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Abstract

This paper proposes a retinal prosthesis edge detection (RPED) algorithm that can achieve

high visual acuity and low power. Retinal prostheses have been used to stimulate retinal tis-

sue by injecting charge via an electrode array, thereby artificially restoring the vision of visu-

ally impaired patients. The retinal prosthetic chip, which generates biphasic current pulses,

should be located in the foveal area measuring 5 mm × 5 mm. When a high-density stimula-

tion pixel array is realized in a limited area, the distance between the stimulation pixels nar-

rows, resulting in current dispersion and high-power dissipation related to heat generation.

Various edge detection methods have been proposed over the past decade to reduce these

deleterious effects and achieve high-resolution pixels. However, conventional methods

have the disadvantages of high-power consumption and long data processing times

because many pixels are activated to detect edges. In this study, we propose a novel RPED

algorithm that has a higher visual acuity and less power consumption despite using fewer

active pixels than existing techniques. To verify the performance of the devised RPED algo-

rithm, the peak signal-to-noise ratio and structural similarity index map, which evaluates the

quantitative numerical value of the image are employed and compared with the Sobel,

Canny, and past edge detection algorithms in MATLAB. Finally, we demonstrate the effec-

tiveness of the proposed RPED algorithm using a 1600-pixel retinal stimulation chip fabri-

cated using a 0.35 μm complementary metal-oxide-semiconductor process.

Introduction

An artificial retina, also known as a retinal prosthesis, is a device used to restore vision in

individuals who have lost their eyesight because of specific degenerative eye conditions, such

as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) [1, 2]. These dis-

eases damage the retinal photoreceptor layer, which detects light and transmits visual signals

to the brain, resulting in vision loss. However, retinal neurons in the inner nuclear and gan-

glion cell layers in the macula survive at a high rate [3]. A retinal prosthesis replaces
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photoreceptors with an electrode array that delivers electrical stimulation [4, 5]. It stimulates

the remaining healthy retinal cells, transmitting visual information to the brain and restoring

vision [6, 7]. Retinal prostheses are categorized into two main types: epiretinal and subret-

inal. An epiretinal prosthesis is implanted in the innermost layer of the retina, directly stimu-

lating the ganglion cells [8, 9]. A subretinal prosthesis stimulates bipolar cells by inserting

microelectrode arrays into the photoreceptor cell layer [10, 11]. Moreover, it has been

reported that the subretinal prosthesis can be manufactured as a high-resolution pixel chip

within a limited retinal fovea size (5 mm × 5 mm) owing to simple analog circuit implemen-

tation. A subretinal prosthesis requires high-resolution pixels within a limited retinal fovea

size to recognize a person or object [12]. In this case, the proximity of the pixels leads to

interference between neighboring pixels during stimulation, resulting in current dispersion

and the creation of a blurred image, as illustrated in Fig 1(a). Since the pixel count in a sub-

retinal stimulator aligns with the number of electrodes [13], this equivalence can also be

interpreted as interference from the electrodes. Fig 1 depicts the results consisting of 2025

electrodes with a spacing of 10um, and the current dispersion may vary depending on the

performance of the stimulator. Furthermore, heat is generated when a current is applied to

the tissue owing to tissue resistance, which can damage retinal cells and surrounding tissues

[14, 15]. In other words, as the number of current emitting pixels increases, the probability

of cell damage increases because of the high thermal effect.

To overcome these problems as illustrated in Fig 1(a), edge detection methods have been

proposed to selectively stimulate only the edge regions, as depicted in Fig 1(b). Edge detection

stimulation extracts the intensity value of a pixel and compares it with the mean value of

neighboring pixels. By comparison, if the pixel has a difference above a threshold value, the

pixel was determined to be an edge. Utilizing edge detection stimulation in retinal prostheses

offers several advantages: (1) The power consumption of the retinal prosthesis system can be

reduced by selectively activating electrodes that correspond to edges. Generally, implantable

retinal prosthesis power is supplied via wireless power transmission. When applying wireless

power transmission, it is crucial to consume less power because of safety issues related to the

heating effect and radiation [16]. (2) Crosstalk between pixels is geometry-dependent and

characteristic of monopolar configurations [17]. This selective electrode activation method

reduces the electric crosstalk between electrodes, which induces current dispersion [18], by

reducing the number of activated electrodes. (3) As edge detection closely resembles natural

Fig 1. Stimulation methods of (a) light intensity (b) edge extraction.

https://doi.org/10.1371/journal.pone.0305132.g001
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retinal visual signal processing [19], visual acuity can be improved using an edge detection

method that limits stimulation of electrodes along the edges [20–22].

Applying the edge detection method to retinal prostheses requires tailored image process-

ing that is suitable for small retinal stimulation chips, unlike conventional computer-based

image processing, which typically operates for sufficient durations. First, an image processor

with an algorithm suitable for low-resolution, rather than high-resolution, should be inte-

grated into the chip. In contrast to computer-based edge-detection methods, which typically

handle high-resolution images with millions of pixels, retinal prostheses are limited to low-res-

olution images with thousands of pixels because of the spatial restrictions of the eye. Second,

real-time processing capabilities are essential for patients’ daily lives. It has been known that

retinal cells are stimulated by a temporal resolution corresponding to 40–100ms (25–10 Hz)

[23, 24]. Finally, a minimum number of electrodes should be activated for visual recognition.

Typically, power to the retinal prosthesis is supplied via wireless power transmission. However,

it is difficult to supply sufficient power to wireless power transmissions currently in use owing

to problems such as eddy effects, proximity issues, misalignment, and large separations [25–

27]. Therefore, power consumption is minimized to ensure reliable operation, even under

less-than-optimal power transmission conditions.

To implement edge detection, the internal image processor of the chip compares the inten-

sity of the pixels with the surrounding pixels to discern the edge. In a retinal prosthesis, con-

ventional edge detection compares the center pixel with its four neighboring pixels, and the

five pixels are simultaneously activated [22]. The image processing speed is slow because when

more pixels are activated, the power consumption and amount of data to be processed are

higher than those of conventional edge detection. To overcome these issues, this paper intro-

duces an effective ‘retinal prosthesis edge detection (RPED)’ algorithm optimized for retinal

prosthesis by activating only two neighboring pixels, thereby reducing power consumption

and increasing data processing speed. We mathematically model and simulate the proposed

algorithm and compare and validate it with conventional edge detection algorithms, such as

Canny and Sobel, using various evaluation metrics, including the mean squared error (MSE),

peak signal-to-noise ratio (PSNR), and structural similarity index map (SSIM). Additionally,

we demonstrate the RPED algorithm on an actual 1,600 pixel artificial subretinal chip [28].

Method

Fig 2 compares the pixels of the edge detection stimulation between the conventional retinal

prosthesis (blue line) and the RPED algorithm (red line). In conventional edge detection stim-

ulation methods, edge detection is performed by comparing the information from the central

pixel with that from its four surrounding pixels. If the center pixel has a difference above a

threshold value compared with the neighboring pixels, the center pixel is judged to be an edge

and is activated. This process has the disadvantage of increasing power consumption and

reducing data processing speed while the surrounding pixel values are collected. Therefore,

this study proposes an RPED algorithm that reduces power consumption and increases data

processing speed by detecting edges using only two neighboring pixels.

Fig 3 illustrates a flowchart of the proposed RPED algorithm, and P presents the pixel.

When light is injected into a photodiode-based retinal stimulator chip, the algorithm begins

with the initial pixels and then proceeds sequentially to the next activated pixels. First, as

shown in Eq 1, a comparison between the center pixel and its two neighboring pixels was initi-

ated.

I x; yð Þ > Thr þ I xþ a; yð Þ jj I x; yð Þ < Thr þ Iðx; yþ aÞ ð1Þ
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In Eq 1, I(x,y) represents the amount of dark current flowing in the center-pixel photodi-

ode. Thr is the threshold that denotes a certain level of luminance difference. Additionally, α
signifies the distance between the center pixel and neighbor pixels, which in Fig 2 can be

defined as α = 1.

Fig 2. Comparison of the principle between conventional edge detection stimulation (blue) and RPED algorithm

stimulation (red).

https://doi.org/10.1371/journal.pone.0305132.g002

Fig 3. Flow chart of the proposed RPED algorithm.

https://doi.org/10.1371/journal.pone.0305132.g003
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If the center pixel has a brighter light than the neighboring pixel, resulting in a luminance

difference exceeding the user-defined threshold, the center pixel is identified as an edge and is

activated. Conversely, if the center pixel has a minimal luminance difference and was consid-

ered insufficient for recognition as an edge, it was deactivated. However, considering the possi-

bility of edges with varying luminance differences, where neighboring pixels may be brighter

than the center pixel, both x-axis and y-axis comparisons were conducted, as described in Eqs

2 and 3.

Thr þ I x; yð Þ < I xþ a; yð Þ ð2Þ

Thr þ I x; yð Þ < I x; yþ að Þ ð3Þ

In this process, neighboring pixels identified as edges are activated, whereas non-edge pixels

are deactivated. Following the edge determination of the initial pixel, a comparison process for

the next pixel was carried out. During this process, once a pixel has been activated, it retains its

activation status even if it is not recognized as an edge in subsequent comparisons. This

sequence continues until all pixels have undergone an edge assessment. As the algorithm

determines the activation/deactivation of a pixel, a charge proportional to the light intensity is

applied to the cell, enabling the creation of gray-level images that closely resemble the original

input. Retinal prostheses typically contain over 2k high-resolution pixels, resulting in the pres-

ence of multiple pixel clusters [29]. Activating a large number of pixels simultaneously may

increase power consumption through wireless power transmission used in implantable

devices, potentially leading to heat generation as explained in the introduction. For these rea-

sons, several initial pixels are designated for concurrent edge detection within multiple

clusters.

The performance of edge detection algorithms is typically evaluated using metrics, such as

the PSNR and SSIM, based on the extracted edge image. The PSNR assesses the quality loss in

an image and is calculated using Eq 4, where R represents the maximal variation in the input

image data, typically having a value of 255 for 8-bit unsigned integer data types [30].

PSNR ¼ 10 log
10

R2

MSE

� �

ð4Þ

The MSE in Eq 5 represents the average of the squared differences between the predicted

values of the algorithm and the actual image data. I1 is the original image, I2 is the edge-

detected image, and m and n are the height and width of the image, respectively [30]. A lower

MSE indicates a better algorithm performance, resulting in a higher PSNR. In other words, the

PSNR increases as the error rate decreases.

MSE ¼
P

M;N ½I1ðm; nÞ � I2ðm; nÞ�
2

M;N
ð5Þ

The SSIM evaluates human visual quality differences rather than numerical errors, as in Eq

6, and represents the quality differences that humans feel visually, unlike PSNR [31].

SSIM x; yð Þ ¼
2mxmy þ c1

� �
2sxy þ c2

� �

m2
x þ m

2
y þ c1

� �
s2
x þ s

2
y þ c2

� � ð6Þ

Here, μx denotes the pixel sample mean of x, μy denotes the pixel sample mean of y; s2
x indi-

cates the variance of x; s2
y denotes the variance of y, and σxy denotes the covariance of x and y.
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Additionally, c1 and c2 are defined as, c1 = (k1L)2, c2 = (k2L)2 with k1 = 0.01, k2 = 0.03. L signi-

fies the dynamic range of pixel values, typically defined as 2#bits per pixel−1. Based on these evalu-

ation metrics, algorithms were implemented and compared through MATLAB to evaluate the

performance of the proposed RPED algorithm and to compare it with conventional edge

detection stimulation methods and other edge detection algorithms such as Canny and Sobel.

Result

3.1 Simulation results with MATLAB

For experiments under the same conditions as the retinal prosthesis stimulator with 2,000 or

more pixels, the original image was converted into a grayscale image with a resolution of

45 × 45 pixels. Lenna images, which are commonly used in image processing algorithms, were

used.

3.1.1 Retinal prosthesis edge detection (RPED) algorithms. To optimize the RPED algo-

rithm for the Lenna image, the variables Threshold and α should be defined. To simplify the

determination of the threshold value, we divided the pixel values of an image, ranging from 0

to 255, into 15 discrete steps. For the Lenna image, which had values ranging from 24 to 229,

we divided these values into 15 steps, resulting in intervals of 14. To simplify threshold nam-

ing, we assign ‘Thr’ values proportionally based on pixel value differences, such as Thr = 1 for a

difference of 14 in pixel values and Thr = 2 for a difference of 28. Table 1 lists the results of the

edge detection image based on the change in the value of Thr. We optimized the Threshold to

Thr = 4 for the Lenna image, ensuring that the PSNR, which is inversely proportional to power

consumption, is high and prevents the blur effect caused by current dispersion. Thr can vary

depending on the patient’s clarity through presetting of a transplant operation by using exter-

nal digital code. The fixed Thr value remains constant during the operation of the stimulator.

However, in this experiment, Thr is tailored to the image.

Table 2 lists the results based on the change of α, which is the distance variable between

pixels when the threshold is fixed at 4. The algorithm first determines the Thr and then opti-

mizes the α value, and this process occurs during presetting. The PSNR value increases grad-

ually but is inversely proportional to the power. Therefore, it is optimized at α = 2, where the

most significant increase rate of PSNR exists. Fig 4(a) presents a graph generated based on

Table 1. Results of edge detection image based on the Thr value change.

Table1-1 Table1-2 Table1-3 Table1-4 Table1-5 Table1-6 Table1-7 Table1-8

Original (Thr = 0) Thr = 1 Thr = 2 Thr = 3 Thr = 4 Thr = 5 Thr = 6 Thr = 7

PSNR 14.1925 10.8681 9.5410 8.8613 8.3422 7.8619 7.4740

SSIM 0.6368 0.5003 0.4095 0.3441 0.2813 0.2254 0.1704

Activated pixel N 1459 984 719 575 442 331 243

Activated pixel ratio 72.05% 48.59% 35.51% 28.4% 21.83% 16.35% 12%

https://doi.org/10.1371/journal.pone.0305132.t001

Table 2. Results of edge detection image based on the α value change.

Table2-1 Table2-2 Table2-3 Table2-4 Table2-5 Table2-6 Table2-7 Table2-8

Original α = 1 α = 2 α = 3 α = 4 α = 5 α = 6 α = 7

PSNR 7.7219 8.8613 9.8389 10.6950 11.2394 11.2826 11.4680

SSIM 0.2124 0.3441 0.4028 0.4457 0.4722 0.4578 0.4660

Activated pixel N 364 575 711 834 901 910 944

Activated pixel ratio 17.83% 28.4% 35.11% 41.19% 44.49% 44.94% 46.62%

https://doi.org/10.1371/journal.pone.0305132.t002
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the PSNR values defined in Table 2, illustrating the increase rate of PSNR as α increases. It is

evident that the most substantial increase rate occurs at α = 2, reaching 0.5697. Fig 4(b) dis-

plays the increase rate of SSIM, with α = 2 exhibiting the highest increase rate at 0.06585.

These results confirm that the optimal choice is α = 2, representing the distance between

pixels.

3.1.2 Comparison with other algorithms. The results of comparing the optimized RPED

algorithm with conventional edge detection stimulation of retinal prostheses are summarized

in Table 3. The PSNR and SSIM show that the proposed algorithm has a higher value than the

conventional edge detection method when both images have a resolution of 45 × 45 pixels, as

previously assumed. The power consumption is calculated mathematically by assuming the

environment of the retinal prosthesis stimulator chip as 5 V of supply voltage and 100 μA of

stimulation current for retina tissue. In the RPED algorithm, the activated pixel power of the

final image is higher than that of the conventional edge detection stimulation because the

number of activated pixels is greater. However, because the algorithm was applied to a retinal

prosthesis, the processing power consumption during the edge detection of pixels should be

considered. In this 45 × 45-pixel case, because edge detection starts from several initial pixels

in multiple clusters, as mentioned in the Methods section, suppose that the initial pixels are

activated in 25 clusters. The 25 clusters were created by dividing the 45 × 45 blocks into 9 × 9

Fig 4. Graph of (a) pixel distance variable vs gradient of PSNR (b) pixel distance variable vs gradient of SSIM.

https://doi.org/10.1371/journal.pone.0305132.g004

Table 3. The results of comparing the RPED algorithm with conventional edge detection stimulation.

Retinal prosthesis edge detection

algorithm

Conventional edge-detection stimulation

method

Number of neighbor

pixels

2 4

Image result Table3-1 Table3-2

PSNR 8.8613 7.5862

SSIM 0.3441 0.2034

Activated pixel N 575 309

Activated pixel ratio 28.4% 15.26%

Activated pixel power 287.5 mW 154.5 mW

Processing power 37.5 mW 62.5 mW

Data processing speed 8.1ms 16.2ms

https://doi.org/10.1371/journal.pone.0305132.t003
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blocks. The numbers of pixels required to determine the edge are 3 and 5, respectively, which

are the sum of the center and neighboring pixels, respectively. In the proposed algorithm,

three pixels were activated in each of the 25 blocks, resulting in a processing power consump-

tion of 37.5 mW as shown in Table 3. By contrast, five pixels were activated in each block of

the conventional edge detection stimulation methods, leading to a processing power consump-

tion of 62.5 mW. Although the power consumption results may vary depending on the specifi-

cations of the retinal prosthesis, the number of activated pixels required to determine the edge

of a single center pixel remains the same. Therefore, the proposed RPED algorithm consis-

tently exhibits lower processing power consumption and is safer from cell damage due to heat

than the conventional edge detection stimulation. Additionally, it is assumed that the time

required to detect the edge of a single pixel for data processing speed calculation is 2 μs. The

proposed RPED algorithm only requires comparison with two neighboring pixels, thus neces-

sitating 4 μs per pixel. Therefore, for all 2025 pixels, the total time required amounts to 8.1ms.

Using the same approach, for the conventional edge-detection stimulation method, which

requires comparison with four neighboring pixels, twice the time of the former is needed,

totaling 16.2 ms. The halved comparison time enables more feasible real-time image process-

ing. The calculation results in the environment where the values of α and Thr were set equally

for fair comparison between the two are listed in Table 3.

Table 4 compares the RPED algorithm with two well-known image processing algorithms,

Sobel [32] and Canny [33], to assess its suitability for retinal prosthesis systems. The compar-

ison was conducted under the resolution conditions of an artificial retina with dimensions of

45 × 45 pixels and under the original image resolution of 512 × 512 pixels. Sobel edge detec-

tion calculates the image gradient using a 3 × 3 convolution filter to detect edges [34]. Canny

edge detection involves several stages including smoothing using a Gaussian filter, gradient

calculation, non-maximum suppression (NMS), and hysteresis edge tracking to achieve pre-

cise edge detection and noise reduction [35]. Both methods yielded excellent edge detection

results in high-resolution images. However, in the case of low-resolution conditions such as

retinal prostheses, the resolution of the edge decreases, making edge discrimination chal-

lenging. Additionally, both methods share the drawback of weak antinoise capability, which

may classify noise as edges, thus emphasizing noise [36]. Examining the results in Table 4, it

is evident that, for high-resolution images (512 × 512 pixels), similar PSNR values were

observed among the algorithms. However, for low-resolution images (45 × 45 pixels), the

RPED algorithm achieves a higher PSNR. Furthermore, the RPED algorithm exhibits supe-

rior SSIM values. In summary, these results indicate that the proposed RPED algorithm is

well-suited for implantable retinal prosthesis systems that require low-resolution and ultra-

low power operation.

Table 4. Comparison with RPED algorithm vs Sobel and Canny algorithm.

Algorithm Sobel Canny RPED

45 × 45 Resolution

Image result Table4-1 Table4-2 Table4-3

PSNR 6.5718 7.0599 8.8613

SSIM 0.0188 0.0436 0.3441

512 × 512 Resolution

Image result Table4-4 Table4-5 Table4-6

PSNR 5.9168 6.1159 6.2742

SSIM 0.0114 0.0186 0.0924

https://doi.org/10.1371/journal.pone.0305132.t004
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3.2 Experiment results with retinal prosthesis 1,600-pixel stimulator chip

Fig 5(a) shows a test bench for measuring the image results based on whether edge detection

was applied. The images present a comparison between the traditional light intensity stimula-

tion method and the edge-detection stimulation using the proposed RPED algorithm. Fig 5(b)

shows a microscopic image of the 1,600 pixels stimulator that was used in the experiment. This

chip comprises individual pixels measuring 80 μm by 84 μm, spaced apart by intervals of

10 μm. This results in a total size of 3.3 mm by 4.3mm. In the experiment, the DLP projector

injected a light pattern onto the retinal prosthesis 1600-pixel stimulator chip developed in our

previous study [26]. The stimulation current was converted into voltage by adding a resistive

feedback trans-impedance amplifier (RTIA: TLC27M, Texas Instruments) outside the chip to

conform to the stimulation current generated by the chip owing to image pattern injection.

Using an analog-to-digital converter (ADC 104S series, Texas Instruments) that communi-

cates with the microcontrollers, the converted voltage was digitized, and the data were trans-

mitted to the PC. A comparison of the image results between the traditional light intensity

stimulation that generates the current dispersion and the RPED algorithm stimulation with

improved visual acuity is presented on a laptop screen. Experiments were conducted on a dark

optical table to increase the accuracy of the image pattern projection.

Fig 6 shows the MATLAB results of projecting images with different patterns using the lap-

top, as shown in Fig 5. Fig 6(a) represents the original image used in this experiment. When

traditional light intensity stimulation was utilized, all pixels irradiated with light were acti-

vated, and ambient noise was generated, as depicted in Fig 6(b). The combination of noise and

patterns causes current dispersion, resulting in low spatial resolution owing to the image blur

phenomenon. In particular, the image blur phenomenon became more severe in the circular

hole-shaped pattern. In addition, as the number of activated pixels increases, power consump-

tion increases proportionally, which can damage normal retinal tissues owing to the heat of

Fig 5. (a) Test bench for measuring the results of images with or without RPED algorithms (b) A microscopic image of the 1,600 pixels stimulator.

https://doi.org/10.1371/journal.pone.0305132.g005
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the chip. To overcome these problems, the RPED algorithm stimulation was applied with the

same values as those of the α and Thr mentioned in the result, as shown in Fig 6(c). The RPED

algorithm enables cleaner edge detection in simpler images, and better results can be achieved

with larger differences in brightness, as illustrated in Fig 6(c). Unlike light intensity stimula-

tion, the results show little noise and clear image patterns can be distinguished, even in the

shape of a circular hole. In other words, the spatial resolution is increased, and thermal damage

safety is improved by reducing the number of activated pixels. However, edge detection gener-

ally requires an edge judgment process that requires more image processing time than tradi-

tional light intensity. To reduce the image processing time and power consumption, we

propose an RPED algorithm optimized for retinal prostheses, which has better visual acuity

and low power consumption. The RPED algorithm has proven to be suitable for retinal pros-

thesis systems using a 1,600-pixel stimulator chip.

Conclusion

We proposed and verified the retinal prosthesis edge detection (RPED) algorithm which has

enhanced visual acuity and low power consumption, using the MATLAB simulator and

1,600-pixel retinal stimulation chip previously fabricated in DB HiTek 0.18 μm complemen-

tary metal-oxide-semiconductor (CMOS) process. To objectively compare the proposed

RPED algorithm with other traditional algorithms, such as the conventional edge detection

Fig 6. Image results of (a) original image, (b) traditional light intensity stimulation and (c) edge detection stimulation applying RPED algorithm using

the retinal prosthesis 1,600-pixel stimulation chip.

https://doi.org/10.1371/journal.pone.0305132.g006
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method, Canny, and Sobel, various evaluation indicators, namely MSE, PSNR, and SSIM, were

applied. From the experimental results, the proposed RPED algorithm has a higher PSNR of

8.8613 by 1.2751 and a higher SSIM of 0.3441 by 0.1407 compared to the conventional edge

detection method. And the processing power consumption during edge detection of the RPED

algorithm is 37.5 mW, which is less than the conventional edge detection method by 25 mW.

Moreover, the PSNR and SSIM results show that the proposed RPED algorithm is more suit-

able for a retinal implant application, which requires thousands of simulation pixels, than the

Canny and Sobel algorithms, which are generally used in camera image sensors with thou-

sands of megapixels. By virtue of the RPED, which minimizes active pixels, we drastically

reduced the active power consumption of the 1,600-pixel stimulator chip that matches the

refresh time through multi-pixel activation during stimulations. This demonstration enables

both high spatial resolution and low power consumption, which can diminish the secondary

heating effect in the retinal tissues. The retinal prosthesis should achieve higher resolution

images than what is currently available. However, since the RPED algorithm has not yet been

applied to high resolution devices, its effectiveness needs to be evaluated. Additionally, the

RPED algorithm maintains the same threshold value even as external images change. There-

fore, in future work, we will embed the proposed RPED algorithm that enables automatic

threshold adjustment through the introduction of a feedback system via wireless power trans-

mission into a 2000-pixel retinal system-on-a-chip under development, and its performance

will be demonstrated in an ex vivo experiment.
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