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Abstract

In this study, we propose a stochastic SEIQR infectious disease model driven by Lévy
noise. Firstly, we study the existence and uniqueness of the global positive solution of the
model by using the stop-time. Secondly, the asymptotic behavior of the stochastic system at
disease-free equilibrium and endemic equilibrium are discussed. Then, the sufficient condi-
tion for persistence under the time mean is studied. Finally, our theoretical results are veri-
fied by numerical simulation.

Introduction

Infectious diseases have always been one of the important threats to human health, and the con-
trol of infectious diseases is an important issue in human society. It is well known that Kermack
and McKendrick first proposed the SIR Model based on the Indian plague model [1]. Piovella
[2] proposed a SEIR model considering the type E(t) that receives but does not propagate.

Most of the previous models of infectious diseases were basically considered on the basis of
assuming the free movement of individuals in the population, and rarely considered the prob-
lem of having isolation chambers. With the onset of COVID-19 in 2020, the prevention and
treatment of infectious diseases has become one of the topics of research for governments
around the world. After the continuous exploration of prevention, the introduction of isolation
chamber Q has an excellent effect on timely controlling of infectious diseases. Therefore com-
pared with the previous SIR, SIRS, SEIR and other models, SEIQR model can more accurately
describe the prevention and control of infectious diseases. Liu et al. [3] proposed a deterministic
SEIQR(S: Susceptible; E: Exposed; I: Infected; Q: Quarantined; R: Removed) epidemic model:

dS = (A — aSI — uS)dt,
dE = [aSI — (a + b)E]dt,
dl = [bE — (d + h + 0)Idt, (1)
dQ = (hI — kQ)dt,
dR = (uS + aE + dI + kQ — nR)dt,
where ¢ is the time; and the normal number A represents the number of births and immigrants

entering S(f) per unit time; « is the proportion from S(#) to E(f); b is the incidence of incubation
period; g, a, d, k represents removal rates from classes S, E, I, Q respectively; h stands for
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isolation strength; J is category I natural mortality; # is the natural mortality rate of category R
recoveries due to immune system impairment, age and other reasons.
Converting model (1) to the following form:

aSI (a+b)E
dx. 0 (d+h+0)I — bE
— = fi(x) = r,(x) — h(x) = 0 - kQ — hI ,i=1,2...m
dt 0 oSI + puS — A

0 nR — uS — aE — dI — kQ

LetF = {g—;] V= [%} ,where 1 <i,j <m, FV 'is called a regenerative matrix. The basic
] ]
regeneration number is the spectral radius of the regeneration matrix. Basic reproduction

number R, of system (1) is

bkoA
wla+b)(d+h+9)

If Ry < 1, the system (1) has a unique disease-free equilibrium point P, = (ﬁ ,0,0,0, O), and it

is locally asymptotically stable; if Ry > 1, system (1) has a unique endemic equilibrium point
P* = (S* E*, I, Q%, R), and it is locally asymptotically stable.

Since the infectious disease model is affected by many unpredictable environmental noises,
adding random interference to the deterministic model can reflect the transmission law more
accurately. In [4-10], white noise interference factor was added to the deterministic model to
study the dynamic behavior of a stochastic infectious disease model. Gaussian white noise is used
to describe a class of relatively stable, continuous random interference. Tornatore et al. [4] pro-
posed a stochastic STR model with or without distributed time delay and studied the stability of
disease-free equilibrium. Xu et al. [5] studied a kind of SIRS model, proved the existence and
uniqueness of the positive solution of the model and obtained the conditions of disease extinction
for epidemics. Zhao [6] studied the relationship between the threshold value of stochastic SIRS
model with saturation incidence and the extinction and persistence of epidemic diseases. Hieu [7]
mainly studied the stochastic SIRS model under telegraph noise and gave the conditions of disease
persistence and disease-free equilibrium stability. Cai [8] mainly discussed the limit of transform-
ing SDE model to discrete-time system and proved that the regeneration number can be used to
judge the relevant properties of SDE model by using Markov semigroup theory. Yuguo et al. [9]
analyzed that the distribution of stochastic SIR model solutions is absolutely continuous. Liu et al.
[10] demonstrated that the system has a unique global positive solution and established sufficient
conditions for disease persistence. Hattaf et al. [11] proposed and analyzed a stochastic SIR Epi-
demic model with specific functional response and time delay, and compared the difference of
the basic regeneration number between the deterministic model and the stochastic model. Simi-
larly, Lan et al. [12] studied a stochastic SIS model with saturated exposure rates and also found
that the conditions for extinction of the disease were much weaker than the corresponding deter-
ministic model. Ali and Khan [13, 14] studied the dynamic properties of stochastic SEIR and
SIRS models with saturation rate and simulated them using Legendre spectrum method.

However, disease can be affected by a variety of natural mutations, such as volcanic erup-
tions, chemical pollutants, and sudden climate changes, which are often not accurately described
by stochastic models of Brownian motion. Therefore, many studies on natural mutation factors
will use Lévy jump to describe. This perturbation can more accurately describe the impact of
mutation factors, and more deeply understand and predict the trend of disease spread and
development. According to the Lévy-Ito decomposition theorem [15], Lévy noise is composed
of Brownian motion, independent Poisson random measures, and deterministic drift terms, so
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Lévy noise has a wider applicability than white noise [16-20]. Zhang and Wang [16, 17] studied
SEIR model and S-DI-R model driven by white noise and Lévy noise respectively. Zhang et al.
[18] studied the dynamics of a stochastic SIS epidemic model with saturation incidence and
dual epidemics and obtained sufficient conditions for the average extinction and persistence of
both epidemics. Liu et al. [19] discussed the persistence and extinction of a delayed vaccination
SIR epidemic model with temporary immunity and Lévy jumps and analyzed the relationship
with the intensity of Lévy noise and the duration of vaccination with the duration of disease and
the duration of eradication. EL Koufi et al. [20] considered a stochastic SIR model with a satu-
rated incidence rate and saturated treatment function incorporating Lévy noise. Based on this, a
stochastic SEIQR model with Lévy jumps can be considered:

dS = (A — aSI — uS)dt + ¢,SdB, (t) + /Cl(z)S(t)N(dt, dz),

dE = [oSI — (a + b)E]dt + o,EdB,(t) +Z / C,(z)E(t)N(dt, dz),

dl = [bE — (d + h + d)I]dt + 6,1dB,(t) i / C,(2)I(t)N(dt, dz), 2)
dQ = (hI — kQ)dt + ¢,QdB,(t) + / c4(z)fg(t)z§r(dt, dz),

dR = (uS + aE + dI + kQ — nR)dtZ+ o,RdB,(t) + /C5(z)R(t)N(dt, dz),

Z

where B(t) represents standard Brownian motion with filter {F;},~, on a complete probability
space (Q, F, P), and they are independent of each other; 0; > 0 (i = 1, 2, 3, 4, 5) is the intensity of
Brownian motion B{(t); C(Z) > —1(i = 1, 2, 3, 4, 5) represents the strength of the jump; N(dt, dz)
stands for Poisson random measure; N (dt, dz) is the compensating random measure of N(dt,
dz),and N (dt, dz) = N(dt, dz) — n(dz)dt; n(dz)dt is the stationary compensator, 7 is a measure
defined on a measurable set Z C [0, co), and satisfies 71(Z) < co.

Lemma 1 (It0 formula) If X(¢) is the solution of a random differential equation

dx(t) = F(x(t), t)dt + G(x(t), t)dB(t) + [ H(x(t),t,z)N(dt, dz).

If Ve C*Y(R? x [t,, 0ol; R,), thus the random derivative of V(x, t) is:

dV(x,t) = LV(x,t)dt + V,(x,)G(x(t), )dB(t) + [[V(x + H(x, t,2)) — V(x, t)|N(dt, dz),

where

LV(x,t) = V,(x,t) + V (x, t)F(x, t) + % trace(G" (x, 1)V G(x, t)]

+/[V(x+ H(x,t,2)) — V(x,t) — V_(x,t)H(x, t, 2)|v(dz).

VA

Existence and uniqueness of the global positive solution

We assume that the jump diffusion coefficient satisfies the following conditions:
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av

(H1): [ |H,(x,2) — H(y,2)|’n(dz) < L |x — y|*, where H(x, 2) = C,(2)S(t), Hy(x, 2) = C5(2)E

(1), H3(x, 2) = C5(2)I(t), Hy(x, 2) = C4(2)Q(1), Hs(x, z) = Cs(2)R(1), |x| V |y| < ¢, where cisa
normal number.
(H2): |Ci(2)| < K*, where K* is a normal number.
Lemma 2 Suppose that Conditions (H1) and (H2) hold, for any given initial value
(8(0), E(0),1(0), Q(0),R(0)) € R’, system (2) has a unique positive solution (S(t),
E(t),1(t), Q(t),R(t)) € R}, and the solution lies in R, with probability 1.
proof According to (H1), system (2) satisfies the local Lipschitz condition, for any given ini-
tial value, the system (2) has a unique local solution (S(#), E(¢), I(t), Q(t), R(t)) (t € 7,), where T,

represents the blasting time. To prove the existence of a global solution, just prove 7, = 00, a.s.
Let ko be a sufficiently large positive number such that the initial value (S(0), E(0), I(0), Q

(0), R(0)) is all in {% , ko} , For any k > ko, the stopping time is defined as:

1, =inf{t € [0,7,) : S(t) ¢ (,k),E(t) ¢ (L. k
1) ¢ (1,k), Q)¢ (},k),R(t) ¢

Obviously, 74 is monotonically increasing with respect to k and 7, = lim t,, thus 7., < 7,.

k—o00

If we could prove that 7, = oo, then 7, = 00
Next, we use the proof by contradiction to prove. Suppose that 7., # 0o, then lim 7, # oo,
k—o0

hence there exist constants N > 0 and € € (0, 1) such that P(1,, < N) > €.
Then there exists an integer k; > ko such that P(r, < N) > € for any k > k;. Define a cx
function:

V= (s+n—n1n§)+(E+1—1nE)+(1+1—1n1)+(Q+1—1nQ)+(R+1—1nR),

where 7 is a normal number to be determined later. It is easy to judge that u + 1 —In u > 0 is
true, then V > 0. And according to It6 formula, we get:

OV B, (6) + 2¥ Eo,dB, (1) + 2 16,dB,(t) + ¥ Qo dB, (1) + 0¥ Ro,dB,(¢)

B ) ) 0
T oS JE oI aQ R
+/[V(S(t) +Ci(2)S(t)) — V(S(1)) + V(E(t) + Cy(2)E(t)) — V(E(t))IN (dt, dz)
+/[V(I(t) + Cy(2)I(1)) — V(1)) + V(Q(t) + C,(2)Q(t) — V(Q(#))IN(dt, dz)

VA

+ [ VIR + G (R0 ~ VROV, d2) + Ly
= Lvdt + (1- SO’ dB, ( ( ——)EanB £+ (1 - %)IaadB3(t)
+ (1 _ é) Qo ,dB, (t ( - l) Ro.dB, (¢ [c1 (2)S(t) — nln(1 + C,(2)]N (dt, d2)

=

+ / [C,(2)E(t) — In(1 + C,(2)]N (dt, dz) + / (CL(2)I(t) — In(1 + C,(2)]N (dt, dz)
+ / 1C,(2)Q(t) — In(1 + C,(2)|N (dt, dz) + / (C,(2)R(t) — In(1 + C, ()N (dt, dz),
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where
Lv (1——)§+ (1—%>d—f+ (1—%>%++(1—é)6;—?+ (1-%)%
+5 tf[gT( )Vt x(1))g()] + ”/Z [C,(2) —In(1 + C,(2)]n(d2)
+/Z[C2(z) “In(1 + G@)ln(dz) + [,[Cy(2) — In(1 + C,(2)]n(de)
+/Z[C4(z) “In(1 + C,(@)n(dz) + [,[Cy() — In(1 + C,(2)n(d).
System (2) is substituted into the above formula and the fundamental inequality is used, then

1
LV §A+om1+,un+a+b+d+h+k751+§na?

+Z o + n/ (2) = In(1 + C, (2)]n(dz) + Z/Z C.(2) — In(1 + C(2)]n(dz).

=

Let n = 2, then

1
LV §A+un+a+b+d+h+k+§no§+
+Z o+ n/ (2) = In(1 + C,(2)|n(dz) + Z/ C,(2) — In(1 + C,(2)]n(dz).
i=2 /2
According to Taylor’s formula and (H2), |C,(z) — In(1 4 C,(2))| < C}(2) < ; K**. Therefore,

5
LV<A+pun+a+btd+h+k+ing+> lo?+"K : K

i=2

Integrating both sides of equation (3) from 0 to 7, A N and taking the expectation:

E[V(S(z, AN),E(t, AN),I(t, AN),Q(t, AN),R(t, AN))]

< V(8(0), E(0), 1(0), Q(0), R(0)) + KN.

Let Qi = {7y < N}, then P(Q) > g, for any k > k. Notice that for every w € €, at least one
of S(tx, w), E(tg, w), I(14, @), Q74> w), R(7y, w) equals either k or ;.
Hence

V(S(t, AN),E(t, AN),I(t, AN),Q(z, AN),R(z, AN)) > f(k),
wheref(k) = {(k—1—Ink) A (: =1 —1In1)}, thus
V(8(0), E(0),1(0), Q(0), R(0)) + KN
E[lo V(S(ty AT), E(t AT), I(ty AT), Q(tu A T), R(t, A T))] > g, f (k).

Where 1, is the indicator function of (), letting k — +0c, leading to the contradiction:

+oo > V(8(0), E(0),1(0), Q(0), R(0)) + KN = +oo.
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Thus 7., = 00 a.s., then (S(¢), E(t), I(t), Q(¢), R(t)) will not explode in a finite amount of time.
Therefore, there is a globally unique positive solution for system (2).

Asymptotic behavior around disease-free equilibrium of the
deterministic model

P, = (ﬁ ,0,0,0, 0) is the disease-free equilibrium point of the deterministic model. When R,

<1, Py is asymptotically stable. Next we will discuss the asymptotic behavior of the solution of
the stochastic model at the disease-free equilibrium point.

Theorem 3 Suppose that conditions (H1), (H2) hold, if Ry < 1, and the following condi-
tions are met:

1
af—i—/Cf(z)n(dz) <,u—:_:_1; 6§+2/C§(z)n(dz) <a-—mn
Z 1 Z
2 2 ab —2n 2 / 2 2na,
27 7. 1— .
o; +/ZC3(z)n(dz)) < 20, o, + YC4(z)n(dz) < kab’
1, ) n o a+d+K
50 + /ZCs(z)n(dz) <3 o .

For any given initial value (S(0), E(0), I(0), Q(0), R(0)) € R, the solution of system (2) has
the following properties:

lim sup%Efé [S(s) - ﬂQ + E2(S) + I*(S) + Q¥(S) + R*(S)]ds < M,

where
1 ] . . .
m—n— 2 [ Gl ot m—a—n-2 [ Gt - o
a +1 z z -
1 ka’b n
my =l - 20,0+ [ Camnlde) 2 m =2 (0 + [ Clan(dn)] -
4 7 4a, 7 2
2 2 2 2
my—n =L [ Gantde) ~ gt = minm )
n z

A? 5 ;
M =25 (028, + Dot -+ /Z(aICf(z) + 1)n(d2)].
proof Define the following functions:

1 A\’ 1 1 a+b 1. 1 A ’
V=-(S-=)|:V,==-%V,=-Q} V,=E4+——LV. =R V.=-(S—=4+E] .
1 2( 'u)v 2 2 b 3 Q? 4 + b b 5 2 b 6 2 'u+

Thus

LV, = u(s ’2)2 - oc(S A>21 oA (s 2>I+;af82 +%/Zcf(z)s2(t)n(dz). (4)
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LV, =[bE— (d+h+ )| H- 0212 /
1
2

2 (5)
2(d+bh+5) 2 d+l21+5[ * §IQ+;/CZ() (t)n(d2)
LV, = W ~kQQ+5010 +5 [ ClEQ (0r(d:)
) ©
72—k12 kQ —|—— Q4= /CZ(Z)QQ(t)T[(dZ).
(s A, [t bR aA] (o A
= (S M)I { b M}IS <S M)I' )
LV, :R[us+aE+dI+kQ—nR]+%0§R2+§/C2() *(t)n(dz)
2 2 2 2 (8)
<GS HE P Q)+ (%—n>R2+%/ZC§(z)R2(t)n(dz).
LV, = (S—%—i—E)(A—uS—i—(u—i—b) )+;asz+% o E
+3 [ G@S O +5 [ B O
. 9)

(a+b+p) , A\’ 1 - AT 1
< = 7 ) = Z
_{ 2atb) u+oillS . 2(cH—b)l’:“ 2 7 T3 o,E

+%/ZC?(Z)SZ(t)n(dz) +%/ZC§(Z)E2(t)7T(dZ)~

_ (atb+n)? __ dthtd _ K i in:
Leta, = 5=~ a, = <%, a; = T Define the Lyapunov function again:

A a,b
V=a |V, +=V, | +a(V,+=V, | + V. +V,.
H 2a,
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According to the It6 formula, then

A A A
dv =LVdt+a, {(8 - —) So,dB,(t) + —Eo,dB,(t) + —Iagng(t)} + a,[I’0,dB,(t)
u u u

A
3

A 1 s A(a+0D) -
+a1[/Z ((S - M) C,(2)S(t) + 3 (C(2)S(t))” + b C3(Z)I(t))N(dt, dz)]

(10)
+al [ CLEP0 + 5 (CEI0) + 5 CEQ WM + 2 (CEQ0 N s

+ [ (R0 + 3 (CEROIN d2) + [ (8= 5+ BC(E)S(0) + CE)

+=(C,(2)S(t) + C,(2)E(1))’IN (dt, dz) + % C,(2)E(1),
where

a,b
LV —a1<LV+ LV>+a2<LV+ 2 LV)+LV5+LVG

A\’ a-n-a?
< [(a, +1)(u— / dz—al—l)—n—l](S—;> -fF=—==

—/ch(z)n(dz)]EQ -3 {; - a,0; — /ch(z)n(dz) — n} ) Zial: {k — ko?

‘ asn p+at+d+k 1 /
— 2 dz) - 22102 — |lp -2 7 " Zg 2 dz) | R?
/ZC,1(z)7r( Z) agb}Q [n . 505 ZCo(z)n( z)

2

+% [(12a, + 1)0® +n+ /Z(a1C]2(z) + 2)n(dz)]

(11)

2
<—m(S—é> —mE> —m, > —m,Q* —m.R*+ M
= 1 H 2 3 4 5 °

For the Lyapunov function to be asymptotically stable, then m,, m,, ms, my, ms > 0. Thus
m,, my, my, m,, my, m, M are described in Theorem 3. Integrating both sides of (10) from 0 to
t and taking the expectation:

EV(t) —EV(0) =E / tLV(s)ds

; 2 (12)
_ _ é _ 2 2 2 2
<E m (S myE* — m,I* — m,Q" — m R* | ds + Mt.
0 H

Then
lim sup%E Iy [S(S) - ﬂ g E2(s) + P(s) + Q*(s) + R%(s)]ds < M.

This completes the proof of Theorem 3.
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Fig 1. Asymptotic stability of disease-free equilibrium points in stochastic SEIQR model.
https://doi.org/10.1371/journal.pone.0305139.g001

Remark 1: Theorem 3 shows that, with some suitable conditions, the solution of system (2)
fluctuates around the disease-free equilibrium point Py, the wave intensity is related to noise
intensity o; and C;. The bigger the 0; and C;, the bigger the fluctuation. That is, the greater the
random disturbance, the farther away the solution of system (2) is from the disease-free equi-
librium point P, of the deterministic model, at which time the disease will disappear. Next, we
will verify the correctness of Theorem 3 through numerical analysis(see Fig 1, where
A =0.002,4=0.01,0;=0.03(i=1,2, 3,4, 5),a=0.0075, b = 0.06, d = 0.002, h = 0.008, &t =
0.04, k=0.05,n=0.2).

From the observation of Fig 1, it can be seen that under certain conditions of parame-
ters, the system will stabilize in a situation where only susceptible persons exist. The
infected person, exposed person of the virus will disappear, which means the disease will
disappear.

Asymptotic behavior around endemic equilibrium of the
deterministic model
P* is the endemic equilibrium point of the deterministic model. When R, > 1, P* is asymptoti-

cally stable. Next we will discuss the asymptotic behavior of the solution of the stochastic
model at the endemic equilibrium point.
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Theorem 4 Suppose that conditions (H1), (H2) hold, if Ry > 1, and the following condi-
tions are satisfied:

2 : p_atbtp . / 2 a___ »®
al+2/ZC1(z)n(dz) <3 a+b) ;052 ZC2(z)7t(alz) <3 SdThT o)
d+h+0o 1 k1
2 2 . 2 2 .
{03+/ZC3(z)n(dz) < 2,u]’ 04+/ZC4(z)n(dz) <3 o

b kd?

0§+/ZC§(z)n(dz)<nflf§fﬁ.

For any given initial value (S(0), E(0), I(0), Q(0), R(0)) € R’, The solution of system (2)
has the following properties:

lim suplE/ [(S(s) — $*)* + (E(s) — E*)’

o Tt
b =)+ Q) Q) (R~ R <
where
L=t “2(2}:;;‘ - z/ch(z)n(dz), L=5-ot =5 - 5 z/zc;(z)n(dz),
L d*’;” . —2i— /ch(z)n(dz), I —g— o2 —2i— /ch(z)n(dz),
I.=n— W — /Cg(z)n(dz) — %og, I = min{l,,1,, L1, L},
p

L= (@ +2 [ CEmaS) + ot +2 [ Gm@(E) + [+ [ Gl

VA zZ

+ %a? + % / Cln(d2))(Q)" + [o} + / C(2)n(dz)](R")".

z zZ

proof Define the following functions:

Vi=3(S=S+E-E),V,=(I-TI),V,=3(Q-QY)’,

V,=3R=R),\ V=V, +V,+ LV, +V,
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According to the It6 formula, then

dV = LVdt+ (S— S + E — E')(5,5dB,(t) + 6,EdB,(t)) + (I — I')o,1dB,(t)

4 (Q - Q)0,QaB, (1) + (R~ R)aRaB(1) [ (=5 +E~ E)(C,()S(0)

Zz

(13)
HCLIB) + 3 (CES + CEEO) + (1~ I)GEIN) + 5 (@~ Q)
<(CRQ) + 5 (CEQDS + (R~ RICEIR() + 5 (G (IR N (o do),

where

k
LV =LV, +LV,+— Iz LV,+ LV,

< {%@Wﬂﬁ+2/Zc§(z>n(dz)}(5—s*)2+[al+2/z 2 (2)m(d2)](S')’

Hoi+ [ Clom@ry + -5+ ai+2 [ Clantie) + 5]

. 2(d+h+9)
+[_W+Z+ e ()(dz)}([—l*)r‘)—i—[ai—&- | c@mary

(E-EY

s[5 R o+ [coma]@- o7 +fe-a

+[1 +b+§—:§—n+a +/ S(2)m (dZ)](R—R*)2+[0'z+2/ 2(2)n(d2)](E')’

V4

topot 4o [ Clom@)@)

=" [g N % —n- Q/ZC?(Z)n(dz)} (§-8) ~ [g — 0, - Q/ZCE(z)n(dz)
s E) - [T e [t~ |-y

—%[S—oi—/caz)n(dz)—ﬂ(o—o*f_[n_l_é_k_dlag

(14)

- [Clamtr-RY + 1ot +2 [ Clom@s) + ot + [ Clamaz)my
Hoi+ [ R + Lot + s [ Clam@l@)
+o+2 [ Clam(aa)|E

M5 = ) — (E— B — b1 — I — Q= @) — b(R— R +1.

For the Lyapunov function to be asymptotically stable, then [}, I, I3, I, Is > 0. Where I, L,
I3, 14, Is, L are described in Theorem 4. Integrating both sides of (13) from 0 to t and taking the
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3 T T T T . . , , I
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Fig 2. Asymptotic stability of endemic equilibrium points in stochastic SEIQR model.

https://doi.org/10.1371/journal.pone.0305139.9002

expectation:

0< EV(S(t)vE(t)J(t), Q(t)’R(t» =
¢ (15)
V(8(0), E(0),1(0), Q(0), R(0)) —l—E/0 LV (S(z), E(7),I(7), Q(z), R(7))dr.

Thus

lim sup%E/Ot [(S(s) — $*)* + (E(s) — E*)’

t—00

+ (I(s) = I)" +(Q(s) = Q) + (R(s) = R")’Jds <

~

where I is described in Theorem 4.

This theorem is proved.

Remark 2: Theorem 4 shows that when some conditions hold, the solution of system (2)
oscillates around P*, and the intensity of the vibration is related to the noise intensity. When
the degree of disturbance is greater, the solution of the system (2) is further away from the
local equilibrium point of the deterministic model, and the disease will persist.

Next, we will verify the correctness of Theorem 4 through numerical analysis(see Fig 2,
where A=0.8,4=0.6,0,=0.01(i=1,2,3,4,5),a=0.2,b=0.08,d = 0.008, h = 0.032, & = 0.5,
k=0.04,n=0.3).
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It can be seen from Fig 2 that, under certain parameter conditions, although the proportion
of recovered patients is obvious, the disease will continue because exposed persons and
infected persons will still exist in a certain proportion.

Persistence of disease

Definition 5 Let < x(t) >= L x( ', if lim inf < x(t) >> 0, Then x(r) is called persistence in

t—00

the sense of time mean.
Definition 6 If S(0) + E(0) + 1(0) + Q(0) + R(0) < 4, then

S(t) + E(t) +I(t) + Q(¢) + R(¢) <

‘:ID>

Thus Q = {S(t), E(t),1(t), Q(t), R(t) € RY|S(t) + E(t) + I(t) + Q(t) + R(t) < %} is a positive
invariant set.
Theorem 7 Assume that S(¢), E(¢), I(t), Q(t), R(t) is the system (2) with initial value (5(0), E

(0), 1(0), Q(0), R(0)) € Q in solution, if A > (gtfb then hm inf < I(t) >> 0, the solution I(¢)

of model (2) is durable in the sense of time mean.
proof Let ®(¢) = S(”:s(o) + E(t):E(O) + I(t)jl(o) + Q(‘);Q@. Integrating system (2) from 0 to ¢,
dividing by t and substituting () yields:

D(t) =A—pu<S(t)>—-a<E(l)>—-(d+9) <I(t) >-k<Q(t) >

+%/ﬂ 7,8(t) + 0,E(z) + 0,I(7) + 0,Q(1)dr

(16)
3 [I@860) + CEEE + C@I) + CEIQUIN . de).
According to the model (2),
w = al(t) < S(t) > —(a+b) < E(t) >
(17)
—/ 0,E(t)dT + / / N(dt, dz).
w:h<l(t)>—k<()(t)> KQQ T)dt + — // (t)N(dt,dz). (18)
Therefore
al(t) < S(t) > E(t) — E0) 1 t
<EO> == T Tt +(a+b)t[/0 o E()de
(19)
/ / N(dt, d2)].
<y >=h<I0> Q000 E[/ o Q)de 4+ / / N (dt, d2)]. (20)
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Let

U = %/0 0,8(7) + 0,E(t) + 0,I(7) + 0,Q(7)dr

(21)
1 [ [16@86)+ C@ER) + 6, @1 + C@QANN dt, ).
Substituting (19), (20) into (16):
Ot) =A—pn<S(t) > —afb<E(t) > 1(t) —aibw— (d+o+h) <I(t) >

Q(t) —Q(0)

_ . e b) [/ o, E(t)dt + = / / N(dt,dz)| (22)
E[/ 6,Q(t)dr + = // N(dt,dz)] + U + V.

Thus

(d+h+3) <I(t) >= A—%[Q(t)—Q() /64Q )dt + = // (1)N(dt, dz)]

(afb)t[E(ﬂ—E() /002 )dt + - // (1)N(dt, dz)] (23)

ao
+U+V—-0(t) + <u+m) < S(t) >

t t

According to (I)(t) — S(t)—S(0) 4 E(t)—E(0) + I(I):I(O) 4 Q(f);Q(O), thus %Ln% (I)(t) = (0. And according
to the strong number theorem:

1 1/

thm . 0,Q(r)dt = thm L,E(t)dt = 0,

° (24)
tlim / / N(dt,dz)] = thm / / N(dt,dz)] =
Because Q is positive invariant set, (S(t), E(t), I(t), Q(t)) € Q was founded, that
S(t) + E(t) +1(t) + Q(t) < ¢, thus 0 < S(¢) <4
1/ 1 ['A A

<St>:—/Stdr§— —dt < —+ €. 25
()>=1 [ st < [ Lar <% (25)

where € is any positive constant. In combination with (24) and (25),

A wa+b)+arA (A
hmmf <I(t) > _d+h+5 R ESICET, +8 > 0. (26)

This theorem is proved.

Theorem 7 states that under certain conditions, the disease will continue to spread. This
means that the disease persists among the population and is not conducive to further
management.
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Conclusion

In this work, we have proposed a stochastic SEIQR epidemic model with bilinear incidence
rates and Lévy noise based on the randomness of nature and some abrupt fluctuations. By
applying the relevant knowledge of stochastic analysis, we have proved the existence and the
uniqueness of the global positive solution for the stochastic SEIQR model. Moreover, we
showed that the free equilibrium point P, and the endemic equilibrium point P* are asymptot-
ically stable under certain conditions. At the same time, we have proved the conditions under
which the model is durable in the sense of time mean. Finally, numerical simulation were used
to illustrate theoretical results. Different from other three-compartment and four-compart-
ment models, this paper proposes to add isolation compartment and introduce Lévy noise ran-
dom interference, respectively proving the stability of the equilibrium point and the
conditions for the continuous existence of the disease, providing a theoretical basis for the sub-
sequent control of infectious diseases. However, when an infectious disease spreads through a
population, the individual gains knowledge about the disease. The classical time derivative
cannot reflect the memory effect of model dynamics. The time derivative in this paper is
replaced by a fractional derivative [21, 22], and delayed feedback [23] is considered for factors
such as vaccines in random infectious diseases. At the same time, we can consider the general
non-Markov SEIQR model and compare the discrete and continuous time versions in the
future [24].
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