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Abstract

In this study, we propose a stochastic SEIQR infectious disease model driven by Lévy

noise. Firstly, we study the existence and uniqueness of the global positive solution of the

model by using the stop-time. Secondly, the asymptotic behavior of the stochastic system at

disease-free equilibrium and endemic equilibrium are discussed. Then, the sufficient condi-

tion for persistence under the time mean is studied. Finally, our theoretical results are veri-

fied by numerical simulation.

Introduction

Infectious diseases have always been one of the important threats to human health, and the con-

trol of infectious diseases is an important issue in human society. It is well known that Kermack

and McKendrick first proposed the SIR Model based on the Indian plague model [1]. Piovella

[2] proposed a SEIR model considering the type E(t) that receives but does not propagate.

Most of the previous models of infectious diseases were basically considered on the basis of

assuming the free movement of individuals in the population, and rarely considered the prob-

lem of having isolation chambers. With the onset of COVID-19 in 2020, the prevention and

treatment of infectious diseases has become one of the topics of research for governments

around the world. After the continuous exploration of prevention, the introduction of isolation

chamber Q has an excellent effect on timely controlling of infectious diseases. Therefore com-

pared with the previous SIR, SIRS, SEIR and other models, SEIQR model can more accurately

describe the prevention and control of infectious diseases. Liu et al. [3] proposed a deterministic

SEIQR(S: Susceptible; E: Exposed; I: Infected; Q: Quarantined; R: Removed) epidemic model:

dS ¼ ðA � aSI � mSÞdt;
dE ¼ ½aSI � ðaþ bÞE�dt;
dI ¼ ½bE � ðd þ hþ dÞI�dt;
dQ ¼ ðhI � kQÞdt;
dR ¼ ðmSþ aEþ dI þ kQ � nRÞdt;

8
>>>>>><

>>>>>>:

ð1Þ

where t is the time; and the normal number A represents the number of births and immigrants

entering S(t) per unit time; α is the proportion from S(t) to E(t); b is the incidence of incubation

period; μ, a, d, k represents removal rates from classes S, E, I,Q respectively; h stands for
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isolation strength; δ is category I natural mortality; n is the natural mortality rate of category R
recoveries due to immune system impairment, age and other reasons.

Converting model (1) to the following form:

dxi
dt
¼ fiðxÞ ¼ riðxÞ � hiðxÞ ¼

aSI
0
0
0
0

0

B
B
B
@

1

C
C
C
A
�

ðaþ bÞE
ðd þ hþ dÞI � bE
kQ � hI
aSI þ mS � A
nR � mS � aE � dI � kQ

0

B
B
B
@

1

C
C
C
A
; i ¼ 1; 2 . . .m

Let F ¼ @ri
@xj

h i
, V ¼ @hi

@xj

h i
, where 1� i, j�m, FV−1 is called a regenerative matrix. The basic

regeneration number is the spectral radius of the regeneration matrix. Basic reproduction

number R0 of system (1) is

bkaA
mðaþ bÞðd þ hþ dÞ

:

If R0� 1, the system (1) has a unique disease-free equilibrium point P0 ¼
A
m
; 0; 0; 0; 0

� �
, and it

is locally asymptotically stable; if R0 > 1, system (1) has a unique endemic equilibrium point

P* = (S*, E*, I*, Q*, R*), and it is locally asymptotically stable.

Since the infectious disease model is affected by many unpredictable environmental noises,

adding random interference to the deterministic model can reflect the transmission law more

accurately. In [4–10], white noise interference factor was added to the deterministic model to

study the dynamic behavior of a stochastic infectious disease model. Gaussian white noise is used

to describe a class of relatively stable, continuous random interference. Tornatore et al. [4] pro-

posed a stochastic SIR model with or without distributed time delay and studied the stability of

disease-free equilibrium. Xu et al. [5] studied a kind of SIRS model, proved the existence and

uniqueness of the positive solution of the model and obtained the conditions of disease extinction

for epidemics. Zhao [6] studied the relationship between the threshold value of stochastic SIRS

model with saturation incidence and the extinction and persistence of epidemic diseases. Hieu [7]

mainly studied the stochastic SIRS model under telegraph noise and gave the conditions of disease

persistence and disease-free equilibrium stability. Cai [8] mainly discussed the limit of transform-

ing SDE model to discrete-time system and proved that the regeneration number can be used to

judge the relevant properties of SDE model by using Markov semigroup theory. Yuguo et al. [9]

analyzed that the distribution of stochastic SIR model solutions is absolutely continuous. Liu et al.

[10] demonstrated that the system has a unique global positive solution and established sufficient

conditions for disease persistence. Hattaf et al. [11] proposed and analyzed a stochastic SIR Epi-

demic model with specific functional response and time delay, and compared the difference of

the basic regeneration number between the deterministic model and the stochastic model. Simi-

larly, Lan et al. [12] studied a stochastic SIS model with saturated exposure rates and also found

that the conditions for extinction of the disease were much weaker than the corresponding deter-

ministic model. Ali and Khan [13, 14] studied the dynamic properties of stochastic SEIR and

SIRS models with saturation rate and simulated them using Legendre spectrum method.

However, disease can be affected by a variety of natural mutations, such as volcanic erup-

tions, chemical pollutants, and sudden climate changes, which are often not accurately described

by stochastic models of Brownian motion. Therefore, many studies on natural mutation factors

will use Lévy jump to describe. This perturbation can more accurately describe the impact of

mutation factors, and more deeply understand and predict the trend of disease spread and

development. According to the Lévy-Itô decomposition theorem [15], Lévy noise is composed

of Brownian motion, independent Poisson random measures, and deterministic drift terms, so
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Lévy noise has a wider applicability than white noise [16–20]. Zhang and Wang [16, 17] studied

SEIR model and S-DI-R model driven by white noise and Lévy noise respectively. Zhang et al.

[18] studied the dynamics of a stochastic SIS epidemic model with saturation incidence and

dual epidemics and obtained sufficient conditions for the average extinction and persistence of

both epidemics. Liu et al. [19] discussed the persistence and extinction of a delayed vaccination

SIR epidemic model with temporary immunity and Lévy jumps and analyzed the relationship

with the intensity of Lévy noise and the duration of vaccination with the duration of disease and

the duration of eradication. EL Koufi et al. [20] considered a stochastic SIR model with a satu-

rated incidence rate and saturated treatment function incorporating Lévy noise. Based on this, a

stochastic SEIQR model with Lévy jumps can be considered:

dS ¼ ðA � aSI � mSÞdt þ s1SdB1ðtÞ þ
Z

Z

C1ðzÞSðtÞ ~Nðdt; dzÞ;

dE ¼ ½aSI � ðaþ bÞE�dt þ s2EdB2ðtÞ þ
Z

Z

C2ðzÞEðtÞ ~Nðdt; dzÞ;

dI ¼ ½bE � ðd þ hþ dÞI�dt þ s3IdB3ðtÞ þ
Z

Z

C3ðzÞIðtÞ ~Nðdt; dzÞ;

dQ ¼ ðhI � kQÞdt þ s4QdB4ðtÞ þ
Z

Z

C4ðzÞQðtÞ ~Nðdt; dzÞ;

dR ¼ ðmSþ aEþ dI þ kQ � nRÞdt þ s5RdB5ðtÞ þ
Z

Z

C5ðzÞRðtÞ ~Nðdt; dzÞ;

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð2Þ

where Bi(t) represents standard Brownian motion with filter {Ft}t>0 on a complete probability

space (O, F, P), and they are independent of each other; σi> 0 (i = 1, 2, 3, 4, 5) is the intensity of

Brownian motion Bi(t); Ci(Z)> −1(i = 1, 2, 3, 4, 5) represents the strength of the jump; N(dt, dz)
stands for Poisson random measure; ~Nðdt; dzÞ is the compensating random measure ofN(dt,
dz), and ~Nðdt; dzÞ ¼ Nðdt; dzÞ � pðdzÞdt; π(dz)dt is the stationary compensator, π is a measure

defined on a measurable set Z� [0,1), and satisfies π(Z)<1.

Lemma 1 (Itô formula) If X(t) is the solution of a random differential equation

dxðtÞ ¼ FðxðtÞ; tÞdt þ GðxðtÞ; tÞdBðtÞ þ
R

Z
HðxðtÞ; t; zÞ ~Nðdt; dzÞ:

If V 2 C2,1(Rd × [t0,1]; R+), thus the random derivative of V(x, t) is:

dVðx; tÞ ¼ LVðx; tÞdt þ Vxðx; tÞGðxðtÞ; tÞdBðtÞ þ
R

Z
½VðxþHðx; t; zÞÞ � Vðx; tÞ� ~Nðdt; dzÞ;

where

LVðx; tÞ ¼ Vtðx; tÞ þ Vxðx; tÞFðx; tÞ þ
1

2
trace½GTðx; tÞVxxGðx; tÞ�

þ

Z

Z

½VðxþHðx; t; zÞÞ � Vðx; tÞ � Vxðx; tÞHðx; t; zÞ�vðdzÞ:

Existence and uniqueness of the global positive solution

We assume that the jump diffusion coefficient satisfies the following conditions:
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PLOS ONE | https://doi.org/10.1371/journal.pone.0305139 June 14, 2024 3 / 16

https://doi.org/10.1371/journal.pone.0305139


(H1):
R

Z
jHiðx; zÞ � Hiðy; zÞj

2
pðdzÞ � Lcjx � yj

2
, where H1(x, z) = C1(z)S(t), H2(x, z) = C2(z)E

(t), H3(x, z) = C3(z)I(t), H4(x, z) = C4(z)Q(t), H5(x, z) = C5(z)R(t), |x| _ |y|� c, where c is a

normal number.

(H2): |Ci(z)|� K*, where K* is a normal number.

Lemma 2 Suppose that Conditions (H1) and (H2) hold, for any given initial value

ðSð0Þ; Eð0Þ; Ið0Þ;Qð0Þ;Rð0ÞÞ 2 R5

þ
, system (2) has a unique positive solution (S(t),

EðtÞ; IðtÞ;QðtÞ;RðtÞÞ 2 R5

þ
, and the solution lies inR5

þ
with probability 1.

proof According to (H1), system (2) satisfies the local Lipschitz condition, for any given ini-

tial value, the system (2) has a unique local solution (S(t), E(t), I(t), Q(t), R(t)) (t 2 τe), where τe
represents the blasting time. To prove the existence of a global solution, just prove τe =1, a.s.

Let k0 be a sufficiently large positive number such that the initial value (S(0), E(0), I(0), Q

(0), R(0)) is all in 1

k0
; k0

h i
, For any k� k0, the stopping time is defined as:

tk ¼ infft 2 ½0; teÞ : SðtÞ =2 1

k ; k
� �

;EðtÞ =2 1

k ; k
� �

;

IðtÞ =2 1

k ; k
� �

;QðtÞ =2 1

k ; k
� �

;RðtÞ =2 1

k ; k
� �

g:

Obviously, τk is monotonically increasing with respect to k and t1 ¼ lim
k!1

tk, thus τ1� τe.

If we could prove that τ1 =1, then τe =1.

Next, we use the proof by contradiction to prove. Suppose that τ1 6¼1, then lim
k!1

tk 6¼ 1,

hence there exist constants N> 0 and ε 2 (0, 1) such that P(τ1� N)> ε.

Then there exists an integer k1� k0 such that P(τk� N)� ε for any k� k1. Define a C2-

function:

V ¼ Sþ n � n ln S
n

� �
þ ðEþ 1 � ln EÞ þ ðI þ 1 � ln IÞ þ ðQþ 1 � lnQÞ þ ðRþ 1 � ln RÞ;

where n is a normal number to be determined later. It is easy to judge that u + 1 − ln u> 0 is

true, then V> 0. And according to Itô formula, we get:

dV ¼
@V
@S

Ss1dB1ðtÞ þ
@V
@E

Es2dB2ðtÞ þ
@V
@I

Is3dB3ðtÞ þ
@V
@Q

Qs4dB4ðtÞ þ
@V
@R

Rs5dB5ðtÞ

þ

Z

Z
½VðSðtÞ þ C1ðzÞSðtÞÞ � VðSðtÞÞ þ VðEðtÞ þ C2ðzÞEðtÞÞ � VðEðtÞÞ� ~Nðdt; dzÞ

þ

Z

Z
½VðIðtÞ þ C3ðzÞIðtÞÞ � VðIðtÞÞ þ VðQðtÞ þ C4ðzÞQðtÞÞ � VðQðtÞÞ� ~Nðdt; dzÞ

þ

Z

Z
½VðRðtÞ þ C5ðzÞRðtÞÞ � VðRðtÞÞ� ~Nðdt; dzÞ þ LVdt

¼ LVdt þ 1 �
n
S

� �
Ss1dB1ðtÞ þ 1 �

1

E

� �

Es2dB2ðtÞ þ 1 �
1

I

� �

Is3dB3ðtÞ

þ 1 �
1

Q

� �

Qs4dB4ðtÞ þ 1 �
1

R

� �

Rs5dB5ðtÞ þ
Z

Z
½C1ðzÞSðtÞ � n lnð1þ C1ðzÞ� ~Nðdt; dzÞ

þ

Z

Z
½C2ðzÞEðtÞ � lnð1þ C2ðzÞ� ~Nðdt; dzÞ þ

Z

Z
½C3ðzÞIðtÞ � lnð1þ C3ðzÞ� ~Nðdt; dzÞ

þ

Z

Z
½C4ðzÞQðtÞ � lnð1þ C4ðzÞ� ~Nðdt; dzÞ þ

Z

Z
½C5ðzÞRðtÞ � lnð1þ C5ðzÞ� ~Nðdt; dzÞ;

ð3Þ
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where

LV ¼ 1 �
n
S

� � dS
dt
þ 1 �

1

E

� �
dE
dt
þ 1 �

1

I

� �
dI
dt
þþ 1 �

1

Q

� �
dQ
dt
þ 1 �

1

R

� �
dR
dt

þ
1

2
tr½gTðtÞVxxðt; xðtÞÞgðtÞ� þ n

Z

Z
½C1ðzÞ � lnð1þ C1ðzÞ�pðdzÞ

þ

Z

Z
½C2ðzÞ � lnð1þ C2ðzÞ�pðdzÞ þ

R

Z½C3ðzÞ � lnð1þ C3ðzÞ�pðdzÞ

þ

Z

Z
½C4ðzÞ � lnð1þ C4ðzÞ�pðdzÞ þ

R

Z½C5ðzÞ � lnð1þ C5ðzÞ�pðdzÞ:

System (2) is substituted into the above formula and the fundamental inequality is used, then

LV � Aþ anI þ mnþ aþ bþ d þ hþ k � dI þ
1

2
ns2

1

þ
X5

i¼2

1

2
s2

i þ n
Z

Z
½C1ðzÞ � lnð1þ C1ðzÞ�pðdzÞ þ

X5

i¼2

Z

Z
½CiðzÞ � lnð1þ CiðzÞ�pðdzÞ:

Let n ¼ d

a
, then

LV � Aþ mnþ aþ bþ d þ hþ kþ
1

2
ns2

1
þ

þ
X5

i¼2

1

2
s2

i þ n
Z

Z
½C1ðzÞ � lnð1þ C1ðzÞ�pðdzÞ þ

X5

i¼2

Z

Z
½CiðzÞ � lnð1þ CiðzÞ�pðdzÞ:

According to Taylor’s formula and (H2), jCiðzÞ � lnð1þ CiðzÞÞj � 1

2
C2
i ðzÞ �

1

2
K2∗. Therefore,

LV � Aþ mnþ aþ bþ d þ hþ kþ 1

2
ns2

1
þ
X5

i¼2

1

2
s2

i þ
nþ 4

2
K2∗ : K

Integrating both sides of equation (3) from 0 to τk ^ N and taking the expectation:

E½VðSðtk ^ NÞ;Eðtk ^ NÞ; Iðtk ^ NÞ;Qðtk ^ NÞ;Rðtk ^ NÞÞ�

� VðSð0Þ; Eð0Þ; Ið0Þ;Qð0Þ;Rð0ÞÞ þ KN:

Let Ok = {τk� N}, then P(Ok)� ε0 for any k� k1. Notice that for every ω 2 Ok, at least one

of S(τk, ω), E(τk, ω), I(τk, ω), Q(τk, ω), R(τk, ω) equals either k or 1

k.

Hence

VðSðtk ^ NÞ;Eðtk ^ NÞ; Iðtk ^ NÞ;Qðtk ^ NÞ;Rðtk ^ NÞÞ � f ðkÞ;

where f ðkÞ ¼ fðk � 1 � ln kÞ ^ 1

k � 1 � ln 1

k

� �
g, thus

VðSð0Þ; Eð0Þ; Ið0Þ;Qð0Þ;Rð0ÞÞ þ KN

� E½1OkVðSðtk ^ TÞ;Eðtk ^ TÞ; Iðtk ^ TÞ;Qðtk ^ TÞ;Rðtk ^ TÞÞ� � ε0 f ðkÞ:

Where 1Ok is the indicator function of Ok, letting k! +1, leading to the contradiction:

þ1 > VðSð0Þ; Eð0Þ; Ið0Þ;Qð0Þ;Rð0ÞÞ þ KN ¼ þ1:
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Thus τ1 =1 a.s., then (S(t), E(t), I(t), Q(t), R(t)) will not explode in a finite amount of time.

Therefore, there is a globally unique positive solution for system (2).

Asymptotic behavior around disease-free equilibrium of the

deterministic model

P0 ¼
A
m
; 0; 0; 0; 0

� �
is the disease-free equilibrium point of the deterministic model. When R0

� 1, P0 is asymptotically stable. Next we will discuss the asymptotic behavior of the solution of

the stochastic model at the disease-free equilibrium point.

Theorem 3 Suppose that conditions (H1), (H2) hold, if R0� 1, and the following condi-

tions are met:

s2
1
þ

Z

Z
C2

1
ðzÞpðdzÞ < m �

nþ 1

a1 þ 1
; s2

2
þ 2

Z

Z
C2

2
ðzÞpðdzÞ < a � n;

s2
3
þ

Z

Z
C2

3
ðzÞpðdzÞÞ <

a2
2
b � 2n
2a2

; s2

4
þ

Z

Y
C2

4
ðzÞpðdzÞ < 1 �

2na3

ka2
2
b

;

1

2
s2

5
þ

Z

Z
C2

5
ðzÞpðdzÞ <

n
2
�
a2 þ d2 þ k2

2n
:

For any given initial value ðSð0Þ; Eð0Þ; Ið0Þ;Qð0Þ;Rð0ÞÞ 2 R5

þ
, the solution of system (2) has

the following properties:

lim
t!1

sup
1

t
E
R t

0
SðsÞ � A

m

h i2

þ E2ðSÞ þ I2ðSÞ þ Q2ðSÞ þ R2ðSÞ�ds � M
~m ;

where

m1 ¼ m �
nþ 1

a1 þ 1
�

Z

Z
C2

1
ðzÞpðdzÞ � s2

1
; m2 ¼ a � n � 2

Z

Z
C2

2
ðzÞpðdzÞ � s2

2
;

m3 ¼
1

4
½a2

2
b � 2a2ðs

2

3
þ

Z

Z
C2

3
ðzÞpðdzÞÞ � 2n�; m4 ¼

ka2
2
b

4a3

½1 � ðs2

4
þ

Z

Z
C2

4
ðzÞpðdzÞÞ� �

n
2

;

m5 ¼ n �
n2 þ a2 þ d2 þ k2

2n
�

Z

Z
C2

5
ðzÞpðdzÞ �

1

2
s2

5
; ~m ¼ minfm1;m2;m3;m4;m5g;

M ¼
A2

m2
½ð12a1 þ 1Þs2

1
þ nþ

Z

Z
ða1C

2

1
ðzÞ þ 1ÞpðdzÞ�:

proof Define the following functions:

V1 ¼
1

2
S �

A
m

� �2

;V2 ¼
1

2
I2;V3 ¼

1

2
Q2;V4 ¼ Eþ

aþ b
b

I;V5 ¼
1

2
R2;V6 ¼

1

2
S �

A
m
þ E

� �2

:

Thus

LV1 ¼ � m S �
A
m

� �2

� a S �
A
m

� �2

I �
aA
m

S �
A
m

� �

I þ
1

2
s2

1
S2 þ

1

2

Z

Z
C2

1
ðzÞS2ðtÞpðdzÞ: ð4Þ
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LV2 ¼ ½bE � ðd þ hþ dÞI�I þ
1

2
s2

3
I2 þ

1

2

Z

Z
C2

3
ðzÞI2ðtÞpðdzÞ

�
b2

2ðd þ hþ dÞ
E2 �

d þ hþ d
2

I2 þ
1

2
s2

3
I2 þ

1

2

Z

Z
C2

3
ðzÞI2ðtÞpðdzÞ:

ð5Þ

LV3 ¼ ½hI � kQ�Qþ
1

2
s2

4
Q2 þ

1

2

Z

Z
C2

4
ðzÞQ2ðtÞpðdzÞ

�
h2

2k
I2 �

1

2
kQ2 þ

1

2
s2

4
Q2 þ

1

2

Z

Z
C2

4
ðzÞQ2ðtÞpðdzÞ:

ð6Þ

LV4 ¼ a S �
A
m

� �

I �
ðaþ bÞðd þ hþ dÞ

b
�
aA
m

� �

I � a S �
A
m

� �

I: ð7Þ

LV5 ¼ R½mSþ aEþ dI þ kQ � nR� þ
1

2
s2

5
R2 þ

1

2

Z

Z
C2

5
ðzÞR2ðtÞpðdzÞ

�
1

2
nðS2 þ E2 þ I2 þ Q2Þ þ

m2 þ a2 þ d2 þ k2

2n
� n

� �

R2 þ
1

2

Z

Z
C2

5
ðzÞR2ðtÞpðdzÞ:

ð8Þ

LV6 ¼ S �
A
m
þ E

� �

ðA � mSþ ðaþ bÞEÞ þ
1

2
s2

1
S2 þ

1

2
s2

2
E2

þ
1

2

Z

Z
C2

1
ðzÞS2ðtÞpðdzÞ þ

1

2

Z

Z
C2

2
ðzÞE2ðtÞpðdzÞ

�
ðaþ bþ mÞ2

2ðaþ bÞ
� mþ s2

1

� �

S �
A
m

� �2

�
1

2
ðaþ bÞE2 þ

s2
1
A2

m2
þ

1

2
s2

2
E2

þ
1

2

Z

Z
C2

1
ðzÞS2ðtÞpðdzÞ þ

1

2

Z

Z
C2

2
ðzÞE2ðtÞpðdzÞ:

ð9Þ

Let a1 ¼
ðaþbþmÞ2

2ðaþbÞ , a2 ¼
dþhþd

b , a3 ¼
h2

k . Define the Lyapunov function again:

V ¼ a1 V1 þ
A
m
V4

� �

þ a2 V2 þ
a2b
2a3

V3

� �

þ V5 þ V6:
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According to the Itô formula, then

dV ¼ LVdt þ a1 S �
A
m

� �

Ss1dB1ðtÞ þ
A
m
Es2dB2ðtÞ þ

A
m
Is3dB3ðtÞ

� �

þ a2½I2s3dB3ðtÞ

þ
a2b
2a3

Q2s4dB4ðtÞ� þ R
2s5dB5ðtÞ þ S �

A
m
þ E

� �

ðSs1dB1ðtÞ þ Es2dB2ðtÞÞ

þa1½

Z

Z
S �

A
m

� �

C1ðZÞSðtÞ þ
1

2
ðC1ðzÞSðtÞÞ

2
þ
Aðaþ bÞ
mb

C3ðzÞIðtÞ
� �

~Nðdt; dzÞ�

þa2½

Z

Z
C3ðzÞI2ðtÞ þ

1

2
ðC3ðzÞIðtÞÞ

2
þ
a2b
2a3

C4ðzÞQ
2ðtÞ þ

a2b
4a3

ðC4ðzÞQðtÞÞ
2 ~Nðdt; dzÞ

þ

Z

Z
½C5ðzÞR2ðtÞ þ

1

2
ðC5ðzÞRðtÞÞ

2
� ~Nðdt; dzÞ þ

Z

Z
½ðS �

A
m
þ EÞðC1ðzÞSðtÞ þ C2ðzÞEðtÞÞ

þ
1

2
ðC1ðzÞSðtÞ þ C2ðzÞEðtÞÞ

2
� ~Nðdt; dzÞ þ

A
m
C2ðzÞEðtÞ;

ð10Þ

where

LV ¼ a1 LV1 þ
A
m
LV4

� �

þ a2 LV2 þ
a2b
2a3

LV3

� �

þ LV5 þ LV6

� � ½ða1 þ 1Þðm �

Z

Z
C2

1
ðzÞpðdzÞ � s2

1
� 1Þ � n � 1� S �

A
m

� �2

� ½
a � n � s2

1

2

�

Z

Z
C2

2
ðzÞpðdzÞ�E2 �

1

2

a2
2
b

2
� a2s

2

3
� a2

Z

Z
C2

3
ðzÞpðdzÞ � n

� �

I2 �
a2

2
b

4a3

�

k � ks2

�

Z

Z
C2

4
ðzÞpðdzÞ �

a3n
a2

2
b

�

Q2 � n �
mþ a2 þ d2 þ k2

2n
�

1

2
s2

5
�

Z

Z
C2

5
ðzÞpðdzÞ

� �

R2

þ
A2

m2
½ð12a1 þ 1Þs2

1
þ nþ

Z

Z
ða1C

2

1
ðzÞ þ 2ÞpðdzÞ�

� � m1 S �
A
m

� �2

� m2E2 � m3I2 � m4Q2 � m5R2 þM:

ð11Þ

For the Lyapunov function to be asymptotically stable, then m1, m2,m3, m4,m5 > 0. Thus

m1;m2;m3;m4;m5; ~m;M are described in Theorem 3. Integrating both sides of (10) from 0 to

t and taking the expectation:

EVðtÞ � EVð0Þ ¼ E
Z t

0

LVðsÞds

� E
Z t

0

� m1 S �
A
m

� �2

� m2E
2 � m3I

2 � m4Q
2 � m5R

2

" #

dsþMt:
ð12Þ

Then

lim
t!1

sup
1

t
E
R t

0
SðsÞ � A

m

h i2

þ E2ðsÞ þ I2ðsÞ þ Q2ðsÞ þ R2ðsÞ�ds � M
~m :

This completes the proof of Theorem 3.
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Remark 1: Theorem 3 shows that, with some suitable conditions, the solution of system (2)

fluctuates around the disease-free equilibrium point P0, the wave intensity is related to noise

intensity σi and Ci. The bigger the σi and Ci, the bigger the fluctuation. That is, the greater the

random disturbance, the farther away the solution of system (2) is from the disease-free equi-

librium point P0 of the deterministic model, at which time the disease will disappear. Next, we

will verify the correctness of Theorem 3 through numerical analysis(see Fig 1, where

A = 0.002, μ = 0.01, σi = 0.03(i = 1, 2, 3, 4, 5), a = 0.0075, b = 0.06, d = 0.002, h = 0.008, α =

0.04, k = 0.05, n = 0.2).

From the observation of Fig 1, it can be seen that under certain conditions of parame-

ters, the system will stabilize in a situation where only susceptible persons exist. The

infected person, exposed person of the virus will disappear, which means the disease will

disappear.

Asymptotic behavior around endemic equilibrium of the

deterministic model

P* is the endemic equilibrium point of the deterministic model. When R0 > 1, P* is asymptoti-

cally stable. Next we will discuss the asymptotic behavior of the solution of the stochastic

model at the endemic equilibrium point.

Fig 1. Asymptotic stability of disease-free equilibrium points in stochastic SEIQR model.

https://doi.org/10.1371/journal.pone.0305139.g001
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PLOS ONE | https://doi.org/10.1371/journal.pone.0305139 June 14, 2024 9 / 16

https://doi.org/10.1371/journal.pone.0305139.g001
https://doi.org/10.1371/journal.pone.0305139


Theorem 4 Suppose that conditions (H1), (H2) hold, if R0 > 1, and the following condi-

tions are satisfied:

s2
1
þ 2
Z

Z
C2

1ðzÞpðdzÞ <
m

2
�
aþ bþ m
2ðaþ bÞ

; s2

2
þ2
Z

Z
C2

2
ðzÞpðdzÞ <

a
2
�

b2

2ðd þ hþ dÞ
;

s2
3
þ

Z

Z
C2

3
ðzÞpðdzÞ <

dþ hþ d
2

�
1

2m
�; s2

4
þ

Z

Z
C2

4
ðzÞpðdzÞ <

k
2
�

1

2m
;

�

s2

5
þ

Z

Z
C2

5
ðzÞpðdzÞ < n � 1 �

b
2
�
kd2

2h2
:

For any given initial value ðSð0Þ; Eð0Þ; Ið0Þ;Qð0Þ;Rð0ÞÞ 2 R5

þ
, The solution of system (2)

has the following properties:

lim
t!1

sup
1

t
E
Z t

0

½ðSðsÞ � S∗Þ2 þ ðEðsÞ � E∗Þ2

þ ðIðsÞ � I∗Þ2 þ ðQðsÞ � Q∗Þ
2
þ ðRðsÞ � R∗Þ2�ds �

L
~l
;

where

l1 ¼
m

2
�
aþ bþ m
2ðaþ bÞ

� s2

1
� 2
Z

Z
C2

1ðzÞpðdzÞ; l2 ¼
a
2
� s2

2
�

b2

2ðd þ hþ dÞ
� 2
Z

Z
C2

2
ðzÞpðdzÞ;

l3 ¼
d þ hþ d

2
� s2

3
�

1

2m
�

Z

Z
C2

3
ðzÞpðdzÞ; l4 ¼

k
2
� s2

4
�

1

2m
�

Z

Z
C2

4
ðzÞpðdzÞ;

l5 ¼ n �
n2 þ a2 þ d2 þ k2

2n
�

Z

Z
C2

5
ðzÞpðdzÞ �

1

2
s2

5
; ~l ¼ minfl1; l2; l3; l4; l5g;

L ¼ ½s2
1
þ 2

Z

Z
C2

1
ðzÞpðdzÞ�ðS∗Þ2 þ ½s2

2
þ 2

Z

Z
C2

2
ðzÞpðdzÞ�ðE∗Þ2 þ ½s2

3
þ

Z

Z
C2

1
ðzÞpðdzÞ�ðI∗Þ2

þ ½
k
mh2

s2

1
þ

k
mh2

Z

Z
C2

4
ðzÞpðdzÞ�ðQ∗Þ

2
þ ½s2

5
þ

Z

Z
C2

5
ðzÞpðdzÞ�ðR∗Þ2:

proof Define the following functions:

V1 ¼
1

2
ðS � S∗ þ E � E∗Þ2;V2 ¼

1

2
ðI � I∗Þ2;V3 ¼

1

2
ðQ � Q∗Þ

2
;

V4 ¼
1

2
ðR � R∗Þ2;V ¼ V1 þ V2 þ

k
mh2
V3 þ V4:
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According to the Itô formula, then

dV ¼ LVdt þ ðS � S∗ þ E � E∗Þðs1SdB1ðtÞ þ s2EdB2ðtÞÞ þ ðI � I∗Þs3IdB3ðtÞ

þ
k
uh2
ðQ � Q∗Þs4QdB4ðtÞ þ ðR � R

∗Þs5RdB5ðtÞ
Z

Z
½ðS � S∗ þ E � E∗ÞðC1ðzÞSðtÞ

þC2ðzÞEðtÞÞ þ
1

2
ðC1ðzÞSðtÞ þ C2ðzÞEðtÞÞ

2
þ ðI � I∗ÞðC3ðzÞIðtÞÞ þ

k
mh2
ðQ � Q∗Þ

�ðC4ðzÞQðtÞÞ þ
k

2mh2
ðC4ðzÞQðtÞÞ

2
þ ðR � R∗ÞC5ðzÞRðtÞ þ

1

2
ðC5ðzÞRðtÞÞ

2
� ~Nðdt; dzÞ;

ð13Þ

where

LV ¼ LV1 þ LV2 þ
k
mh2

LV3 þ LV4

�
� m

2
þ
ðaþ bþ mÞ

2ðaÞ
þ s2

1
þ 2

Z

Z
C2

1
ðzÞpðdzÞ

� �

ðS � S∗Þ2 þ ½s2
1
þ 2

Z

Z
C2

1
ðzÞpðdzÞ�ðS∗Þ2

þ½s2
3
þ

Z

Z
C2

3
ðzÞpðdzÞ�ðI∗Þ2 þ ½�

a
2
þ s2

2
þ 2

Z

Z
C2

2
ðzÞpðdzÞ þ

b2

2ðd þ hþ dÞ
ðE � E∗Þ2

þ �
d þ hþ d

2
þ
h2

2k
þ s2

3
þ

Z

Z
C2

2
ðzÞpðdzÞ

� �

ðI � I∗Þ2 þ ½s2
5
þ

Z

Z
C2

4
ðzÞpðdzÞ�ðR∗Þ2

þ
k
mh2

h � 2k
2
þ s2

4
þ

Z

Z
C2

4
ðzÞpðdzÞ

� �

ðQ � Q∗Þ
2
þ
k
2
ðQ � Q∗Þ

2

þ½1þ
b
2
þ
kd2

2h2
� nþ s2

5
þ

Z

Z
C2

5
ðzÞpðdzÞ�ðR � R∗Þ2 þ ½s2

2
þ 2

Z

Z
C2

2
ðzÞpðdzÞ�ðE∗Þ2

þ½
k
mh2

s2

1
þ

k
mh2

Z

Z
C2

4
ðzÞpðdzÞ�ðQ∗Þ

2

� �
m

2
�
aþ bþ m
2ðaþ bÞ

� s2

1
� 2

Z

Z
C2

1
ðzÞpðdzÞ

� �

ðS � S∗Þ2 � ½
a
2
� s2

2
� 2

Z

Z
C2

2
ðzÞpðdzÞ

�
b2

2ðd þ hþ dÞ
�ðE � E∗Þ2 �

d þ hþ d
2

� s2

3
�

Z

Z
C2

3
ðzÞpðdzÞ �

1

2m

� �

ðI � I∗Þ2

�
k
mh2

k
2
� s2

4
�

Z

Z
C2

3
ðzÞpðdzÞ �

1

2m

� �

ðQ � Q∗Þ
2
� ½n � 1 �

b
2
�
kd2

2h2
� s2

5

�

Z

Z
C2

5
ðzÞpðdzÞ�ðR � R∗Þ2 þ ½s2

1
þ 2

Z

Z
C2

1
ðzÞpðdzÞ�ðS∗Þ2 þ ½s2

5
þ

Z

Z
C2

5
ðzÞpðdzÞ�ðR∗Þ2

þ½s2
3
þ

Z

Z
C2

1
ðzÞpðdzÞ�ðI∗Þ2 þ ½

k
mh2

s2

1
þ

k
mh2

Z

Z
C2

4
ðzÞpðdzÞ�ðQ∗Þ

2

þ½s2
2
þ 2

Z

Z
C2

2
ðzÞpðdzÞ�ðE∗Þ2

� � l1ðS � S∗Þ
2
� l2ðE � E∗Þ

2
� l3ðI � I∗Þ

2
� l4ðQ � Q∗Þ

2
� l5ðR � R∗Þ

2
þ L:

ð14Þ

For the Lyapunov function to be asymptotically stable, then l1, l2, l3, l4, l5 > 0. Where l1, l2,

l3, l4, l5, L are described in Theorem 4. Integrating both sides of (13) from 0 to t and taking the
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expectation:

0 � EVðSðtÞ;EðtÞ; IðtÞ;QðtÞ;RðtÞÞ ¼

VðSð0Þ; Eð0Þ; Ið0Þ;Qð0Þ;Rð0ÞÞ þ E
Z t

0

LVðSðtÞ; EðtÞ; IðtÞ;QðtÞ;RðtÞÞdt:
ð15Þ

Thus

lim
t!1

sup
1

t
E
Z t

0

½ðSðsÞ � S∗Þ2 þ ðEðsÞ � E∗Þ2

þ ðIðsÞ � I∗Þ2 þ ðQðsÞ � Q∗Þ
2
þ ðRðsÞ � R∗Þ2�ds �

L
~l
;

where~l is described in Theorem 4.

This theorem is proved.

Remark 2: Theorem 4 shows that when some conditions hold, the solution of system (2)

oscillates around P*, and the intensity of the vibration is related to the noise intensity. When

the degree of disturbance is greater, the solution of the system (2) is further away from the

local equilibrium point of the deterministic model, and the disease will persist.

Next, we will verify the correctness of Theorem 4 through numerical analysis(see Fig 2,

where A = 0.8, μ = 0.6, σi = 0.01(i = 1, 2, 3, 4, 5), a = 0.2, b = 0.08, d = 0.008, h = 0.032, α = 0.5,

k = 0.04, n = 0.3).

Fig 2. Asymptotic stability of endemic equilibrium points in stochastic SEIQR model.

https://doi.org/10.1371/journal.pone.0305139.g002
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PLOS ONE | https://doi.org/10.1371/journal.pone.0305139 June 14, 2024 12 / 16

https://doi.org/10.1371/journal.pone.0305139.g002
https://doi.org/10.1371/journal.pone.0305139


It can be seen from Fig 2 that, under certain parameter conditions, although the proportion

of recovered patients is obvious, the disease will continue because exposed persons and

infected persons will still exist in a certain proportion.

Persistence of disease

Definition 5 Let< xðtÞ >¼
R t

0
xðrÞdr

t , if lim
t!1

inf < xðtÞ >> 0, Then x(r) is called persistence in

the sense of time mean.

Definition 6 If Sð0Þ þ Eð0Þ þ Ið0Þ þ Qð0Þ þ Rð0Þ � A
m
, then

SðtÞ þ EðtÞ þ IðtÞ þ QðtÞ þ RðtÞ �
A
m
:

Thus O ¼ fSðtÞ; EðtÞ; IðtÞ;QðtÞ;RðtÞ 2 R4
þ
jSðtÞ þ EðtÞ þ IðtÞ þ QðtÞ þ RðtÞ � A

m
g is a positive

invariant set.

Theorem 7 Assume that S(t), E(t), I(t), Q(t), R(t) is the system (2) with initial value (S(0), E
(0), I(0), Q(0), R(0)) 2 O in solution, if A > aþb

að2aþbÞ, then lim
t!1

inf < IðtÞ >> 0, the solution I(t)

of model (2) is durable in the sense of time mean.

proof Let FðtÞ ¼ SðtÞ� Sð0Þ
t þ

EðtÞ� Eð0Þ
t þ

IðtÞ� Ið0Þ
t þ

QðtÞ� Qð0Þ
t . Integrating system (2) from 0 to t,

dividing by t and substituting F(t) yields:

FðtÞ ¼ A � m < SðtÞ > � a < EðtÞ > � ðd þ dÞ < IðtÞ > � k < QðtÞ >

þ
1

t

Z t

0

s1SðtÞ þ s2EðtÞ þ s3IðtÞ þ s4QðtÞdt

þ
1

t

Z t

0

Z

Z
½C1ðzÞSðtÞ þ C2ðzÞEðtÞ þ C3ðzÞIðtÞ þ C4ðzÞQðtÞ� ~Nðdt; dzÞ:

ð16Þ

According to the model (2),

EðtÞ � Eð0Þ
t

¼ aIðtÞ < SðtÞ > � ðaþ bÞ < EðtÞ >

þ
1

t

Z t

0

s2EðtÞdtþ
1

t

Z t

0

Z

Z
C2ðzÞEðtÞ ~Nðdt; dzÞ:

ð17Þ

QðtÞ � Qð0Þ
t

¼ h < IðtÞ > � k < QðtÞ > þ
1

t

Z t

0

s4QðtÞdtþ
1

t

Z t

0

Z

Z
C4ðzÞQðtÞ ~Nðdt; dzÞ: ð18Þ

Therefore

< EðtÞ > ¼
aIðtÞ < SðtÞ >

aþ b
�
EðtÞ � Eð0Þ
ðaþ bÞt

þ
1

ðaþ bÞt
½

Z t

0

s2EðtÞdt

þ
1

t

Z t

0

Z

Z
C2ðzÞEðtÞ ~Nðdt; dzÞ�:

ð19Þ

< QðtÞ >¼
h < IðtÞ >

k
�
QðtÞ � Qð0Þ

kt
þ

1

kt
½

Z t

0

s4QðtÞdtþ
1

t

Z t

0

Z

Z
C4ðzÞQðtÞ ~Nðdt; dzÞ�: ð20Þ
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Let

U ¼
1

t

Z t

0

s1SðtÞ þ s2EðtÞ þ s3IðtÞ þ s4QðtÞdt;

V ¼
1

t

Z t

0

Z

Z
½C1ðzÞSðtÞ þ C2ðzÞEðtÞ þ C3ðzÞIðtÞ þ C4ðzÞQðtÞ� ~Nðdt; dzÞ:

ð21Þ

Substituting (19), (20) into (16):

FðtÞ ¼ A � m < SðtÞ > �
aa
aþ b

< EðtÞ > IðtÞ �
a

aþ b
EðtÞ � Eð0Þ

t
� ðd þ dþ hÞ < IðtÞ >

�
QðtÞ � Qð0Þ

t
�

1

ðaþ bÞt
½

Z t

0

s2EðtÞdtþ
1

t

Z t

0

Z

Z
C2ðzÞEðtÞ ~Nðdt; dzÞ�

�
1

kt
½

Z t

0

s4QðtÞdtþ
1

t

Z t

0

Z

Z
C4ðzÞQðtÞ ~Nðdt; dzÞ� þ U þ V:

ð22Þ

Thus

ðd þ hþ dÞ < IðtÞ >¼ A �
1

t
½QðtÞ � Qð0Þ þ

Z t

0

s4QðtÞdtþ
1

t

Z t

0

Z

Z
C4ðzÞQðtÞ ~Nðdt; dzÞ�

�
a

ðaþ bÞt
½EðtÞ � Eð0Þ þ

Z t

0

s2EðtÞdtþ
1

t

Z t

0

Z

Z
C2ðzÞEðtÞ ~Nðdt; dzÞ�

þU þ V � FðtÞ þ mþ
aa
aþ b

� �

< SðtÞ > :

ð23Þ

According toFðtÞ ¼ SðtÞ� Sð0Þ
t þ

EðtÞ� Eð0Þ
t þ

IðtÞ� Ið0Þ
t þ

QðtÞ� Qð0Þ
t , thus lim

t!1
FðtÞ ¼ 0. And according

to the strong number theorem:

lim
t!1

1

t

Z t

0

s4QðtÞdt ¼ lim
t!1

1

t

Z t

0

s2EðtÞdt ¼ 0;

lim
t!1

1

t

Z t

0

Z

Z
C2ðzÞEðtÞ ~Nðdt; dzÞ� ¼ lim

t!1

1

t

Z t

0

Z

Z
C4ðzÞQðtÞ ~Nðdt; dzÞ� ¼ 0:

ð24Þ

Because O is positive invariant set, (S(t), E(t), I(t), Q(t)) 2 O was founded, that

SðtÞ þ EðtÞ þ IðtÞ þ QðtÞ � A
m
, thus 0 � SðtÞ � A

m
.

< SðtÞ >¼
1

t

Z t

0

SðtÞdt �
1

t

Z t

0

A
m
dt <

A
m
þ ε: ð25Þ

where ε is any positive constant. In combination with (24) and (25),

lim inf
t!1

< IðtÞ >�
A

d þ hþ d
�

m2ðaþ bÞ þ aaA
ðd þ hþ dÞðaþ bÞm

A
m
þ ε

� �

> 0: ð26Þ

This theorem is proved.

Theorem 7 states that under certain conditions, the disease will continue to spread. This

means that the disease persists among the population and is not conducive to further

management.
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Conclusion

In this work, we have proposed a stochastic SEIQR epidemic model with bilinear incidence

rates and Lévy noise based on the randomness of nature and some abrupt fluctuations. By

applying the relevant knowledge of stochastic analysis, we have proved the existence and the

uniqueness of the global positive solution for the stochastic SEIQR model. Moreover, we

showed that the free equilibrium point P0 and the endemic equilibrium point P* are asymptot-

ically stable under certain conditions. At the same time, we have proved the conditions under

which the model is durable in the sense of time mean. Finally, numerical simulation were used

to illustrate theoretical results. Different from other three-compartment and four-compart-

ment models, this paper proposes to add isolation compartment and introduce Lévy noise ran-

dom interference, respectively proving the stability of the equilibrium point and the

conditions for the continuous existence of the disease, providing a theoretical basis for the sub-

sequent control of infectious diseases. However, when an infectious disease spreads through a

population, the individual gains knowledge about the disease. The classical time derivative

cannot reflect the memory effect of model dynamics. The time derivative in this paper is

replaced by a fractional derivative [21, 22], and delayed feedback [23] is considered for factors

such as vaccines in random infectious diseases. At the same time, we can consider the general

non-Markov SEIQR model and compare the discrete and continuous time versions in the

future [24].
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