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Abstract

There has been a lack of a satisfactory solution for identifying and locating evolving faults in

unbalanced distribution systems. The proposed approach is based on the cross-correlation

technique as a key element for fault detection and location. Evolving faults, in this context,

refer to two sequential faults that result in a change of fault phase. The captured QRS value

reflects the occurrence of the second fault occurrence. In order to identify Evolving Faults, it

makes use of the signal that is currently being monitored at any given point in the network.

Typical system occurrences, such as a short circuit fault that grew into another short circuit

fault, as well as cross-country faults, are simulated, and according to the suggested tech-

nique, they are accurately differentiated from one another. Using a real-time simulator, rigor-

ous simulations are performed on the modified IEEE 240 bus distribution system. The

results of these simulations reveal that they have the potential to uncover defects that are

constantly changing. Regardless of the fault (location\resistance\inception angle), location

of the monitored point, or sample frequency that is selected, the suggested approach is

unaffected by any of these factors. In addition, the slime mold optimization approach is uti-

lized in order to get the best monitoring points that accurately identify the bus in which the

evolving fault has taken place.

1. Introduction

a). Motivation and background

Evolving faults (EFs) in a transmission system refer to faulty conditions where the faulted

phases change over time. Unlike other types of power system (PS) faults where the faulty
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phases remain the same and do not change with time, EFs exhibit a dynamic characteristic

where the faulted phase evolves or shifts as time passes. The criteria for classifying a fault as an

EF are primarily based on the changing faulted phases. EFs pose a challenge in PS protection

and require specialized techniques for their detection and location. In order to build protec-

tion strategies for PSs in general, a number of different signal processing and mathematical

techniques are utilized. For fault detection and protection schemes, a number of signal pro-

cessing and mathematical techniques are utilized. These techniques include the Stockwell

transform (ST), the Wigner distribution function (WDF), the discrete wavelet transform

(DWT), the Hilbert transform (HT), the Gabor transform (GT), the Fourier transform (FT),

the fast Fourier transform (FFT), and the short time FT (STFT). Currently, the use of these

approaches for the purpose of recognizing EFs and defects that span many countries is still in

the process of being developed [1, 2].

Understanding and addressing EFs in an 11 kV or 33 kV PS is crucial for ensuring the reli-

ability, safety, and efficient operation of the electrical grid. EFs exhibit dynamic behaviour, with

the faulted conditions changing shortly after the fault initiation. This dynamic nature sets them

apart from more stable fault conditions. The rapid changes associated with EFs can pose chal-

lenges for traditional fault detection methods. Specialized techniques and technologies may be

required to effectively detect and analyse EFs. EFs may introduce unexpected challenges, such

as unusual fault current levels or other dynamic phenomena. Studying and addressing these

challenges is essential for maintaining the stability of the PS. Analysing fault currents associated

with EFs is important for understanding the impact on equipment and determining appropriate

protective measures. Developing and implementing a robust protection scheme that accounts

for EFs is crucial. This may involve the use of advanced relaying techniques and coordination to

detect and isolate EFs effectively. Understanding EFs contributes to enhancing the overall resil-

ience of the PS. Identifying and addressing these dynamic fault conditions helps prevent cascad-

ing failures and widespread disruptions. Ongoing monitoring and maintenance practices

should be adapted to account for the potential presence of EFs. Proactive measures can help pre-

vent equipment damage and mitigate the impact on the PS [3, 4].

The cross-country high impedance fault (CCHIF) can be described as "high impedance

ground faults happening in separate phases of one circuit at different places at the same time as

the fault inception time" in a typical scenario. Major challenges in CC faults (CCFs) in PSs are

the detection of distance, direction, and phase selection in PSs. These faults are simultaneous or

EFs in the PS. The relay can fail to work when there is a failure inside its zone or to operate erro-

neously when there is a fault outside of its zone. This is because the distribution of zero-

sequence and negative-sequence components over the protected line, which is employed by the

functions that were previously described, is not straightforward to anticipate. This impacts sys-

tems that are solidly grounded as well as those that are isolated or impedance grounded [5, 6].

Double line-to-ground faults, simultaneously exist and damage two distinct lines of a given

network at two different places, and are frequently referred to as CCFs. The problem is rele-

vant in balanced/unbalanced PS since they experience faults significantly more frequently than

HV and EHV transmission networks. CCFs have a particularly negative impact on MV net-

works with high-impedance grounded, ungrounded, or resonant neutrals since an LGF can

result in considerable overvoltage’s on the healthy phases, which can then lead to another LGF

and a CCF [7].

b). Literature analysis

The incorporation of distributed energy resources (DERs) is causing traditional PSs to become

more complicated. Both the insertion of DERs into distribution networks and the introduction
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of the idea of microgrids can assist in meeting the growing demand for electric power. Many

key benefits are associated with microgrids, such as the ability to self-heal and self-resilience,

enhanced power quality, lower carbon footprints through the utilization of renewable DERs,

and efficient operations with reduced line losses. Grid-connected mode (GCM) and islanded

mode (IM) are the two distinct modes of operation that microgrids may normally operate in.

Microgrids have some challenges when it comes to fault detection. These challenges include

variances in short circuit levels between GCM and IM operation, bidirectional power flow,

and the minimal fault current contribution of inverter-based DERs among other factors. It is

possible that conventional fault detection approaches, such as over-current and directed over-

current principles, are erroneous or useless when applied to microgrid settings. The sophisti-

cated fault detection techniques that are required for modern distribution networks (DNs)

and microgrids are essential. Many different layouts are utilized by conventional DNs, and the

switching frequency can range anywhere from a few weeks to many months. DNs that are

reconfigurable entail making changes to the configuration of the network in order to accom-

plish goals like as lowering losses, decreasing voltage variation, and balancing loads. When

DERs that are intermittent, like solar and wind, are present, it may result in numerous hourly

reconfigurations. In these kinds of circumstances, the utilization of directional over-current

relays necessitates the utilization of several settings, which presents difficulties in terms of

obtaining real-time modifications. The integration of DERs brings about many protection

concerns, and it brings to light the requirement for sophisticated fault detection techniques.

The text refers to a brief overview of protection problems linked to the incorporation of DER

in [7], which is not covered in the material that is being presented here. There have been stud-

ies conducted on directional overcurrent techniques [8, 9], and the work that is being done in

[9] focuses on the coordination of directional overcurrent relays when DERs are present. In

[8], the authors suggest the use of new directional components that make use of superimposed

impedance to identify both symmetrical and asymmetrical defects. There have been attempts

made to develop adaptive protection mechanisms [10, 11].

Based on the findings of the study [10], an adaptive settings-based protection system that is

dependent on communication infrastructure is proposed. It is claimed in [11] that a superim-

posed current-based direction estimation can be used to improve the functioning of overcur-

rent relays. This estimation makes use of the angle difference between the pre-fault current

and the superimposed current to determine the direction of the fault. An adaptive settings-

based distance relay is proposed for active DNs, which is one of the distance protection solu-

tions that have been investigated [12]. On the other hand, this technique is not investigated

with active sources that are dependent on inverters.

Learning-based defect detection techniques that make use of neural networks, support vec-

tor machines (SVMs), decision trees, and deep learning have been the subject of research [13–

15]. Many differential characteristics are utilized for protection in the work described in [13],

which asserts that symmetrical components of current are the most effective features for fault

detection. There are techniques for protecting microgrids that are based on data mining that

are presented in [14]. Ref. [15] proposed a protection method for microgrids that makes use of

WT and deep learning. This scheme offers information on the fault, including its location and

the sorts of faults that it can experience. In [16], a differential protection system that is based

on instantaneous current is suggested. This system checks the difference in current for two

samples that are taken consecutively. On the other hand, this method is only useful in situa-

tions when the fault current is at least ten percent higher than the nominal value.

Due to the substantial quantity of data that is required, verification of learning-based pro-

tection methods continues to be a difficult task. These studies shed light on the many ways that

academics have tried to handle the issues of fault detection and protection in microgrids and
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DNs that are constantly developing over time. Microgrids are becoming increasingly utilized

in DNs to develop applications that involve monitoring, protection, automation, and control

activities. The availability of low-cost hardware platforms that are capable of achieving protec-

tion criteria [17] and effective synchro phasor estimate algorithms are the factors that have

contributed to the implementation of this technology becoming feasible. Synchro phasor data-

based state estimators were used in earlier studies [18, 19] for fault identification through the

procedure of estimating measurement residuals. These systems, on the other hand, demon-

strate a high level of numerical complexity and reaction times. Parallel weighted least square

state estimation and zero sequence current are the foundations of yet another fault detection

approach [20]. In GCM, it is confirmed even though it takes into account a variety of network

topologies. However, it does not analyze to determine the variance in fault resistance. Accord-

ing to the technique presented in [21], a fault localization method was proposed that involves

calculating the injection fault current by utilizing the impedance matrix. On the other hand, it

draws attention to a problem in which many configurations can have the same impedance

matrix, which would result in inaccurate fault identification and placement. A further

approach for fault detection that is data-driven [22] uses an SVM to differentiate between

events. On the other hand, it is mentioned that data-driven algorithms need a significant quan-

tity of fault and no-fault event data and that the selection of a hyperplane for the SVM could be

difficult. The challenges in the discussed methods include the numerical complexity and high

response time of state estimation schemes, potential issues with fault resistance variation in

certain methods, and the requirement for a significant amount of data for data-driven

algorithms.

DNs are more extensive and intricate due to the presence of various loads, transformers,

and branching. EF detection techniques designed for transmission lines may not account for

the complexity and diversity of components in PSs. Fault characteristics in DNs may differ

from those in transmission lines. Distribution systems often experience more diverse fault

types, including single-phase and two-phase faults, which may require different detection

approaches. Availability and quality of data for fault detection play a crucial role. Transmission

systems may have more robust monitoring and measurement infrastructure, whereas DNs

may have limitations in terms of sensor density and data granularity. DNs may have cost con-

straints that limit the deployment of sophisticated monitoring and detection technologies.

This can affect the feasibility of implementing EF detection techniques that may require addi-

tional investments [23].

c). Significant contributions

A cross-correlation-based method for the EF detection scheme is suggested in the current work.

A safeguard system should be created to identify EFs, which could cause equipment damage or

prolonged outages if not identified. Conventional and numerical relays were not effective

enough for the detection/classification of EFs in the case of CCFs syndrome on a widely dis-

persed, complicated power system network, which is where the problem has become most

severe in recent years. CCFs, which impact numerous sites concurrently and multiple phases in

large imbalanced DNs, have not previously been studied. In light of this restriction, the essay

focuses solely on an imbalanced 240-bus distribution network topology, exploring its various

conceivable configurations. Justification of the proposed method has been reported in Table 1.

The innovative contributions of the proposed methods are as follows:

In light of the findings of this research, we propose a method that is based on CC for locat-

ing faults in DNs that come from international EFs. To determine the signature qualities, the
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technique takes into account the cross-correlogram by comparing the voltage during the

healthy condition to the voltage during the defective state.

It is demonstrated that the correlogram can lessen the impact of uncorrelated random

noise, which validated its usefulness as a tool for data analysis. It is the goal of feature extrac-

tion to produce new features from current features in a dataset, which will ultimately result in

the dataset being smaller in size. The new features, which have been simplified, should be able

to properly summarize the amount of data that is contained in the previous features. Creating

a more simplified version of the original set is possible through the process of integrating the

original elements in this manner.

One approach that is effective in lowering harmonics is the sparse nonnegative matrix fac-

torization (SSNMF) algorithm, which can automatically extract sparse and relevant features

from a given set of nonnegative data vectors. An approach validated on a real-time platform.

In this study, we introduce a technique for identifying EFs via CC. We next go over how to

determine where exactly a monitoring point needs to be set up, after which we briefly discuss

the correlation method and the method of peak detection (MOPD).

2. Proposed method

a). Feature extraction based on time cross-correlation

A statistical method known as correlation describes how closely two variables are related. Cor-

relation is helpful because it shows the connection between two variables, which enables us to

forecast how the system will behave in the future. Correlations can be either autocorrelative or

cross-correlative. The random noise and uncorrelated noise that are present in the signals are

not reflected in the cross correlogram of the two signals [24, 25], which does not reveal the

influence of these effects. A time series is defined as a set of triplets (ti, fi, ei), where ti is the

time of the observation, fi is the measured value of the quantity of interest (such as the flux

density or photon flux), and ei is an estimate of the observational error associated with the

measurement. Specifically, we expect the time series to be sorted in order of time, with I = 1,

. . ., N. The periodogram is traditionally defined as the squared modulus of the discrete FT

(DFT), and it can be used to approximate the power spectral density (PSD) [26]:

PðvkÞ ¼
2T
N2

XN

i¼1

ficosð2pvktiÞ

" #2

þ
XN

i¼1

fisinð2pvktiÞ

" #2 !

ð1: aÞ

By applying normalization to the CC function, we can obtain a Pearson correlation coeffi-

cient that is time-adjusted.

rxxðt1; t2Þ ¼
Kxxðt1; t2Þ
sxðt1Þsxðt2Þ

¼
E ðXt1

� mt1
ÞðXt2

� mt2
Þ

h i

sxðt1Þsxðt2Þ
ð1: bÞ

Table 1. Q, R, and S values for different disturbances.

Type of Fault Q R S

0 to 90˚ 0 to 90˚ 0 to 90˚

EFs 20 to 110 20 to 100 20 to 90

CCFs 2 to 11 2 to 10 2 to 9

short circuit fault 0.2 to 0.11 0.2 to 0.1 0.2 to 0.9

https://doi.org/10.1371/journal.pone.0305407.t001
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Specifically, a stochastic process’s normalized cross-correlation is defined as

rxyðtÞ ¼
KxyðtÞ

sxsy
¼

E ðXt � mxÞðYtþt � myÞ
h i

sxsy
ð1: cÞ

¼ KxyðtÞ ¼ E½xðt1Þyðt1þ tÞ� ¼ E½yðt1Þxðt1 � tÞ� ¼ Kyxð� tÞ ð1: dÞ

where μx and σy are the mean and standard deviation of the process (Xt) which are constant

over time and similarly Yt and Kxy are cross co-variance functions respectively.

In this case, the frequencies are given by vk = k/T, where k can be any integer from 1 to N,

and vk = k/(N 1)/2, where N is an odd number. The minimum frequency is νmin = 1/T, the

maximum frequency is the Nyquist frequency νNyq = (N/2)(1/T) and T = N(tN − t1)/(N − 1).

The CC between the two signals, x(n) (Reference signal) and y(n) is presented below for

your perusal.

R̂xyðmÞ ¼

XN� m� 1

n¼0
xnþmyn

R̂yxð� mÞ

m � 0

m < 0

8
<

:

9
=

;
ð2Þ

where m is equal to . . . 2, 1, 0, 1, 2, . . . Subscript xy denotes the order in which the two vari-

ables are associated, and index m denotes a parameter that shifts with time. One sequence is

shifted about another sequence, and the order of the subscripts, with x appearing before y,

specifies the direction in which the shift occurs. This is in stark contrast to the scenario for

unequal sampling, where the substantial red-noise leakage observed in the simulations and the

increased noise can be attributed to the morphologies of the window functions. Using even

sampling, we can re-create the standard Fourier analysis results, complete with the well-estab-

lished characteristics of window functions.

In case of representing noise then we can write

xðtÞ ¼ Acosðot þ yÞ ð3Þ

where θ is the random variable and y(t) represents noise. x(t) & y(t) are uncorrelated functions.

Then autocorrelation coefficient of x(t) is RxðtÞ ¼ A2

2
Cosot. Ry(τ) is an autocorrelation func-

tion of noise y(t). Ry(τ) should be decaying in nature, Hence correlograms are decaying in

nature which are shown in Fig 10.

RyðtÞ ¼ Y2

0
e� 1=t ð4Þ

After adding x(t) and y(t) we get,

zðtÞ ¼ xðtÞ þ yðtÞ ð5Þ

Z = A cos(ωt+θ)+noise

RzðtÞ ¼ RxðzÞ þ RyðtÞ Y2

0
>>

A2

z
ð6Þ

If x(t) contains several frequencies or a small band of frequency where this band of compo-

nent can be recovered from the new signal Z(t). In this research non-negative matrices

SSNMF algorithm has been used to remove the significant noise.
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b). Reducing of noise

The effectiveness of the technique for source separation using non-negative matrices SSNMF

has been demonstrated in [27]. One way to graphically portray the SSNMF approach is by the

use of a sweep series of amplitude spectra. As a result of the SSNMF decomposition, the fre-

quency-following response (FFR) can now be observed with more clarity, and any additional

noise that was present in the recordings has been removed. An exponential curve fit is used to

develop a model, and the patterns of FFR improvement and noise reduction with an increasing

number of sweeps are investigated. The model is then generated. Among the potential applica-

tions of the SSNMF method on the FFR signal is the evaluation of pitch processing and neuro-

plasticity processes in the electrical signal when it is subjected to disruptions [27]. The letter k

in this notation denotes the kth basis out of a total of n bases, while the letters I and j stand for

elements along the first dimension of a matrix, which is a flattened vector of frequency time,

and the second dimension, which is a sequence of amplitude spectrograms, respectively.

Applications of the NMF technique demonstrated that the matrices W and H were able to

acquire the part-based representation that was required to reconstruct the data. This was

because V and H did not have a negative value. Because of this constraint, the notion that the

incoming data was a linear sum of numerous sources was reinforced, which reflected the addi-

tive nature of electrical impulses.

To initialize the matrices W and H, random values were utilized, and then the standard

NMF multiplicative update procedure was applied to them. The effectiveness of the SSNMF

algorithm is demonstrated by the sweep series of amplitude spectrograms [27], which are

derived from recordings of both adults and newborns. Due to the fact that this is the situation,

the remedy that has been suggested makes use of this tactic.

Machine learning algorithm that takes a non-negative input matrix (A) and uses it to learn

and factorize another, smaller matrix (S) that serves as the spectral basis and (T) that serves as

the information coding.

Aij � STð Þij ¼
Xn

k¼1
SikTkj ð7Þ

I and j were used to denote elements along the first dimension of the A matrix, which was a

flattened vector of frequency time, and the second dimension, which was a sequence of ampli-

tude spectrograms, respectively. The letter k was used to indicate the k-th basis out of a total of

n bases. A total of n dimensions were present in the matrix. A comparison of the amplitude

spectrograms that were created is the reason why this is done. These two bases, which together

make up the spectral-basis matrix S, were required to learn and differentiate between the spec-

tral features of the FFR and noise, respectively, as a result of this limitation. Once this method

was implemented, the FFR and the noise were independently recreated, as seen in Fig 1. The

formulas that were utilized for this reconstruction are as follows: The input data matrix T is

multiplied by the S-T ratios of each of the elements, and the resulting product is then divided

by the matrix T.

FFR ¼ A� SFFRTFFRð Þ=ST ð8Þ

Noise ¼ A� SnoiseTnoiseð Þ=ST ð9Þ

Eq (10) is used to outline the improvement of efficiency in the FFR signal (i.e., performance

of the SSNMF method).

BðnÞ ¼ BBSe
� n
tð Þ þ BDC ð10Þ
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where B was the performance index (FFR Enhancement), BBS was the asymptotic amplitude

of the fitted curve without the direct current component, n was the number of sweeps in each

signal, e was Euler’s mathematical constant = 2.7182, which showed the fitted curve’s time con-

stant (that is, the number of sweeps needed to reach 63% of the asymptotic amplitude), and

BDC was the fitted curve’s direct current component. For Noise Reduction, a different model

was used, and the results showed that as the number of sweeps went up, they got better:

BðnÞ ¼ BBSe
� n

tð Þ þ BDC

FFR Enhancement ¼ 0:254∗ðe �
n

555ð ÞÞ þ 0:005 ð11Þ

Noise Reduction form signal ¼ 20:653∗ð1 � e �
n

290ð ÞÞ � 20:991 ð12Þ

c). Method of peak detection (MOPD) for determining QRS values

Using normal-exponential-Bernoulli (NEB) and mixture probability models, we have applied

a brand-new peak identification algorithm [25], for the analysis of extensive two-dimensional

electrical signals.

Xi � ND yi þ m; s
2ð Þ and yi � Exp �ð Þ ð13Þ

where ND represents a normal distribution and Xi represents a TIC that has been detected To

be more specific, a chromatogram is referred to as a TIC when it is created by combining the

intensities of all of the mass spectral peaks that are collected in a single scan.

To restate, we pretend that the noise has a mean of zero and a variance that is distributed

according to the normal distribution. At the ith point, the real TIC of Xi is represented by θi,

which is the exponential distribution with φ. Additionally, μ represents the mean backdrop or

baseline with a deviation of σ2. Measurements from sensors have the potential to considerably

improve one’s comprehension of the behavior of complicated systems. To improve decision-

making in system management, the quality of the data collected by sensors is very essential.

The selection of monitoring systems, which may include the types of sensors and the

Fig 1. Block diagram of the SSNMF algorithm for source separation.

https://doi.org/10.1371/journal.pone.0305407.g001
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configurations of those sensors, is frequently determined solely by engineering judgment. As a

result of the relatively low cost of sensor devices, huge sensor networks are deployed to gather

data at high frequencies over extended periods. This results in the collection of very large data-

sets; nevertheless, model predictions of system behavior frequently rely on only a few factors.

There is a possibility that informative data will be buried by data that is redundant or irrelevant

when critical parameter values are being updated. Within the scope of this study is a system

for picking the most appropriate measuring locations.

d). Optimal choice of monitoring points based on slime mold algorithm

(SMA)

Installation of smart meters (SMs) and the identification of the fault in the distribution line are

both going to be necessary to determine the nature of the issue that is occurring. If fewer SMs

are installed, it will be able to reduce the overall cost of the installation without sacrificing effi-

ciency. It is necessary to put into action an essential optimization approach to reduce the num-

ber of SMs and zero in on the location that would be most appropriate for one of these devices.

To determine the most suitable location for the SM, this work makes use of an optimizer that

is founded on the SMA. It is generally agreed upon that the objective function of the optimal

placement problem (OPP) should be understood to be [28]:

Minimize
Xn

k¼1
Zk ð14Þ

Subjected to C½ �∗ Z½ � � b½ �
C represents a connection matrix, and n represents the total number of buses. This is the

representation of the Matrix C, which is as follows:

Matrix Cij ¼

1; if i ¼ j

1; if i and j are connected

0; if other wise

ð15Þ

8
><

>:

whereas B is a column matrix and it is represented as ½b� ¼ ½1 1 1 1 1 . . . :: 1�
T
1XN

e). Applied SMA

A behavioral characteristic of SM served as the inspiration for the SMA, which was proposed

by Li Shimin and colleagues [29]. The SM is responsible for identifying the presence of food in

the natural environment, following which it encircles the food and finally utilizes enzymes to

digest it. The characteristics of SM may be mathematically defined as three processes: search-

ing for food, encapsulating food, and oscillating. These three steps can be represented as fol-

lows from a mathematical perspective. The slime mold tracks the food based on the smell

dissipated in the air which can be represented as [30]:

Z kþ 1ð Þ ¼
ZbðkÞ þ vb:ðH:ZAðtÞ � ZBðtÞÞ; r < p

vc:ZðtÞ; r � p
ð16Þ

(

In (16), Z is the SM’s position, Zb is the most recent location with the strongest smell (the

food location), ZA and ZB are SM candidates chosen at random, r is a random integer between

0 and 1, k is the number of iterations, H is the adaptive weight of the SM, vb is a randomly gen-

erated value between -a and a, and vc is a randomly generated value between -b and b, where b

is a value that decreases linearly from 1 to 0 depending on the iteration (b = 1-k/Itermax). One
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way to express the probability index p is in (17):

p ¼ tanjJðiÞ � EGj ð17Þ

Here in (11), J(k) represents the fitness value corresponding to Z, and EG resembles the best

candidate solution achieved so far. The parameter a can be represented as:

a ¼ arctan h �
k

Itermax

� �

þ 1

� �

ð18Þ

The adaptive weight H of the SM can be represented as:

HðsmellIndexðiÞÞ ¼

1þ r:log
bG � JðiÞ
bG � wG

þ 1

� �

;

first half of population

1 � r:log
bG � JðiÞ
bG � wG

þ 1

� �

;

other half of population

ð19Þ

8
>>>>>>>><

>>>>>>>>:

SmellIndex ¼ sortðJÞ ð20Þ

Eqs (19) and (20) show that bG is similar to the best fitness solution obtained at the present

location, whereas wG is similar to the worst fitness solution obtained at the most recent posi-

tion. The Smell Index is a sequential representation of the sorted fitness values.

3. System modelling

The 240-node distribution system is located in the Midwest of the USA [31]. Three feeders are

present in this system, as depicted in Fig 2., 17 nodes on Feeder A, 60 nodes on Feeder B, and

162 nodes on Feeder C receive power from a 69 kV substation. The major length of this distri-

bution system is 23 miles. It supplies electricity to more than 1100 people. Transformers are

used for secondary supply clients. Real direct data on power consumption (in kW) is available

through SMs that have been put in at different locations based on SMA. There are two capaci-

tor banks at nodes in the 240-bus system. At the substation, there is one on-load tap changer at

nodes 2038 and 3079. Installing PV systems at various locations modifies this test system. As

depicted in Fig 2, there are a total of 20 PV systems are installed in the 240-node unbalanced

distribution system. The location of PVs is shown in Fig 2. The PV system’s size is selected as

40 kVA, even if this PV system sizes and locations are selected on a random basis using empiri-

cal data. Voltage readings are taken throughout the grid at various points. In this study, EFs

and other transients were generated at 240 bus distribution networks at the bus no 1010, 1015,

2019, 2031, 3022, and 3035. Bus no.1037, 1014, 1005, 1003, 1011, 1015, 2012, 2019, 2030, 2024,

2021, 2032, 2042, 2053, 2066, 2041, 2031, 3034, 3005, 3013, 3011, 3027, 3030, 3042, 3049, 3094

and 3067 are the best locations for the monitoring points which are found by using the Slime

Mould optimization technique. As per equation (7–12) the noise is reduced from the collected

voltage signal which is represented in the Fig 3.

4. Results and discussions

To detect the EFs fault different capacitor bank switching, and feeder energization at various

inception angles and locations are simulated to validate the suggested algorithm. Simulations

have been carried out with both balanced and unbalanced loads as well as power electronic

loads. As devices with this sampling frequency are commercially accessible. The simulation of
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the signal was executed at a sampling frequency of 2048 Hz and with a time step of 0.1 s. The

computation of Q, R, and S was finished one cycle following the fault’s occurrence.

The description is divided into two parts, Fig 4(A) and 4(B), each focusing on different

aspects of the fault incidents. Fig 4(A): current changes during faults at Phase-A Current,

which indicates that the current in Phase-A has increased at the time of an AG fault incidence

at the 4th cycle. The increase in current suggests a change in the electrical characteristics, likely

due to the fault. Phase-B Current states that the current in Phase-B has also increased at the 8th

cycle when the AG fault has evolved into the ABG fault. This change in Phase-B current may

be a consequence of the fault propagation and evolution.

Fig 4(B) represents voltage changes during Faults at Phase A. It illustrates a decrease in the

voltage of Phase-A at the time of an AG fault incidence at the 4th cycle. The voltage reduction

in Phase-A is likely a response to the fault occurrence. Phase-B voltage describes a decrease in

the voltage of Phase-B at the 8th cycle when the AG fault has evolved into the ABG fault. Simi-

lar to phase A, the decrease in voltage in phase B is associated with fault evolution. At the mea-

suring point, voltage signal correlation has been tested under both normal and various

transient conditions like cross-country faults. The cross-correlogram between the two signals

becomes the autocorrelation of them if the system is functioning properly. The cross-

Fig 2. IEEE 240 Bus network.

https://doi.org/10.1371/journal.pone.0305407.g002
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correlogram produces various waveforms for various types of transients. Extraction of features

for EFs detection at bus 10 (a) voltage signal during EVs (b) correlation with pure signal, (c)

signal after Correlation and MOPD operation, and (d) MOPD operation of normalized signal

after filtering. As such, a relocation of a 100-sample-wide window is used, with each ten-

Fig 3. Visualizing the effects of source separation, narrow-band sliding-window spectrograms.

https://doi.org/10.1371/journal.pone.0305407.g003

Fig 4. The evolution of feature extraction for ABG failure event detection at bus 10: (a) Bus 10 current signal (b) Bus 10 voltage signal (c) Phase B correlation

with pure, and (d) Signal correlation after MOPD operation and filter operation.

https://doi.org/10.1371/journal.pone.0305407.g004
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sample increment representing one complete cycle which is shown in Fig 5. Since there are

two periodic switching fingerprints in two consecutive windows that don’t overlap, we can get

rid of them by subtracting the matching data from both windows. A technique based on CC is

used to guarantee that the difference is small or zero under typical conditions. This is done by

calculating the cross-correlation of the windows at varying delays. The windows’ similarity is

at its highest when the estimated cross-value correlation is maximized, and the windows’

length is recalculated after taking the appropriate latency into account. This method guaran-

tees that the subtraction of similar samples yields the correct result.

A). EF detection technique

The method for extracting the correlogram’s essential features for EFs detection is shown in

Fig 6. A sinusoidal signal with AG faults in phase A, evolved into ABCG Fault at bus 1020 and

monitored from bus 1015 is shown in Fig 6(A). Fig 6 displays the CC between the pure signal

and the signal with EFs-ABCG (b). There are three positive maximum values, as shown in Fig

6(A). The signal needs to be further analyzed to determine the highest peak among the three

sites. As a result, the maximum peak is determined using the difference operation approach.

In Fig 6, the signal following MOPD action which is shown in Fig 6(C). It has been observed

that during EFs the magnitude of QRS is high in the range of 100. But during cross-country

faults its range is different and under normal short circuits, the value of QRS is very low. The

value of QRS will help to discriminate the different types of faults.

B). Changing the fault inception angle

To simulate EFs using the recommended technique, three inception angles of 0 degrees, 45

degrees, and 90 degrees have been taken into consideration under three distinct situations, as

Fig 5. Cross Correlogram: (a)EFs (AG to ABCG), (b) (AG to ABG) and (c) normal short circuit fault (AG).

https://doi.org/10.1371/journal.pone.0305407.g005
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shown in Table 1. It has been noticed that the values of Q, R, and S all fall within a particular

range and that the ranges of Q, R, and S fluctuate regardless of the transient. This is something

that has been seen. The ranges of Q, R, and S values for a variety of examples are presented in

Table 1, and the flow chart for the EFs detection procedure is shown in Fig 7, respectively.

According to Table 1, the Q, R, and S values of the faulty phases are calculated for EFs, CC sin-

gle line to ground faults, and normal short circuit faults. The investigation was conducted for

the three different inception angles of 0˚, 45˚, and 90˚.

C). Location of EF

In spite of their best efforts, protection experts are still having trouble locating the source of

evolving faults. The bulk of the researchers have previously proposed algorithms that are capa-

ble of detecting separate faults; however, these techniques are not suitable for actual failures

that occur across many countries in real-time. A collection of feeder data is necessary to pin-

point the precise location of the fault so that the approaches that have been developed may be

utilized. However, the search field area may be greatly decreased by examining the Q, R, and S

values of connected signals of healthy and defective phases from a variety of monitoring sta-

tions. This is the case even if the research that is being presented is unable to pinpoint the pre-

cise position of the EFs point specifically. The search area will thus become substantially more

limited as a consequence of this. Using the approach that was provided, the values of Q, R, and

S will all be at their lowest possible levels if the correlation is performed between the voltages

of the three phases under normal conditions. This is because the voltages in this situation are

at their usual values. If an EF occurs in a bus, the voltages of the buses that are near the bus are

most strongly affected. The voltage of the bus rises as the distance from the fault grows, and it

reaches its greatest point when the bus is in the closest proximity to the defective bus. Conse-

quently, Q, R, and S have high values close to the bus that was destroyed, and their values

increase as the monitoring stations travel further away from the bus. It has been seen from a

variety of optimal monitoring stations and the recommended technique has been tested at

many different fault locations. Table 2 provides a summary of the data that is linked with this.

Fig 6. A cross-correlogram that shows the Q, R, and S points after MODP and filter operations. a. EFs (AG to

ABG); b. CCAG; and C. Normal Short Circuit Fault (AG).

https://doi.org/10.1371/journal.pone.0305407.g006
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A single line-to-ground fault that was located on bus 1011, bus 10133, and bus 1027 has been

transformed into a double line-to-ground fault, and the voltage signal is being monitored (Fig

2). When the cross-country fault develops at bus 1012 at a 45˚ inception angle, the magnitudes

of Q, R, and S are shown to be the least at the nearest monitored site, which is bus 1009 and

1015, as shown in Table 2. At the three nearest monitoring stations, 1014, 1005, and 1011, the

highest Q, R, and S values for the problem at bus 3 at an inception angle of 45 degrees were cal-

culated. These monitors are all at the same distance from the defective bus and produce find-

ings that are comparable to one another. These two places are located at the same distance

apart. Assuming once more that there is a problem with bus number 1027, the neighboring

bus will have high values of Q, R, and S because it is the optimum monitoring point that is

closest to the site of the problem. This is because the neighboring bus is the one that is closest

to the problem. The monitoring point that is positioned closest to the defective bus will offer

the highest values for Q, R, and S, whilst the monitoring point that is located the farthest away

from the bus will provide the lowest values for Q, R, and S. This is so long as all of the monitor-

ing points are observed for each of the faults listed in Table 2. If each monitoring point is

noticed, then this will be the case. The reason for this is that the bus that is physically placed in

the shortest distance from the bus that was damaged has a high voltage, which suggests that

the location of the faults in the electric vehicles is the bus that is to blame. To get the most cost-

Fig 7. Flowchart of EF detection technique.

https://doi.org/10.1371/journal.pone.0305407.g007

Table 2. Values of Q, R, and S values for different fault conditions.

Faulted

Phase/correlated phase

Correlation of EF condition 1 EF condition 2 EF condition 3

Q R S Q R S Q R S

B &C correlated with phase A A 4.01 3.1 3.1 0.04 0.03 0.03 4 3 3.02

B 82 97 87 0.87 0.81 0.9 0.95 81 82

C 81 95 87 0.87 0.84 0.9 0.96 82 82

https://doi.org/10.1371/journal.pone.0305407.t002
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effective solution for the essential data, it is necessary to strike a balance between the desired

level of precision and the greatest amount of money that can be spent on metering.

D). Influence of noise

Noise is always present in real-time systems, and it is present in both the voltage and current

signals. Noise or interference is the term used to describe unwanted electrical impulses that

interfere with or distort a signal that was intended to be received. Because of this, the efficiency

of the recommended method for detecting HIF across several countries has also been tested in

noisy situations. A normal probability distribution may be seen in the power system noise that

is present throughout the whole recorded signal. Here is the equation for the signal-to-noise

ratio (SNR), which indicates that this noise is:

SNRdB ¼ 20:log
10

Asignal

Anoise

� �

ð21Þ

To limit the influence of random noise that is not associated with the signal and to provide

trustworthy findings in a noisy environment, the proposed research makes use of an approach

that is based on cross-correlation. Fig 8 illustrates a succession of voltage waveforms that were

produced by EF under circumstances where noise was present at many different locations. It

has been determined through study that the noise effect does not have any influence on the EF

detection standard, and the approach that was presented has been incorporated into the sys-

tem. Fig 8 depicts the cross-correlogram of the two signals, which allows for the detection of

the cross-country EF in the presence of random noise that is not correlated with the current

signal.

Since DG has the potential to supplant traditional energy sources in the power market, it is

a hot subject right now. Simulations have been conducted taking into account the system

model with distributed generation, following the current trend of grid-connected distributed

generation technologies. The suggested approach involves linking a wind farm to the IEEE 240

bus system through bus 10. A Δ/Yn transformer with a rating of 1.75 MVA, 575V/ 12.66kV is

linked to the six 1.5MW wind turbines that make up the wind farm. An AC/DC/AC IGBT-

based pulse width modulator (PWM) converter and a wound rotor induction generator

(DFIG) are the components of the wind turbines. EF has been generated at nodes 3, 10, and 27

via distributed generation and is being observed from all the optimum monitoring points. It is

applicable to all inception angles, fault resistances, and other transients. When EF happens in

phase B at bus 3, it evolves into three phases to ground faults. Fig 9(A)–9(D) show the voltage

signal at bus 32, the correlogram of the healthy and faulty voltages, the location of Q, R, and S

on the correlogram, and the corresponding values of Q, R, and S, respectively. According to

the results, the suggested technique is better than the alternatives, and the values of Q, R, and S

all fall within the range shown in Fig 9.

E). EF detection influence of power electronics load

Power electronics interfaced nonlinear loads, such as time-varying harmonics in DNs, are now

commonly used by consumers in both the residential and industrial sectors. To evaluate the

effectiveness of the suggested approach, it was put through a series of tests using a non-linear

load. The design of the non-linear load is accomplished by the utilization of a 6-pulse converter

bridge. This bridge is connected at various locations along a 240-bus distribution network,

and it supplies a direct current load of 650 kW at 3.6 kV. As a result of the existence of con-

verter load at many different places, cross-country EF and other types of transients have been

generated, and the waveforms of the voltage are shown in Fig 10. The suggested method is
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incorporated into the system, and the results of the investigation show that the converter loads

do not have any impact on the EF detection standard. As a result, the suggested method may

identify the cross-country EF when non-linear power electronics loads are interfaced. From

Fig 10 it is clear that EF occurs at phases A and B (correlated with phase C).

A condition of uneven loading has also been used to evaluate the suggested cross-country

EF detection technique. The proposed network is already unbalanced. Cross-country EF has

been constructed for buses 1002, 1004, and 1027 and monitored from optimal monitoring bus

sites for detection of EF under unbalanced loading. Cross-correlation between the unbalanced

voltage at bus 2 under normal conditions and the unbalanced voltage with EF has been per-

formed. The cross correlogram of the voltage waveform, whose values are comparable to those

observed during a balanced load situation, has been used to evaluate the values of Q, R, and S.

As a result, the unbalanced loading condition does not affect the suggested technique. Then,

EF has been developed in phases A and B of bus 1027 and is being watched from bus 1024 as

shown in Fig 10. This establishes the algorithm’s suitability for cross-country EF detection dur-

ing unbalanced loading.

Several methods for locating cross-country EF have previously been covered in this article.

Using a real-time simulator, the performance of the suggested technique under dispersed gen-

eration and power electronic interfaced non-linear loads has been investigated For the sug-

gested approach to identify cross-country EF syndrome, a three-phase voltage signal is needed

at any one monitored location.

Fig 8. EF detection while noise is present: (a) The signal strength at the monitoring location (b) The voltage signal at the monitoring site; (c) A

correlation diagram showing the dysfunctional phase B with the healthy phases A and C; (d) The Q, R, and S values for the three phases; and (e)

The voltage signal at the monitoring point.

https://doi.org/10.1371/journal.pone.0305407.g008
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F). Comparative study

A comparative study of EFs in a DN involves analysing and comparing the characteristics,

impacts, and responses to faults as they develop or evolve over time. Here are key aspects to

consider in such a study:

Fault types:

Identify and classify different types of faults in a DN, such as short circuits, open circuits,

ground faults, and transient faults.

Understand the characteristics of each fault type, including their initiation, development, and

possible outcomes.

Fault detection and monitoring

Investigate methods and technologies for detecting EFs in DNs.

Compare the effectiveness of different fault detection techniques, such as current and voltage

measurements, relays, and smart grid technologies.

Impact on system performance:

Analyze the impact of EFs on the overall performance of the DN.

Evaluate how faults affect system reliability, power quality, and operational efficiency.

Response and mitigation strategies:

Fig 9. The identification of EFs under Distributed Generation: a) The current signal that is present during the fault; b) The voltage signal

at the monitoring point; c) The correlation of the faulty phase B and the healthy phases A and C; d) The Q, R, and S values of the faulty

phase B and the healthy phases A and C; and e) The values of Q, R, and S that were obtained for all three phases.

https://doi.org/10.1371/journal.pone.0305407.g009
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Examine various response and mitigation strategies for EFs, including automatic reconfigura-

tion, fault isolation, and adaptive protection schemes.

Compare the effectiveness of traditional protection methods with emerging smart grid

technologies.

Data analysis and machine learning:

Explore the use of data analytics and machine learning techniques for fault prediction and

classification.

Compare the performance of different algorithms in predicting the evolution of faults based

on historical data.

Communication and control systems:

Investigate the role of communication and control systems in responding to EFs.

Compare the performance of different communication protocols and control strategies in

minimizing the impact of faults.

Resilience and recovery:

Assess the resilience of the distribution system to evolving faults and its ability to recover

quickly.

Compare recovery times and methods for different fault scenarios.

Case studies:

Fig 10. The detection of EF in the presence of non-linear loads that are interfaced with power electronics:(a) The current signal seen at the

monitoring point (b) the voltage signal observed at the monitoring point (c) A correlation is drawn between the faulty phase B and the healthy

phases A and C; (d) the Q, R, and S values of the faulty phase B and the healthy phases A and C; and (e) the values of Q, R, and S that were

obtained for all three phases.

https://doi.org/10.1371/journal.pone.0305407.g010
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Analyze real-world case studies of evolving faults in distribution systems to provide practical

insights.

Compare the outcomes of different fault scenarios in terms of downtime, economic losses, and

customer impacts.

Regulatory and standards compliance:

Consider regulatory requirements and standards related to fault detection, response, and sys-

tem reliability.

Compare how different distribution systems comply with these regulations and standards.

Future trends and technologies:

Explore emerging trends and technologies in distribution systems, such as the integration of

renewable energy sources, microgrids, and advanced sensing technologies.

By conducting a comprehensive comparative study in these areas, you can gain insights into

the evolving nature of faults in distribution systems and identify optimal strategies for fault

detection, response, and mitigation.

5. Conclusions

The research described presents a novel approach for detecting EFs in distribution networks

using correlation-based methods, focusing on voltage signals at a single monitoring point.

Here’s a breakdown of the method and its advantages:

• Correlation-based detection: The method relies on analysing voltage signals at a single moni-

toring point using cross-correlation operations. This simplifies the detection process and

reduces the computational burden compared to more complex techniques. By focusing on

voltage signals, the method can effectively identify evolving faults even under various cir-

cumstances such as capacitor bank switching, load switching, feeder energization, and

unbalanced loading.

• Feature extraction: Only three features from the cross correlogram of voltage signals are

used to identify the faulty phase during evolving fault conditions. This demonstrates a

streamlined approach to feature extraction, enhancing computational efficiency.

• Noise reduction: The cross-correlation approach helps reduce the impact of random uncor-

related noise from the signal, improving the robustness of the fault detection method.

• Optimization technique: SMA is utilized to determine the optimal locations of monitoring

points in the network for fault detection. This highlights a proactive approach to optimizing

monitoring infrastructure, potentially reducing costs and improving system effectiveness.

• Real-time verification: The method is validated in a real-time platform, demonstrating its

efficiency and practical applicability.

• Simplicity and independence: The method’s simplicity is notable as it doesn’t require distrib-

uted parameters, advanced artificial intelligence techniques, or time synchronization with

monitoring devices. This makes it more accessible and easier to implement in distribution

networks.

Overall, the described approach offers a promising solution for detecting EFs in DNs,

leveraging correlation-based methods, streamlined feature extraction, noise reduction,
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optimization techniques, and real-time validation. Its simplicity and effectiveness make it a

valuable addition to fault-detection strategies for distribution systems.Author
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