε

uE � uO
h

ð9Þ

rue ¼ ru1
e ;ru

2
e

� �
¼

uE � uO
h

;
uNE þ uN � use � us

4h

� �
ð10Þ

jruejε ¼
1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðuE � uOÞ
2
þ ½ðuNE þ uN � uSE � uSÞ=4�

2
þ ε2

q

ð11Þ

ke ¼ r
rue
jruej

2� p
ε

" #

¼
@

@x
ru1

e

jru1
e j

2� p
ε

" #

þ
@

@y
ru2

e

jru2
e j

2� p
ε

" #

ð12Þ

Fig 2. A pixel O and its neighbors.

https://doi.org/10.1371/journal.pone.0305470.g002
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@

@x
ru1

e

jruej
2� p
ε

" #

¼
ru1

E

jruEj
2� p
ε

�
ru1

O

jruOj
2� p
ε

 !
.
h ð13Þ

@

@y
ru2

e

jruej
2� p
ε

" #

¼
ru2

NE

jruNEj
2� p
ε

þ
ru2

N

jruN j
2� p
ε

�
ru2

SE

jruSEj
2� p
ε

�
ru2

S

jruSj
2� p
ε

 !
.

4h ð14Þ

v1
e ¼

1

jruejε

uE � uo
h2

ru1
E

jruEj
2� p
ε

�
ru1

o

jruoj
2� p
ε

 !

þ
1

4

ru2
NE

jruNEj
2� p
ε

þ
ru2

NE

jruNEj
2� p
ε

�
ru2

SE

jruSEj
2� p
ε

�
ru2

S

jruSj
2� p
ε

 !" #

v1
w ¼

1

jruwjε

uO � uw
h2

ru1
W

jruW j
2� p
ε

�
ru1

O

jruOj
2� p
ε

 !

þ
1

4

ru2
N

jruN j
2� p
ε

þ
ru2

NW

jruNWj
2� p
ε

�
ru2

S

jruSj
2� p
ε

�
ru2

SW

jruSWj
2� p
ε

 !" #

v2
n ¼

1

jrunjε

uN � uo
h2

ru2
N

jruN j
2� p
ε

�
ru2

O

jruOj
2� p
ε

 !

þ
1

4

ru1
NE

jruNEj
2� p
ε

þ
ru1

E

jruEj
2� p
ε

�
ru1

NW

jruNWj
2� p
ε

�
ru1

W

jruW j
2� p
ε

 !" #

v2
s ¼

1

jrusjε

uo � us
h2

ru2
O

jruOj
2� p
ε

�
ru2

S

jruSj
2� p
ε

 !

þ
1

4

ru1
E

jruEj
2� p
ε

þ
ru1

SE

jruSEj
2� p
ε

�
ru1

W

jruWj
2� p
ε

�
ru1

SW

jruSWj
2� p
ε

 !" #

Similar discussion applies to the other three directions N, W, S and the other half-pixel

points n, w, s. Therefore, at a pixel O, the Eq (2) is discretized to:

X

P2L0 ;d2L
0
0

jkdj
jruj

uO � uPð Þ þ lo uO � u
0

O

� �
¼ 0 ð15Þ

where the function u0
O represents the original defective image. For any arbitrary point d 2 L0

0
,

the function wd,ε be defined:

wd;ε ¼
jkdj
jrudjε

¼
jkdjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jrudj
2
þ ε2

q ð16Þ

where the parameter ε> 0. When ε = 0, the function wd is simplified as:

wd ¼
jkdj
jrudj

ð17Þ

Similar, the gradient norma |ruw|, |run|, |rus| of other half-pixel points can be calculated.

We solve Eq (15) to obtain

uo ¼

X

P2A0 ;d2L00

jkdj
jrudj

uP

X

d2L0
0

jkdj
jrudj

þ lo

þ
lo

X

d2L0
0

jkdj
jrudj

þ lo

u0

o ð18Þ

The formula
jkd j
jrud j

represents the diffusion coefficient corresponding to the four pixels e, n, w, s.
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The function up represents the gray value of the four points:E, N, W, S. Let

wd ¼
jkdj
jrudj

; hOd ¼
wdX

d2L0
0

wd þ lo
; hOO ¼

loX

d2L0
0

wd þ lo ð19Þ

Using formula (19) to simplify formula (18), a new inpainting formula is obtained:

uO ¼
X

P2L0 ;d2L00

hOduP þ hOOu
0

o ð20Þ

With

X

P2L0

hop þ hoo ¼ 1

Eq (20) is in the form of a low pass filter, which is of course a system of nonlinear equations

since the filter coefficients all depend on u. Freezing the filter coefficients (to linearize the

equations), and adopting the Causs-Jacobi iteration scheme for linear systems, at each step n,

we update u(n−1) to u(n) by

unO ¼
X

P2L0 ;d2L
0
0

hn� 1

Od u
n� 1

P þ hn� 1

OO u
n� 1

O ð21Þ

Where hm−1 = h(um−1). Since h is a low pass filter, the iterative algorithm is stable and satisfies

the maximum principle [16]. In particular, the gray value interval [0, 1] is always preserved

during the iterating process.

Useful variations of the algorithm can be obtained by altering the definition wd in (17).

Experiments show that such variations sometimes work better for inpainting sharp edges in

the digital setting. In implementation, the weights wd are

wd ¼
jkdj
jrudjε

¼
jkdjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2 þ jruj2
q ð22Þ

For some small number ε, to avoid a zero divisor in smooth regions. Notice that choosing a

large ε brings the TV model closer to the harmonic inpainting(especially computationally,

since the spatial step size h is set to 1, and u takes values from the finite gray-scale interval

[0.1]). In addition, as ε gets bigger, the convergence the iteration scheme speeds up.

Although the pixels in area E are known, the iterative operation is still performed. The new

value of the point O is calculated from the old value and the adjacent pixels. The iterative oper-

ation is performed for each pixel in the area E, so that the known information is gradually

advaced to the damaged area, which inpaints the image.

The above analysis shows that the restoration value of the point O is only related to eight

pixels in its area on the surface, but in fact, every pixel in the area participates in the iterative

operation, and the restoration value of the point O is related to the pixel value in the area.

However, because each operation only considers eight pixels in the field of point O, the infor-

mation obtained is limited.

In order to reduce the inpainting time, our algorithm uses a weighted average kernel with

the diffusion coefficient to inpaint the highest bit layer of image.

At the highest level of the image, we use the new inpainting formula (20) to calculate the

inpainting point O by eight pixels neighborhood of the point O, and use the information of the

eight points to predict the point O. When |rud| = 0, the weighting coefficient tends to infinity,
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So the adjustment parameter ε is introduced. The following inpainting formula is obtained:

u0 ¼

X

P2L0 ;d2L
0
0

wd;εuP
X

d2L0
0

wd;ε

ð23Þ

As can be seen from the above equation, the inpainting formula is closely related to the curva-

ture term and gradient. When the gradient is large, the weighting coefficient is small, and

when the gradient is small, the weighting coefficient is large, so the inpainting algorithm is also

anisotropic. Due to the addition of gradient and curvature terms, the “connectivity criterion”

can be satisfied.

The essence of the CDD model is to use the weighted average of four points in the field of

points to be repaired as the change variable in the repair iterative process. This model can

achieve both denoising and preserving image edge in the process of restoration. However, it

only uses 8 points{N, S, W, E, NE, NW, SW, SE}in the field of points to be repaired. If four

more points in the repair area are added to provide effective information for the points to be

repaired, the accuracy of the repaired image will be greatly improved. Following this idea, on

the basis of the CDD model, the solution information of the points to be repaired is extended

to 12 points in the neighborhood, so that the accuracy of the repaired images can be improved

under the condition of increasing the time complexity. Then 8 points in the repair area are

selected again, and the repair points are repaired by using the CDD model, and a formula (24)

was obtained,

u0O ¼

2

h2

X

P2L0 ;d2L00

jkdj
jrudj

uP

X

d2L0
0

jkdj
jrudj

þ lo

þ
lo

X

d2L0
0

jkdj
jrudj

þ lo

u0

O ð24Þ

where, Λ0 = {E1, N1, W1, S1}, L
0

0
¼ fe1; n1;w1; s1g.

Formula (24) is obtained by rotating the field points of Formula (18) in the following way:

E! NE;N ! NW;W !WS; S! SE;

SE! E1;NE! N1;NW !W1; SW ! S1

In the above process, the repair points have been repaired twice at the same time and the

results obtained are respectively u0 and u0
0
. Below, the weighted average of these two different

results is carried out to obtain the final repair effect.

Since two different fields with different distances of the point O to be repaired are used

respectively in function u0 and u0
0
.

Therefore, the difference step size used to solve O is different, which results in different

influence on O. Therefore, according to the distance ratio and weighted average, the final

repair value of the points to be repaired is as follows:

u ¼
1

1þ
ffiffiffi
2
p u0

0
þ

ffiffiffi
2
p

1þ
ffiffiffi
2
p u0

ð25Þ

Specific details and methods:
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1. Firstly, based on the information of the eight points {N, E, S, W, NE, SE, WS, NW} of the

inner solid square in Fig 2, the point O to be repaired is repaired using Formula (18) to

obtain u0.

2. Then, based on the information of the eight points {E1, N1, W1, S1, NE, SE, WS, NW} of the

external solid square in Fig 2, the point O to be repaired is repaired using Formula (24) to

obtain u0
0
.

3. Finally, the repair values u0 and u0
0

are superimposed by taking the weights according to the

degree of influence of the distance, as in Formula (25), to obtain the value of the point to be

repaired O, u.

Reasons for empowerment:

1. The closer it is to the point to be repaired, the greater its correlation with the point to be

repaired, and the greater its influence on the point to be repaired;

2. The image connectivity criterion is satisfied. For a certain pixel related to the repair point,

when the distance of unit length is increased, the increased pixel value is equal. Guass-

Jacobi iterative method is adopted:

uðnÞ ¼
1

1þ
ffiffiffi
2
p uðn� 1Þ

0 þ

ffiffiffi
2
p

1þ
ffiffiffi
2
p uðn� 1Þ

0
ð26Þ

Algorithm implementation steps

Step1:Read the damaged image. Read the damaged image through the Imread function that

comes from MATLAB. After reading, the bit image layering technology is used for layering.

Take the highest bit layer of image after layering and enter the next step.

Step2: Determine the damaged area D of the image. The image after layering needs to be

further processed, and the mask marking method is used to separate the damaged area from

the known area. Mark the damaged area with a mask, and set the mask value of the pixel point

in the damaged area to zero, it means that there is the damaged point and must be inpainted.

Let the mask value within the known range [1, 255], it means that this pixel point is known

and does not need to inpaint. The determined damaged area must be participated by humans,

and human-computer interaction can confirm the entire damaged area.

Step3:Find the damaged area and inpaint it. The image inpainting process is the process of

predicting unknown points from known points. Therefore, before inpainting, it is necessary to

find the boundary of the known area, and start the iterative operation step by step from the

boundary to the interior.

Step4:Take the image of the damaged area and use the improved CDD model to restore.

After restoring, it is time to go to the second step and continue to use the improved CDD

model to inpaint the image of the next damaged area.

Step5:Perform image reconstruction. Finally the restored image can be obtained, and the

image is output.

Algorithm 1: The Curvature-Driven Diffusion model with the P-Laplace operator term.
1 Step1:
2 function newcdd(u);
Input: Image to be inpainting uo

Output: Image of completed inpainting u
3 ½uox;u

o
y� ¼ gradientðuoÞ;
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4 Ke ¼
@Uoe
@x þ

@Uoe
@y , Kw ¼

@Uow
@x þ

@Uow
@y , Ks ¼

@Uos
@x þ

@Uos
@y , Kn ¼

@Uon
@n þ

@Uon
@y ,;

5 Ue ¼ jru
o
ejε, Uw ¼ jru

o
wjε, Us ¼ jru

o
sjε, Un ¼ jru

o
njε;

6 ωe=Ke/sqrt(1+Ue)+1,ωw=Kw/sqrt(1+Uw)+1
ωs=Ks/sqrt(1+Us)+1,ωn=Kn/sqrt(1+Un)+1

7 u ¼ ðoeu
o
e þ owu

o
w þ osu

o
s þ onu

o
nÞ=ðoe þ ow þ os þ onÞ

8 Step2:
9 function newcdd(u0);
Input: Image to be inpainting uo

Output: Image of completed inpainting u0

10 ½uox;u
o
y� ¼ gradientðuoÞ;

11 Ke ¼
@Uoe1

@x þ
@Uoe1

@y , Kw ¼
@Uow1

@x þ
@Uow1

@y , Ks ¼
@Uos1

@x þ
@Uos1

@y , Kn ¼
@Uon1

@n þ
@Uon1

@y ,;
12 Ue1

¼ jruo
e1
jε, Uw1

¼ jruo
w1
jε, Us1

¼ jruo
s1
jε, Un1

¼ jruo
n1
jε;

13 oe1
¼ Ke=sqrtð1þ UeÞ þ 1;ow1

¼ Kw=sqrtð1þ UwÞ þ 1

os1
¼ Ks=sqrtð1þ UsÞ þ 1;on1

¼ Kn=sqrtð1þ UnÞ þ 1

u0 ¼ ðoe1
uoe1
þ ow1

uow1
þ os1

uos1
þ on1

uo
n1
Þ=ðoe þ ow þ os þ onÞ

Step3:
Input: Image to be inpainting u, u0

Output: Image of completed inpainting I
16 I ¼ 1

1þ
ffiffi
2
p u0 þ

ffiffi
2
p

1þ
ffiffi
2
p u

Experimental results

We have implemented the algorithm with MatlabR2016a on the PC with i5-1035G1, 1.00GHz,

16G memory. The size of the image used is 256 * 256. Take the parameters λ = 1, P = 1.6 and

carry out experiments on large spots and scratches respectively.

In order to verify the experimental results, we use TV model, CDD model and the improved

algorithm to carry out restoration experiments. The algorithm parameter ε = 1. The signal-to-

noise ratio is calculated as follows:

PSNR ¼ 10lg

XM

i¼1

XN

j¼1

ðuði; jÞÞ2

XN

i¼1

XN

j¼1

ðu0ði;; jÞ � uði; jÞÞ
2

0

B
B
B
B
@

1

C
C
C
C
A

ð27Þ

Considering the importance of inpainting application, several metrics have been proposed in

the literature [28] specially dedicated to the image inpainting quality assessment. Then, we

apply Structure Similarity Index Measure(SSIM), Feature Similarity Index Mersure (FSIM)

and Normalized Mean Square Error(NMSE)to evaluate the quality of the images:

SSIMðx; yÞ ¼
ð2mxmy þ C1Þð2sxy þ C2Þ

ðm2
x þ m

2
y þ C1Þðs

2
x þ s

2
y þ C2Þ

ð28Þ

FSIM ¼

X

x2O

SLðxÞPCmðxÞ
X

x2O

PCmðxÞ
ð29Þ

NMSE ¼
PM

i¼1

PN
j¼1
½gði; jÞ � ĝði; jÞ�2

PM
i¼1

PN
j¼1
½gði; jÞ�2

ð30Þ

where M = N = 255. The above images are all taken by ourselves. For Fig 3, for the original
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image, TV model and CDD model inpainting algorithm are basically consistent with the

inpainting results of the algorithm in this paper. In Fig 3, the number of iterations is

150,1000,100 respectively, CDD model and TV model can clearly show up the inpainting

traces in the inpainting results, but the inpainting traces are almost invisible with the algorithm

in this paper. The algorithm in this paper is least iterations, and the restoration effect of the res-

toration algorithm in this paper is best.

The above three images of dogs, flowers and buildings have been studied by TV model,

CDD model and the algorithm proposed in this paper. From Tables 1–3 and Fig 4, it can be

seen that there are obvious traces of restoration in TV and CDD restored images, and the res-

toration effect of the restoration algorithm proposed in this paper is better. In the image

inpainting experiments, compared with the TV model, the algorithm proposed in this paper

consumes the least time and has the best effect, so the algorithm proposed in this paper is bet-

ter than the TV model and CDD model. Fig 4 shows graphically that the iteration time growth

Fig 3. Image inpainting of dog, flower and buildings.

https://doi.org/10.1371/journal.pone.0305470.g003

PLOS ONE Image inpainting algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0305470 July 16, 2024 13 / 16

https://doi.org/10.1371/journal.pone.0305470.g003
https://doi.org/10.1371/journal.pone.0305470


Table 1. Comparison of algorithm time (s) and signal-to-noise ratio (PSNR).

Image TV model CDD model proposed algorithm

Time PSNR Time PSNR Time PSNR

Fig 3 Dog 282.9851 22.8323 144.9940 30.0024 228.6431 38.7982

Fig 3 Flower 273.2293 21.1838 141.1240 29.5230 224.5521 37.8147

Fig 3 Buildings 264.4490 20.3567 135.8070 28.4462 219.9650 36.3820

https://doi.org/10.1371/journal.pone.0305470.t001

Table 2. Comparison of Structure Similarity Index Mersure(SSIM) and Feature Similarity Index Mersure (FSIM).

Image TV model CDD model proposed algorithm

SSIM FSIM SSIM FSIM SSIM FSIM

Fig 3 Dog 0.7618 0.8897 0.8763 0.9013 0.9211 0.9781

Fig 3 Flower 0.8183 0.8613 0.8972 0.9345 0.9407 0.9579

Fig 3 Buildings 0.8612 0.8496 0.8492 0.8515 0.9323 0.9650

https://doi.org/10.1371/journal.pone.0305470.t002

Table 3. Comparison of Normalized Mean Square Error(NMSE).

Image TV model CDD model proposed algorithm

NMSE NMSE NMSE

Fig 3 Dog 0.01667 0.0204 0.0151

Fig 3 Flower 0.0193 0.0307 0.0175

Fig 3 Buildings 0.0186 0.0267 0.1661

https://doi.org/10.1371/journal.pone.0305470.t003

Fig 4. Iteration times and time curve.

https://doi.org/10.1371/journal.pone.0305470.g004

PLOS ONE Image inpainting algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0305470 July 16, 2024 14 / 16

https://doi.org/10.1371/journal.pone.0305470.t001
https://doi.org/10.1371/journal.pone.0305470.t002
https://doi.org/10.1371/journal.pone.0305470.t003
https://doi.org/10.1371/journal.pone.0305470.g004
https://doi.org/10.1371/journal.pone.0305470


rate of the proposed algorithm and TV model is much larger than that of the CDD model with

the growth of time.

The image restoration model based on partial differential equations utilizes useful informa-

tion around the area to be repaired to diffuse into the area. The advantage of this method is its

simplicity of use. However, this method cannot repair large damaged areas, while neural net-

work image repair methods can repair large damaged areas. In reference [29], the occlusion of

facial images reached 25%, and the PSNR value after repairing using CE network reached

30.75. Although neural networks require high software and hardware conditions, the method

of repairing images using neural networks has a better effect on repairing areas with large

damage. In the future, neural network methods will be the mainstream method for image

processing.

Conclusions

On the basis of studying TV model and CDD model inpainting algorithm proposed by Chan

et al., the improved algorithm which uses an improved CDD model to perform on the highest

level of image. The algorithm uses the structural information such as image gradient and cur-

vature to inpaint, and achieves good results. In the case of fewer iterations, the improved algo-

rithm is better than TV model, CDD model, and the image texture features can also be

inpainted. It is worth improving that because the algorithm in this paper targets grayscale

images, when there is a brighter area in the image, it will default to blank for repair, causing

the area to become blurred and destroy the original connectivity. Moreover, when there are a

large number of blank areas, the repair effect is not satisfactory. The above problems deserve

more in-depth research.

Overall, the design of deep learning network and the selection of loss function during train-

ing are to be explored, and the selection of appropriate loss function will improve the image

repair quality while also speeding up the training speed of deep learning. The improvement of

image restoration quality can also be solved by reducing the depth of the noise model. There-

fore, more in-depth research is needed on how to design a more perfect denoising model and

how to design a restoration network with universal applicability to improve the accuracy of the

restoration results.
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