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Abstract

Background

Estimation of prevalence and diagnostic test accuracy in tuberculosis (TB) prevalence sur-

veys suffer from reference standard and verification biases. The former is attributed to the

imperfect reference test used to bacteriologically confirm TB disease. The latter occurs

when only the participants screening positive for any TB-compatible symptom or chest X-

ray abnormality are selected for bacteriological testing (verification). Bayesian latent class

analysis (LCA) alleviates the reference standard bias but suffers verification bias in TB prev-

alence surveys. This work aims to identify best-practice approaches to simultaneously alle-

viate the reference standard and verification biases in the estimates of pulmonary TB

prevalence and diagnostic test performance in TB prevalence surveys.

Methods

We performed a secondary analysis of 9869 participants aged�15 years from a commu-

nity-based multimorbidity screening study in a rural district of KwaZulu-Natal, South Africa

(Vukuzazi study). Participants were eligible for bacteriological testing using Xpert Ultra and

culture if they reported any cardinal TB symptom or had an abnormal chest X-ray finding.

We conducted Bayesian LCA in five ways to handle the unverified individuals: (i) complete-

case analysis, (ii) analysis assuming the unverified individuals would be negative if bacterio-

logically tested, (iii) analysis of multiply-imputed datasets with imputation of the missing

bacteriological test results for the unverified individuals using multivariate imputation via

chained equations (MICE), and simultaneous imputation of the missing bacteriological test
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results in the analysis model assuming the missing bacteriological test results were (iv)

missing at random (MAR), and (v) missing not at random (MNAR). We compared the results

of (i)-(iii) to the analysis based on a composite reference standard (CRS) of Xpert Ultra and

culture. Through simulation with an overall true prevalence of 2.0%, we evaluated the ability

of the models to alleviate both biases simultaneously.

Results

Based on simulation, Bayesian LCA with simultaneous imputation of the missing bacterio-

logical test results under the assumption that the missing data are MAR and MNAR alleviate

the reference standard and verification biases. CRS-based analysis and Bayesian LCA

assuming the unverified are negative for TB alleviate the biases only when the true overall

prevalence is <3.0%. Complete-case analysis produced biased estimates. In the Vukuzazi

study, Bayesian LCA with simultaneous imputation of the missing bacteriological test results

under the MAR and MNAR assumptions produced overall PTB prevalence of 0.9% (95%

Credible Interval (CrI): 0.6–1.9) and 0.7% (95% CrI: 0.5–1.1) respectively alongside realistic

estimates of overall diagnostic test sensitivity and specificity with substantially overlapping

95% CrI. The CRS-based analysis and Bayesian LCA assuming the unverified were nega-

tive for TB produced 0.7% (95% CrI: 0.5–0.9) and 0.7% (95% CrI: 0.5–1.2) overall PTB prev-

alence respectively with realistic estimates of overall diagnostic test sensitivity and

specificity. Unlike CRS-based analysis, Bayesian LCA of multiply-imputed data using MICE

mitigates both biases.

Conclusion

The findings demonstrate the efficacy of these advanced techniques in alleviating the refer-

ence standard and verification biases, enhancing the robustness of community-based

screening programs. Imputing missing values as negative for bacteriological tests is plausi-

ble under realistic assumptions.

Introduction

Tuberculosis (TB) prevalence surveys are used to estimate the prevalence of pulmonary TB

(PTB) in the investigated population [1]. However, the estimate of PTB prevalence suffers

from two types of biases. The first type is the reference standard bias, which occurs when a ref-

erence test with imperfect diagnostic performance is used to confirm the presence of TB dis-

ease [2]. Many TB diagnostic studies define a TB case as “bacteriologically confirmed” if the

specimen yields a positive test result from either sputum smear microscopy (hereinafter,

SSM), liquid culture (Mycobacteria Growth Indicator Tube (MGIT); Becton Dickinson,

Franklin Lakes, NJ, USA), or a rapid molecular test such as Xpert1MTB/RIF (Cepheid, Sun-

nyvale, CA, USA) (hereinafter, Xpert) or Xpert1Ultra MTB/RIF (hereinafter, Xpert Ultra)

[1,3–5]. In other settings, “bacteriologically confirmed” TB cases were defined using a combi-

nation of SSM and culture [6,7], or Xpert Ultra and culture [8,9]. Each of these bacteriological

tests has an imperfect sensitivity to detect TB [10–13]. A composite reference standard derived

from them is also imperfect and may yield biased estimates of PTB prevalence [2,14].
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The second type of bias affecting prevalence estimates is the verification bias. Due to the

high cost of bacteriological testing, TB prevalence surveys often prescribe bacteriological test-

ing only when a participant reports at least one TB-compatible symptom or has an abnormal

chest X-ray finding [1,4–7]. Asymptomatic individuals with normal chest X-rays are not fur-

ther tested. Nonetheless, studies have shown that up to 50% of bacteriologically confirmed TB

cases in TB prevalence surveys have subclinical TB. Furthermore, chest X-rays alone can miss

2%-27% of active prevalent bacteriologically confirmed TB [15]. In prevalence surveys, verifi-

cation bias therefore occurs because the probability of obtaining a confirmatory test depends

on the results of the previous test(s) and/or covariate(s) related to the disease status [16]. Veri-

fication bias can be exacerbated when a subset of the participants eligible for bacteriological

testing fails to be tested, e.g. because participants were unable to produce sputum. Suggestions

to handle the verification bias in prevalence estimates exist, but are unsatisfactory. One sugges-

tion is to include untested participants as PTB negative, but this may underestimate the true

positivity rate. A complete-case analysis is bound to yield biased estimates as well [17]. This is

because symptomatic individuals and/or those with abnormal chest X-ray findings have a

higher risk for PTB compared to asymptomatic individuals with normal chest X-ray findings.

Hence, analyzing the high-risk group alone will yield upward biased estimate of PTB preva-

lence. This will also yield biased estimates of diagnostic test accuracy. Multiple missing value

imputation in combination with inverse-probability weighting has been suggested as the best

approach for alleviating verification bias in TB prevalence surveys [17]. Statistical remedies to

alleviate the reference standard bias in prevalence do not yet exist. This work aims to identify a

best-practice strategy to simultaneously alleviate the reference standard and verification biases

in prevalence and diagnostic test accuracy estimates.

To this aim, we employed latent class analysis (LCA), a statistical method that can alleviate

the reference standard bias by identifying unobserved subgroups in a population using the test

results of all the imperfect diagnostic tests [12]. Besides estimating PTB prevalence, LCA allows

the estimation of the sensitivity and specificity of all the imperfect diagnostic tests included in

the analysis [12,18,19]. We extended LCA to allow simultaneous alleviation of the reference

standard and verification biases in PTB prevalence and diagnostic test sensitivity and specific-

ity estimates. Using a simulated dataset, we evaluated the ability of our method to alleviate

both types of biases. We then applied our model to a community-based multi-morbidity

screening study (herein referred to as “Vukuzazi” study) conducted in South Africa [8].

Methods

Active TB case-finding study in KwaZulu-Natal, South Africa (“Vukuzazi”

study)

We conducted a secondary analysis of data collected between May 2018 and May 2019 in a

community-based multi-morbidity screening study in the rural uMkhanyakude district of

northern KwaZulu-Natal, South Africa. Details of the original study are described elsewhere

[8,20]. Briefly, 9914 consenting residents of the catchment area aged�15 years were enrolled

in the study. Participants were eligible for bacteriological sputum confirmation if they reported

at least one of the four cardinal TB symptoms (cough, fever, night sweats and weight loss) or

had an abnormal chest X-ray finding. Chest x-rays were analyzed for lung field abnormalities

by a radiologist and the computer-aided detection software ‘CAD4TB’ (Delft Imaging, NL)

version 5. CAD4TB scored digital chest X-ray images between 0 to 100 with higher scores sug-

gesting a higher likelihood of PTB due to lung field abnormalities. Participants with CAD4TB

scores above the predefined triaging threshold of 25 were referred for bacteriological sputum

confirmation. Later, CAD4TB version 6 (CAD4TBv6) and CAD4TBv7, updated versions of
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CAD4TBv5, became available at different time points and were used to retrospectively inter-

pret the digital chest X-ray images. A criterion of at least one reported TB-compatible symp-

tom and/or CAD4TBv5 score�60 was used between May and September 2018.

Bacteriological sputum examination was conducted using Xpert Ultra and culture. Forty-five

participants were excluded from the analysis (42 were actively on TB treatment, one had miss-

ing TB treatment status and two had missing CAD4TBv7 scores). Of the remaining 9869 par-

ticipants, 6369 (65%) were eligible for bacteriological testing and 4942 (78%) of those were

bacteriologically tested. A consort diagram detailing the eligibility and inclusion of participants

in the analysis is presented S1 Fig in Appendix A of the S1 File. Our objective was to estimate

the proportion of cases with pulmonary TB (hereinafter, PTB prevalence) and diagnostic test

sensitivity and specificity of any TB symptom, radiologist conclusion, CAD4TBv7�18.28,

Xpert Ultra and culture while correcting for the reference standard and verification biases.

Only the most recent and updated CAD4TB version 7 was included in the analysis. The cut-off

value of 18.28 for CAD4TBv7 was chosen based on the ability to yield a sensitivity of�90%

when compared to a composite reference standard of Xpert Ultra (excluding trace) and/or cul-

ture (S2 Fig in Appendix A of the S1 File). The semiquantitative ‘trace’ category defined for

Xpert Ultra representing a group with a limited amount of detected bacterial load was classi-

fied as negative for TB [11,12].

Notation

Let the random variable Yj, j = 1,2,. . ., J denote the result of the jth diagnostic test and the ran-

dom variable D denote the unknown true PTB status such that Yj = 0(1) if the jth diagnostic

test result is negative (positive) and D = 0(1) if the true PTB status is negative (positive). In this

setting, we consider diagnostic tests to include TB-compatible symptoms, radiography-based

methods such as radiologist interpretation, and laboratory-based tests such as culture. Further,

suppose that the individuals who have positive test results on at least one of the first t diagnos-

tic tests (t< J) are verified using the most accurate but expensive test(s). Let the random vari-

able V = 0(1) if an individual is unverified (verified). For unverified participants, the test

results for Yj, j = t + 1, t + 2,. . ., J are missing. Finally, let the random variable G denote the

resulting mutually exclusive subgroups defined by the combination of verification status and

eligibility for verification such that G = 1 represents those eligible and verified, G = 2 those eli-

gible but unverified and G = 3 those ineligible and unverified.

Simulation

We simulated data mimicking the survey design of the Vukuzazi study because the Vukuzazi

data had no information on the true diagnostic status of untested individuals [8]. We sequen-

tially generated data for six binary hypothetical diagnostic tests Yj, j = 1, 2,. . ., 6. In the simula-

tion, Y1 through Y6 play the role of any TB symptom, any chest X-ray abnormality,

CAD4TBv5 score, CAD4TBv7 score, Xpert result, and culture result, respectively. Diagnostic

tests based on similar biological mechanisms are known to be dependent [21,22]. Thus, Y2, Y3

and Y4 based on the same chest X-ray images indicating the presence or absence of lung field

abnormalities are dependent, separately among the true PTB and non-PTB cases. Similarly, Y5

and Y6 are based on the same sputum specimen, which induces dependence between them

only among the true PTB cases. As previously demonstrated elsewhere, [12] we allowed the set

Y2, Y3 and Y4 as well as the pair Y5 and Y6 to be strongly dependent among the true PTB cases,

and the set Y1, Y2, Y3 and Y4 to have strong dependence among the true non-PTB cases. Only

pairwise conditional dependence was considered. Based on the chain rule of conditional prob-

ability, we generated the diagnostic test results using regressive logit models such that the joint
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probability of Y = {Y1, Y2,. . ., Y6} is expressed as [23]

Pr Yð Þ ¼
X1

d¼0

PrðD ¼ dÞ � PrðY1jD ¼ dÞ � PrðY2jD ¼ d;Y1Þ � . . .� PrðY6jD

¼ d;Y1;Y2 . . . ;Y5Þ ð1Þ

Each of Y3 and Y4 was derived from a beta-distributed random variable with scores ranging

from 0 to 1. That is, C1 ~ Beta(μ1 × θ1, (1 − μ1) × θ1) and C2 ~ Beta(μ2 × θ2, (1 − μ2) × θ2),

where μj, θj, j = 1, 2 are the mean and precision parameters of the beta distributed random var-

iables respectively, logit(μ1) = β0 + β1Y1 + β2Y2 and logit(μ2) = α0 + α1Y1 + α2Y2 + α3C1. We

defined C∗
j ¼ Cj � 100; j ¼ 1; 2 such that Y3 = 1 if C∗

1
� 53 and 0 otherwise, and Y4 = 1 if

C∗
2
� 15 and 0 otherwise. The cut-off values were roughly chosen to achieve realistic true val-

ues of sensitivity and specificity for C∗
1

and C∗
2

at the chosen cut-off. We assume that the correct

triaging threshold for C∗
1

is 25.

The diagnostic test results were generated such that Y5 and Y6 are observed (i.e., individual

PTB status is verified using Y5 and Y6) whenever Y1 = 1 or Y2 = 1 or C∗
1
� 25. Otherwise, Y5

and Y6 are missing. For a random subset of the simulated individuals with 25 � C∗
1
< 60, rep-

resenting 3% of all the cases, we set Y5 and Y6 to missing to illustrate instances when a higher

threshold C∗
1
� 60

� �
was used to define eligibility for testing using Y5 and Y6. We also set

another random subset of the simulated individuals with Y1 = 1 or Y2 = 1 or C∗
1
� 25 to have

missing data for Y5 and Y6 to represent individuals who fail to be tested with Y5 and Y6 poten-

tially due to refusal or inability to produce sputum for testing using Y5 and Y6. Overall, 15% of

the simulated individuals were not tested using Y5 and Y6. The true PTB prevalence was 3.3%

among the simulated individuals with observed Y5 and Y6 and 2.7% among the eligible but

unverified individuals (i.e., individuals with Y1 = 1 or Y2 = 1 or 25 � C∗
1
< 60 and those with

Y1 = 1 or Y2 = 1 or C∗
1
� 25 but not tested with Y5 and Y6). The true PTB prevalence among

the simulated individuals with Y1 = 0, Y2 = 0 and C∗
1
< 25 (group not eligible for testing with

Y5 and Y6) was simulated to be 0.1%. Thus, we have three groups; eligible for microbiological

testing and tested, eligible but not tested and ineligible. We generated a pseudo-random popu-

lation of 10000 individuals and replicated it 100 times. We did not predefine the true values for

the diagnostic tests but chose the parameters of the regressive logit models that would produce

strong dependence between the diagnostic tests while yielding realistic true values of sensitivity

and specificity for each diagnostic test (S4 Table in Appendix B of the S1 File) [12,24]. We also

present the average covariances and correlations of the 100 replicate datasets (S5 Table in

Appendix B of the S1 File). The aim of the analysis was to estimate PTB prevalence (overall

and in each of the three groups) as well as the overall diagnostic test sensitivity and specificity

of Y1, Y2, Y4, Y5 and Y6. In order to match the analysis of the Vukuzazi dataset we omitted Y3.

Model

Our goal was to estimate overall PTB prevalence and diagnostic test sensitivity and specificity.

However, in the presence of incomplete bacteriological testing, models will typically exclude

individuals with missing bacteriological test results. Thus, we derive a model that will include

the bacteriologically untested individuals under plausible assumptions. We derive our model

under the assumption that we only have two groups: those verified (V = 1) and unverified

(V = 0). Extension to more than two groups is straight forward.

Under the assumption of conditional independence between the diagnostic tests, the joint

probability of a combination of test results from a set of J diagnostic tests Y = (Y1, Y2, � � �, YJ),
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defined as Pr(Y = y) is given by

X1

d¼0

Pr D ¼ dð Þ

Yt

j¼1

PrðYjjD ¼ dÞPrðV ¼ vjY1;Y2; . . . ;Yt;D ¼ dÞ �
YJ

j¼tþ1

X1

v¼0

PrðYjjD ¼ d; V ¼ vÞPrðD ¼ d; V ¼ vÞ
Pr D ¼ dð Þ

8
><

>:

9
>=

>;

2

6
4

3

7
5

¼

X1

v¼0

X1

d¼0

PrðV ¼ vÞPrðD ¼ djV ¼ vÞ
YJ

j¼1

PrðYjjD ¼ d;V ¼ vÞ

ð2Þ

Where

Pr V ¼ vjY1;Y2; . . . ;Yt;D ¼ dð Þ ¼
Pr Y1;Y2; . . . ;YtjV ¼ v;D ¼ dð ÞPr V ¼ v;D ¼ dð Þ

Pr Y1;Y2; . . . ;YtjD ¼ dð ÞPr D ¼ dð Þ

For unverified participants (V = 0), the test results for Yj, j = t + 1, t + 2, . . ., J are not

observed hence hypothetical.

We relaxed the assumption of conditional independence in this model to allow modelling

of conditional dependence between the diagnostic tests. We also extended the model to

include measured covariates (e.g., HIV status, age and sex) known to affect the prevalence

and/or diagnostic test sensitivity and specificity as well as verification status such that

Pr Y ¼ yð Þ ¼

X

x

X1

v¼0

X1

d¼0
Pr X ¼ xð Þ � Pr V ¼ vjX ¼ xð Þ � Pr D ¼ djX ¼ x;V ¼ vð Þ�

YJ

j¼1
Pr YjjD ¼ d;X ¼ x;V ¼ v
� � ð3Þ

This matches the pattern-mixture models for handling non-ignorable missing outcome

data [25]. A detailed derivation of the model is presented in the S1 Supplementary Materials.

Fig 1 shows a heuristic model depicting the relationship between the diagnostic tests, true

unobserved PTB status, measured covariates, verification status and unobserved sources of

dependence among the diagnostic tests used in the Vukuzazi study. This figure was adapted

from Keter et al. 2023 and modified to include the verification status and an additional set of

unmeasured variables determining the verification status (bacteriological testing using Xpert

Ultra and culture), denoted by V and W respectively.

The figure shows unobserved TB bacillary load Uþ
1

� �
, a marker of PTB infection and a

source of conditional dependence between microbiological tests, and unmeasured radiological

features Uþ
2

� �
inducing dependence between radiological interpretations and CAD4TB results

among the true PTB cases. Other etiologies U �
3

� �
such as bacterial pneumonia and a history of

past PTB induces dependence between any TB symptom, radiological interpretations and

CAD4TB results among the true non-PTB cases. A detailed discussion of these unmeasured

sources of dependencies is provided elsewhere [12].

Conditioning on V induces spurious dependence between any TB symptom, radiologist

conclusion and CAD4TBv7 and the microbiological tests via W. Association between the mea-

sured covariates and microbiological testing cannot be ruled out. Similarly, PTB prevalence

and the diagnostic test accuracy varies by subpopulations defined by the measured covariates

[12].
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Ethics statement

Our study was not separately evaluated by an Ethics committee because it involved the evalua-

tion of statistical methods using simulations and publicly available data, i.e. a methodological

rather than a medical research question.

Statistical analysis

We used two approaches to correct PTB prevalence and diagnostic test accuracy estimates

from the reference standard and verification biases: (i) using a composite reference standard

(CRS) to estimate PTB prevalence and diagnostic test sensitivity and specificity (CRS-based

method) under Bayesian framework, and (ii) Bayesian LCA. CRS-based method assumes con-

ditional independence between the component tests used to derive the CRS and the diagnostic

tests under evaluation [2]. The CRS was defined using a combination of Y5 and Y6 using an

‘OR’ rule that classifies an individual with positive test results on at least one of Y5 and Y6 as

disease positive and classifies an individual with negative test results on both Y5 and Y6 as dis-

ease negative. No participant had data on one bacteriological test only. Either both were avail-

able, or both were missing. In the analysis of Vukuzazi dataset, the Xpert Ultra trace positive

only cases are considered as TB negative. This method assumes the CRS is perfect and the esti-

mates of PTB prevalence and diagnostic test accuracy are free from the reference standard

bias. Bayesian LCA acknowledges the lack of a perfect reference standard, considers all the

diagnostic tests imperfect and incorporates the uncertainties of all the diagnostic tests in a

model that classifies individuals into PTB and non-PTB cases and then estimates the diagnos-

tic test sensitivity and specificity. Thus, it should alleviate the reference standard bias. We com-

pared CRS-based method to Bayesian LCA to understand the benefit of Bayesian LCA in

alleviating the reference standard bias. For Bayesian LCA, we analyzed both the simulated data

and the Vukuzazi dataset using the model that allows conditional dependence between Y2 and

Y4 and between Y5 and Y6 among the true PTB cases as well as conditional dependence

between Y1, Y2 and Y4 among the true non-PTB cases (as detailed in the Simulation section

Fig 1. Heuristic model of diagnostic tests, microbiological testing status, true unobserved PTB status, measured

covariates and unobserved sources of dependence between the diagnostic tests used in the Vukuzazi study.

https://doi.org/10.1371/journal.pone.0305126.g001
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above). Using regressive probit models for dependent binary outcomes, we regressed the out-

come of one diagnostic test on the unknown PTB status and the preceding diagnostic test(s) as

shown in Fig 1 [12].

For each Bayesian approach we conducted (i) complete-case analysis, (ii) analysis assuming

the unverified participants were negative and (iii) analysis of 100 multiply-imputed datasets

imputing the bacteriological test results of the unverified participants using multivariate impu-

tation via chained equations (MICE) (for the Vukuzazi data only) [26]. We compare the two

analyses that included the bacteriologically untested individuals to the complete-case analysis

to assess the benefit of the former in alleviating the verification bias. Bayesian LCA should

simultaneously alleviate both the reference standard and verification biases while CRS-based

analysis should alleviate the verification bias only. Theoretically, analyses that assume the

unverified individuals are negative for bacteriological tests will produce incorrect estimates.

Imputation of the missing bacteriological test results for the unverified individuals using

MICE is based on the assumption that the missing data are missing at random (MAR). This

approach fails to acknowledge the dependencies described in the simulation section and

depicted in Fig 1. To circumvent these shortcomings, we propose Bayesian LCA with simulta-

neous imputation of the missing bacteriological test results in the analysis model depicted in

Fig 1 under the assumption that the missing data are (iv) MAR, and (v) missing not at random

(MNAR). Hence, two additional analyses. This approach runs the analysis and imputes the

missing data using the LCA model simultaneously in a single run within the same Markov

Chain Monte Carlo (MCMC) algorithm. Hence, this is a distinguishing feature between the

analysis of multiply imputed data using MICE and this approach. Given the theoretical limita-

tion of CRS-based analysis in alleviating the reference standard bias, we do not pursue it fur-

ther. The unknown model parameters were assigned priors from the Gaussian distribution.

Except for the unknown parameters of the prevalence model and the regressive probit models

for the specificity of Xpert Ultra and culture, the unknown model parameters in all the models

were assigned priors from Gaussian distribution with mean zero and unit variance. The

unknown model parameters for the overall prevalence and overall false positive rate (equal to

1-specificity) for Xpert Ultra and culture were assigned priors from Gaussian distribution with

mean -3 and variance of 0.1. The structure of the models and the priors assigned to the

unknown model parameters are presented in S9 and S10 Tables of the S1 File. The choice of

the informative prior for the overall prevalence was based on data from the literature on the

estimates of population prevalence of PTB in the region where the study was conducted [9].

Similarly, the choice of the informative priors for the overall specificity for Xpert Ultra and cul-

ture were based on the literature on the performance of these tests when compared to the com-

posite reference standard and on the expert knowledge. In the absence of TB, culture for

Mycobacterium tuberculosis has a high specificity [10]. Xpert Ultra also has a substantially high

specificity when evaluated against culture [24]. This explains the choice of our priors for the

unknown model parameters for the specificity of Xpert Ultra and culture. These analyses are

presented in Table 1.

Using Bayesian LCA, we adjusted for the reasons for (non)verification in iii, iv and v. That

is, the subgroups defined by eligible and verified (G = 1), eligible but unverified (G = 2) and

ineligible and unverified (G = 3). Under the MNAR assumption, the pattern-mixture models

for handling non-ignorable missingness in Y5 and Y6 were expressed as Pr Y5 ¼ 1ð Þ ¼
P

g2 1;2;3f g

P1

d¼0
Pr G ¼ gð ÞPr D ¼ djGð ÞPr Y5 ¼ 1jG ¼ g;D ¼ dð Þ and Pr Y6 ¼ 1ð Þ ¼

P
g2 1;2;3f g

P1

d¼0

P1

y¼0
Pr G ¼ gð ÞPr D ¼ djG ¼ gð ÞPr Y6 ¼ 1jG ¼ g;D ¼ d;Y5 ¼ y5ð Þ respec-

tively for g 2 {1,2,3}, d 2 {0,1} [25].
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For G = 1 we estimated Pr(Y5 = 1 | G = 1, D = d) and Pr(Y6 = 1 | G = 1, D = d, Y5 = y5) for d
2 {0,1} from the observed data. For the participants in G = 2 and 3 we assumed Pr(Y5 = 1 | G =

g, D = d)� Pr(Y5 = 1 | G = 1, D = d) and Pr(Y6 = 1 | G = g, D = d, Y5 = y5)� Pr(Y6 = 1 | G = 1,

D = d, Y5 = y5) where g 2 {2,3}, d 2 {0,1}. Therefore, we estimated Pr(Y5 = 1 | G = g, D = d) =

;(�5dg)Pr(Y5 = 1| G = 1, D = d) and Pr(Y6 = 1 | G = g, D = d, Y5 = y5) = ;(�6dg)Pr(Y6 = 1 | G = 1,

D = d, Y5 = y5) where 0� ;(�jdg)� 1, �jdg ~ N(0,1), j 2 {5,6}, d 2 {0,1}, g 2 {2,3} and ;(.) is the

Gaussian cumulative distribution function [27].

PTB prevalence for the participants in G = 1 was estimated as Pr(D = 1│G = 1). For the par-

ticipants in G = 2 and 3 we assumed Pr(D = 1│G = g)� Pr(D = 1│G = 1), g 2 {2,3}. Therefore,

to estimate PTB prevalence in G = 2 and 3 we defined 0 � ; tg

� �
� 1; tgeN mg ; s

2
g

� �
for g 2

{2,3} such that Pr(D = 1│G = 2) = ;(τ2)Pr(D = 1│G = 1) and Pr(D = 1│G = 3) = ;(τ3)Pr
(D = 1│G = 1).

Under the assumption that bacteriological test results were MAR, we defined ;(�jdg) = 1 for

j 2 {5,6}, d 2 {0,1}, g 2 {2,3} so that for G = 2 and 3 Pr(Y5 = 1|G = g, D = d) = Pr(Y5 = 1|G = 1,

D = d) and Pr(Y6 = 1|G = g, D = d, Y5 = y5) = Pr(Y6 = 1|G = 1, D = d, Y5 = y5). We estimated

PTB prevalence as Pr(D = 1│G = 1) = ;(ω1), Pr(D = 1│G = 2) = ;(ω2) and Pr(D = 1│G = 3) =

;(ω3) where ogeN m∗g ; s
∗
g2

� �
for g = 1,2,3 are priors for the unobserved disease status in each

group.

A detailed description of the imputation, analysis of the imputed datasets and the models

are presented in Appendix C of the S1 Supplementary Material.

After the analysis of the 100 multiply imputed datasets, we combined the MCMC samples

of the posterior distributions from all the 100 analyses as if they were obtained from a single

MCMC algorithm. Inferences for the parameters of interest were then based on the resulting

posterior distribution. A similar approach was used to summarize the posterior distributions

resulting from the analyses of the 100 simulated datasets [28]. We present the estimates and

the corresponding 95% credible intervals (95% CrI).

Using MCMC simulation we ran 50000 iterations with the first 25000 discarded as ‘warm-

up’. For all analyses, convergence in model fitting was assessed by running three chains. Every

10th iteration was saved (“thinning”) to reduce autocorrelation [29,30]. We used trace plots

Table 1. Approaches used to analyze the simulated and Vukuzazi data.

Simulated data Vukuzazi data

Type of analysis Bayesian

LCA

CRS-based

method

Bayesian

LCA

CRS-based

method

Complete-case analysis (verified only) ✓ ✓ ✓ ✓

Verified + unverified assuming the verification test results were negative (i.e., they do not have

PTB)

✓ ✓ ✓ ✓

Verified + unverified with multiple imputation of the missing verification test results using

MICE

ǂ ǂ ✓ ✓

Verified + unverified with simultaneous imputation of the missing verification test results

assuming that data is MAR

✓ Χ ✓ Χ

Verified + unverified with simultaneous imputation of the missing verification test results the

data is MNAR

✓ Χ ✓ Χ

✓-This analysis was conducted,
ǂ-Not conducted because we did not impute missing data in the simulations
Χ-Not conducted because we did not carry out simultaneous imputation

https://doi.org/10.1371/journal.pone.0305126.t001
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and Gelman-Rubin convergence diagnostics to monitor convergence in the chains. All analy-

ses were implemented in R version 4.2.1 using R2jags package for R version 4.2.1 [31,32].

Results

Simulation

Our simulated data reflected the Vukuzazi dataset, with 46.2%, 15.0% and 36.9% of the partici-

pants in the simulation eligible for bacteriological testing and tested, eligible but not tested,

and ineligible and not tested, respectively, compared to 49.4%, 14.5% and 35.5% respectively

in the Vukuzazi study (S1 Table in Appendix A vs. S6 Table in Appendix B of the S1 File). The

simulated data depicted strong dependence between diagnostic tests based on similar biologi-

cal basis among the true PTB cases and true non-PTB cases (S5 Table in Appendix B of the S1

File). Table 2 presents the results of the analysis of the simulated data using CRS-based analysis

and Bayesian LCA.

CRS-based analysis

Complete-case analysis overestimated the overall prevalence, underestimated the overall sensi-

tivity for Y2 and Y4, and underestimated the overall specificity for Y1, Y2 and Y4. Despite theo-

retically producing biased estimates, the analysis assuming all the participants with missing

Table 2. The true values and the posterior median estimates with the corresponding 95% credible intervals (95% CrI) of overall prevalence and overall diagnostic

test sensitivity and specificity based on the simulated data.

CRS-based analysis Bayesian LCA

Complete-

case analysis

Analysis assuming the

participants with

missing values in Y5 and

Y6 were negative for Y5

and Y6

Complete-

case analysis

Analysis assuming the

participants with

missing values in Y5 and

Y6 were negative for Y5

and Y6

Analysis with

simultaneous imputation

of missing values in Y5

and Y6 assuming the data

were MAR

Analysis with

simultaneous imputation

of missing values in Y5

and Y6 assuming the data

were MNAR

Test Parameter True

value

Median

(95% CrI)

Median

(95% CrI)

Median

(95% CrI)

Median

(95% CrI)

Median

(95% CrI)

Median

(95% CrI)

Prevalence 2.0 4.1 (3.3–4.9) 2.0 (1.6–2.3) 3.4 (2.3–5.9) 2.0 (1.3–3.6) 1.7 (1.2–2.7) 1.7 (1.2–2.4)

Y1 Sensitivity 19.8 20.4 (13.1–

29.7)

20.3 (13.0–29.6) 21.9 (11.9–

35.1)

23.5 (13.9–36.2) 25.8 (15.9–39.6) 25.7 (16.6–36.9)

Specificity 87.4 79.1 (77.2–

80.7)

87.4 (86.4–88.3) 79.1 (77.2–

80.7)

87.4 (86.4–88.4) 87.6 (86.5–88.6) 87.6 (86.5–88.5)

Y2 Sensitivity 66.0 57.6 (47.3–

67.4)

57.4 (47.2–67.3) 67.9 (54.9–

81.5)

68.5 (56.2–82.1) 63.1 (49.0–74.6) 63.2 (51.4–73.8)

Specificity 77.8 63.5 (61.4–

65.4)

77.6 (76.5–78.7) 63.7 (61.6–

65.7)

77.8 (76.6–79.0) 77.8 (76.6–79.0) 77.8 (76.6–79.0)

Y4 Sensitivity 86.9 75.0 (66.2–

83.0)

74.9 (66.1–83.0) 83.2 (58.5–

93.0)

82.8 (56.5–92.2) 83.5 (73.0–91.4) 82.9 (73.7–90.4)

Specificity 70.0 54.1 (51.8–

56.1)

69.8 (68.5–71.0) 54.3 (51.9–

56.4)

70.0 (68.7–71.4) 70.0 (68.7–71.4) 70.0 (68.7–71.3)

Y5 Sensitivity 63.8 - - 66.4 (41.2–

86.3)

60.2 (32.7–77.9) 67.1 (51.3–82.4) 67.4 (51.7–82.8)

Specificity 99.3 - - 99.4 (99.0–

99.8)

99.8 (99.6–99.9) 99.5 (99.1–99.8) 99.5 (99.1,99.8)

Y6 Sensitivity 80.6 - - 85.6 (53.0–

99.2)

76.2 (41.6–94.9) 83.1 (67.1–94.2) 83.4 (67.6–94.3)

Specificity 99.3 - - 99.5 (98.9–

99.9)

99.8 (99.6–100) 99.5 (98.9–99.9) 99.4 (98.9–99.9)

https://doi.org/10.1371/journal.pone.0305126.t002
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values in Y5 and Y6 were negative for Y5 and Y6, did not show evidence of systematic bias for

the overall prevalence and specificity, but underestimated the overall sensitivity for Y2 and Y4.

Additional simulations under different assumptions of overall prevalence revealed underesti-

mation of the overall prevalence that became apparent when the true prevalence is�3.0% (S7

Table in Appendix B of the S1 File).

Bayesian latent class analysis

Complete-case analysis overestimated the overall prevalence and underestimated the overall

specificity for all the diagnostic tests except Y5 and Y6, but showed no evidence of systematic

bias for the overall sensitivities. When assuming all participants with missing values in Y5 and

Y6 were negative, there was no evidence of systematic bias for the overall prevalence and sensi-

tivity for all the diagnostic tests. Except for Y5 and Y6, this approach also produced estimates of

overall specificity for all the diagnostic tests with no evidence of systematic bias. Similarly,

under different assumptions of overall prevalence this method underestimated the overall

prevalence when the true prevalence is�3.0% (S7 Table in Appendix B of the S1 File). Lastly,

we found no evidence of systematic bias in the estimates of overall prevalence, sensitivity and

specificity for all the diagnostic tests based on the analyses that simultaneously imputed the

missing values for Y5 and Y6 within the same MCMC algorithm under the assumption that the

missing data are MAR or MNAR. These analyses estimated the prevalence to be 3.1% (95%

CrI: 2.2–4.3), 1.2% (95% CrI: 0.1–6.7) and 0.0% (95% CrI: 0.0–0.1) among the verified, eligible

for verification but unverified, and ineligible participants, respectively, assuming the data were

MAR, and correspondingly 3.1% (95% CrI: 2.2–4.3), 1.4% (95% CrI: 0.5–2.6), and 0.1% (95%

CrI: 0.0–0.2) assuming the data were MNAR. These results were consistent with the corre-

sponding true values of 3.3%, 2.7% and 0.1%, respectively.

Vukuzazi study

Descriptive summary. Table 3 shows the distribution of participant characteristics and

test results by bacteriological testing status. Additional analysis comparing the eligible and ver-

ified participants to those eligible but unverified is presented in the Appendix (S2 Table in

Appendix A of the S1 File).

The majority of participants (62.8%) were aged<50 years with only 10.7% aged�70 years.

Two-thirds of the participants were females and one-third were HIV positive. Visual inspec-

tion reveals a higher proportion of individuals aged<50 years and more males were not

bacteriologically tested. Of the participants eligible for bacteriological testing, 1427 (22.4%)

were not tested. Among the bacteriologically tested participants, 41 (0.8%) were positive for

Xpert Ultra and 51 (1.0%) were positive for culture. This translates to 0.4% Xpert Ultra positive

and 0.5% culture positive cases among all the participants. Missing covariate data was observed

for 52 (0.5%) of all the participants and 15 (0.3%) of the participants who were bacteriologically

tested for PTB. For comparison of the estimates across all the analyses, we excluded the partici-

pants with missing values in age and HIV status leaving 9817 participants for analysis.

CRS-based analysis

The assumption of independence between the component tests used to derive the CRS (Xpert

Ultra and culture) and the diagnostic tests under evaluation was not violated (S3 Table in

Appendix A of the S1 File). As expected, complete-case analysis using CRS approach produced

the highest estimate of overall PTB prevalence and the lowest estimates of overall specificity

for any TB symptom, any chest X-ray abnormality and CAD4TBv7�18.28 compared to the

other missing data handling methods (Table 4). Complete-case analysis and the analysis
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assuming the participants not bacteriologically tested were negative on Xpert Ultra and culture

produced similar estimates of overall sensitivity. The difference in the estimates of overall sen-

sitivity between the two methods is due to random error in the MCMC sampling. The analysis

of multiply imputed data imputing the missing Xpert Ultra and culture test results for all the

participants with unconfirmed TB status underestimated the overall sensitivity compared to

the other methods. The analysis of multiply-imputed data imputing the missing Xpert Ultra

and culture test results for only the eligible but unconfirmed participants produced higher esti-

mates of overall sensitivity but similar estimates of overall specificity for any TB symptom, any

chest X-ray abnormality and CAD4TBv7�18.28 compared to the analysis of multiply-imputed

data imputing the missing Xpert Ultra and culture test results for all the participants with

unconfirmed TB status.

Bayesian latent class analysis

Bayesian LCA with complete-case analysis overestimated the overall PTB prevalence while the

other methods produced realistic estimates (Table 5). While complete-case analysis produced

Table 3. Distribution of participant characteristics and diagnostic test results by verification status.

Characteristic Bacteriologically tested using Xpert Ultra and culture

No

(n = 4927; 49.9%)

Yes

(n = 4942; 50.1%)

Total

(n = 9869)

Age (Years)

15–29 2322 (47.1%) 1153 (23.3%) 3475 (35.2%)

30–49 1446 (29.3%) 1278 (25.9%) 2724 (27.6%)

50–69 892 (18.1%) 1717 (34.8%) 2609 (26.4%)

�70 267 (5.4%) 793 (16.0%) 1060 (10.7%)

Missing 0 1 1

Sex

Female 3498 (71.0%) 3144 (63.6%) 6642 (67.3%)

Male 1429 (29.0%) 1798 (36.4%) 3227 (32.7%)

HIV status

Negative 3436 (70.3%) 3454 (70.1%) 6890 (70.2%)

Positive 1454 (29.7%) 1474 (29.9%) 2928 (29.8%)

Missing 37 14 51

Any TB symptom†

No 4721 (95.8%) 4103 (83.0%) 8824 (89.4%)

Yes 206 (4.2%) 839 (17.0%) 1045 (10.6%)

Chest X-ray lung field findings

Normal 4621 (93.8%) 3281 (66.4%) 7902 (80.1%)

Abnormal, not suggestive of active TB 283 (5.7%) 1495 (30.3%) 1778 (18.0%)

Abnormal, suggestive of active TB 23 (0.5%) 166 (3.4%) 189 (1.9%)

CAD4TBv5�25

No 3608 (73.2%) 393 (8.0%) 4001 (40.5%)

Yes 1319 (26.8%) 4549 (92.0%) 5868 (59.5%)

CAD4TBv7�18.28

No 3680 (74.7%) 2668 (54.0%) 6348 (64.3%)

Yes 1247 (25.3%) 2274 (46.0%) 3521 (35.7%)

† - A composite of cough and/or fever and/or night sweats and/or weight loss.

https://doi.org/10.1371/journal.pone.0305126.t003
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lower estimates of overall specificity for ay TB symptom, radiologist interpretation and

CAD4TBv7�18.28, the other methods produced higher and similar estimates of overall speci-

ficity. Complete-case analysis and the analysis assuming the participants with missing Xpert

Ultra and culture test results were negative for Xpert Ultra and culture produced similar esti-

mates of overall sensitivity for all diagnostic tests. The analysis of data with multiple imputa-

tion of the missing Xpert Ultra and culture test results for all the participants with

unconfirmed TB status produced lower estimates of overall sensitivity for any TB symptom,

any chest X-ray abnormality and CAD4TBv7�18.28 compared to the other methods. Multiple

imputation of the missing Xpert Ultra and culture test results for all participants with uncon-

firmed TB status estimated PTB prevalence to be 1.3% (95% CrI: 0.9–2.1), 0.9 (95% CrI: 0.2–

2.6) and 0.1% (95% CrI: 0.0–0.8) among the verified, eligible for verification but unverified

and ineligible participants respectively. The analysis with simultaneous imputation of the miss-

ing Xpert Ultra and culture test results assuming the missing data is MAR and MNAR pro-

duced similar estimates of overall PTB prevalence and overall sensitivity and specificity.

However, the analysis assuming the data is MAR produced estimates with wider 95% credible

intervals (95% CrI). The analysis assuming the data is MAR estimated PTB prevalence to be

1.5% (95% CrI: 1.1–2.2), 1.7% (95% CrI: 0.3–7.2) and 0.0% (95% CrI: 0.0–0.1) among the veri-

fied, eligible for verification but unverified and ineligible participants respectively. The analysis

assuming the data is MNAR estimated PTB prevalence to be 1.5% (95% CrI: 1.1–2.1), 0.7%

(95% CrI: 0.4–1.3) and 0.1% (95% CrI: 0.0–0.4) among the verified, eligible for verification but

unverified and ineligible participants respectively.

We conducted Bayesian LCA with simultaneous imputation of the missing Xpert Ultra and

culture test results assuming the data is MAR and MNAR in the Vukuzazi study while

Table 4. Posterior median estimates and the corresponding 95% credible intervals (95% CrI) of overall PTB prevalence and overall diagnostic test sensitivity and

specificity based on CRS-based analysis.

Complete-

case analysis

Analysis assuming the participants

with missing Xpert Ultra and

culture test results were negative

for Xpert Ultra and culture

Analysis following multiple imputation

of missing Xpert Ultra and culture test

results for ALL the participants with

unconfirmed TB status ┴

Analysis following multiple imputation

of missing Xpert Ultra and culture test

results for ONLY the eligible participants

with unconfirmed TB status ┴ ┼

N = 4927 N = 9817 N = 9817 N = 9817

Test Parameter Median (95%

CrI)

Median (95% CrI) Median (95% CrI) Median (95% CrI)

Prevalence 1.4 (1.1–1.7) 0.7 (0.5–0.9) 1.1 (0.9–1.4) 0.9 (0.7–1.1)

Any TB Sensitivity 17.7 (10.1–

27.8)

17.6 (9.7–27.7) 13.7 (7.7–21.8) 17.3 (9.6–28.0)

symptom Specificity 83.0 (82.0–

84.1)

89.5 (88.8–90.0) 89.4 (88.8–90.0) 89.5 (88.8–90.1)

Radiologist Sensitivity 82.5 (72.4–

90.4)

82.2 (72.1–89.8) 59.0 (46.1–71.0) 74.6 (63.0–84.7)

conclusion‡ Specificity 67.1 (65.8–

68.4)

80.5 (79.7–81.3) 80.5 (79.7–81.3) 80.6 (79.8–81.4)

CAD4TBv7 Sensitivity 90.1 (81.6–

95.7)

89.9 (88.8–90.0) 72.1 (59.7–82.8) 86.0 (75.8–93.2)

�18.28 Specificity 54.6 (53.2–

56.0)

64.7 (63.8–65.7) 64.8 (63.8–65.7) 64.8 (63.8–65.8)

┼ - Assumes the ineligible participants with missing Xpert Ultra and culture test results were negative for Xpert Ultra and culture
┴ - Based on 100 multiply imputed datasets.
‡ - Any chest X-ray abnormality.

https://doi.org/10.1371/journal.pone.0305126.t004
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adjusting for age, sex and HIV status (Table 6). Compared to the unadjusted analyses, the

adjusted estimates of the overall PTB prevalence and the overall diagnostic test sensitivity and

specificity changed slightly. The analyses assuming the data is MAR and MNAR produced

similar estimates.

Discussion and conclusion

In the absence of a perfect reference standard, PTB prevalence and diagnostic test accuracy in

TB prevalence surveys are estimated using an imperfect reference test. When the participants

bacteriologically tested for TB in the study is not representative of the entire population, the

estimates additionally suffer verification bias. We have for the first time proposed an approach

to simultaneously alleviate the reference standard and verification biases in PTB prevalence

and diagnostic test accuracy in TB prevalence surveys. Estimation of prevalence and diagnostic

test accuracy using Bayesian LCA that allowed incorporation of the systematically unverified

Table 5. Posterior median estimates and the corresponding 95% credible intervals (95% CrI) of overall PTB prevalence and overall diagnostic test sensitivity and

specificity based on Bayesian LCA, unadjusted for measured covariates.

Complete-

case

analysis

Analysis assuming the

participants with

missing Xpert Ultra

and culture test results

were negative for

Xpert Ultra and

culture

Analysis following

multiple imputation of

missing Xpert Ultra and

culture test results for

ALL the participants

with unconfirmed TB

status ┴

Analysis following

multiple imputation of

missing Xpert Ultra and

culture test results for

ONLY the eligible

participants with

unconfirmed TB status ┴ ┼

Analysis with

simultaneous

imputation of missing

Xpert Ultra and

culture test results

assuming the data is

MAR

Analysis with

simultaneous

imputation of missing

Xpert Ultra and

culture test results

assuming the data is

MNAR

N = 4927 N = 9817 N = 9817 N = 9817 N = 9817 N = 9817

Test Median

(95% CrI)

Median

(95% CrI)

Median

(95% CrI)

Median

(95% CrI)

Median

(95% CrI)

Median

(95% CrI)

Prev. 1.3 (0.9–

2.2)

0.7 (0.5–1.2) 0.8 (0.5–1.5) 0.7 (0.4–1.4) 0.9 (0.6–1.9) 0.7 (0.5–1.1)

Any TB Sn. 19.1 (10.0–

31.0)

19.2 (10.4–30.7) 17.2 (8.6–29.0) 19.2 (9.9–32.2) 29.1 (11.9–55.5) 23.0 (12.7–34.6)

symptom Sp. 83.0 (81.9–

84.0)

89.5 (88.9–90.1) 89.5 (88.8–90.1) 89.5 (88.9–90.1) 89.6 (88.9–90.3) 89.5 (88.8–90.1)

Radiologist Sn. 92.1 (81.7–

98.1)

91.8 (81.9–97.8) 80.4 (58.9–94.0) 87.4 (71.9–96.8) 83.8 (53.6–95.1) 83.6 (71.1–93.4)

conclusion‡ Sp. 67.3 (65.9–

68.7)

80.6 (79.8–81.5) 80.6 (79.8–81.5) 80.7 (79.9–81.5) 80.7 (79.8–81.6) 80.6 (79.8–81.4)

CAD4TBv7 Sn. 96.7 (89.4–

99.5)

96.9 (90.3–99.5) 90.3 (71.6–98.5) 94.8 (83.2–99.2) 88.6 (55.4–97.8) 89.0 (78.5–96.8)

�18.28 Sp. 54.7 (53.3–

56.1)

64.8 (63.8–65.8) 64.8 (63.9–65.8) 64.9 (63.9–65.8) 64.8 (63.9–65.9) 64.8 (63.8–65.7)

Xpert

Ultra†
Sn. 59.3 (35.4–

75.7)

57.2 (33.8–73.9) 61.0 (37.1–78.0) 59.5 (34.6–76.6) 60.1 (38.9–76.6) 61.6 (41.3–77.2)

Sp. 100 (99.9–

100)

100 (99.9–100) 99.9 (99.8–100) 100 (99.9–100) 100 (99.9–100) 100 (99.9–100)

Culture Sn. 64.1 (39.7–

79.6)

63.5 (37.9–79.5) 66.3 (41.6–81.4) 64.7 (38.7–80.5) 65.1 (41.7–79.7) 65.9 (45.4–80.5)

Sp. 99.8 (99.7–

100)

99.9 (99.9–100) 99.7 (99.5–99.9) 99.9 (99.7–100) 99.8 (99.7–99.9) 99.8 (99.7–99.9)

┼ - Assumes the ineligible participants with missing Xpert Ultra and culture test results were negative for Xpert Ultra and culture
┴ - Based on 100 multiply-imputed datasets;
‡ - Any chest X-ray abnormality;
† - Excluding trace; Prev.–Prevalence, Sn.–Sensitivity, Sp. Specificity.

https://doi.org/10.1371/journal.pone.0305126.t005
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individuals under realistic assumptions alleviated the reference standard and verification

biases. Bayesian LCA with simultaneous imputation of the missing bacteriological test results

under the assumption that the missing data is MAR and MNAR did not show evidence of sys-

tematic bias. Complete-case analysis did not alleviate both biases with CRS-based analysis but

alleviated the reference standard bias only with Bayesian LCA. CRS-based analysis and Bayes-

ian LCA assuming the unverified are negative for bacteriological tests alleviate both biases

under realistic assumptions.

For the simulated data, we showed that CRS-based analysis and Bayesian LCA assuming all

the bacteriologically unverified participants did not have TB alleviated the reference standard

and verification biases in the overall prevalence and overall specificity. This method produced

plausible estimates of overall PTB prevalence and overall specificities for the Vukuzazi data.

Our simulations did not demonstrate the presence of bias in the overall prevalence estimate

under the assumption that the unverified individuals are TB-negative. In the simulation, the

eligible but unverified comprised 2.7% PTB-positive individuals while the ineligible and

unverified comprised 0.1% PTB-positive individuals resulting in a total of 44 PTB-positive

individuals. All the unverified individuals including the 44 PTB-positive individuals were

assumed not to have TB in the analysis. The findings based on this approach did not reveal any

systematic bias but the theoretical estimates of prevalence based on this approach are underes-

timated. While no evidence of systematic bias in the estimates of the overall sensitivity was

observed for some diagnostic tests in the simulated data, this lack of systematic bias may be

attributed to the few PTB-positive cases (only an overall prevalence of 2.0%) that result in

wider 95% credible intervals that include the true value. Therefore, the lack of evidence of sys-

tematic bias in the estimates of overall sensitivity may not be guaranteed in simulations with

higher values of true prevalence.

CRS-based analysis of multiply imputed datasets imputing the missing Xpert Ultra and cul-

ture test results for all the participants is unreliable. Even the analysis following multiple

Table 6. Posterior median estimates and the corresponding 95% credible intervals (95% CrI) of overall PTB prevalence and overall diagnostic test sensitivity and

specificity based on Bayesian LCA with simultaneous imputation of the missing Xpert Ultra and culture test results in the Vukuzazi study, adjusted for age, sex and

HIV status.

Analysis with simultaneous imputation of missing Xpert Ultra

and culture test results assuming the data is MAR

Analysis with simultaneous imputation of missing Xpert Ultra and

culture test results assuming the data is MNAR

N = 9817 N = 9817

Test Median (95% CrI) Median (95% CrI)

Prevalence 0.7 (0.5–1.0) 0.7 (0.5–1.2)

Any TB Sensitivity 18.0 (9.9–31.0) 18.4 (10.0–30.9)

symptom Specificity 89.3 (88.6–89.9) 89.3 (88.6–89.9)

Radiologist Sensitivity 86.1 (73.3–93.7) 85.3 (71.9–93.4)

conclusion‡ Specificity 82.5 (81.7–83.2) 82.5 (81.8–83.3)

CAD4TBv7 Sensitivity 87.7 (73.2–95.7) 87.8 (72.7–95.6)

�18.28 Specificity 65.9 (64.9–66.8) 65.9 (64.9–66.9)

Xpert

Ultra†
Sensitivity 61.5 (44.7–77.2) 61.9 (43.8–77.5)

Specificity 100 (99.9–100) 100 (99.9–100)

Culture Sensitivity 67.3 (53.0–79.2) 67.4 (51.8–79.6)

Specificity 99.8 (99.6–99.9) 99.8 (99.6–99.9)

‡ - Any chest X-ray abnormality.
† - Excluding trace.

https://doi.org/10.1371/journal.pone.0305126.t006
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imputation of missing Xpert Ultra and culture test results for only the eligible participants pro-

duced lower estimates of sensitivity for radiographic methods. The underlying complexities

with this approach may be attributed to the MAR assumption conditional on the observed

covariates [33]. Therefore, it might have over-imputed false TB cases. On the contrary, Bayes-

ian LCA of the multiply imputed data produced realistic estimates of overall PTB prevalence

and diagnostic test sensitivity and specificity. Possibly because Bayesian LCA handles the diag-

nostic test dependence within the model. Hence, it correctly classified the false positive TB

cases leading to realistic estimates.

As the key finding, we highlight that Bayesian LCA with simultaneous imputation of the

missing bacteriological test results under the assumption that the data is MAR and MNAR alle-

viated the reference standard and verification biases in the overall prevalence and overall sensi-

tivity and specificity for all the diagnostic tests in the simulation. In the analysis of the

Vukuzazi dataset, Bayesian LCA with simultaneous imputation of the missing Xpert Ultra and

culture test results under the assumption that the missing data is MAR and MNAR produced

similar and realistic estimates of the overall PTB prevalence (ranging from 0.7% to 0.9%) and

diagnostic test sensitivity and specificity with substantially overlapping 95% credible intervals.

Except for the complete-case analysis, the other methods produced similar estimates of overall

PTB prevalence and overall diagnostic test specificity. The estimated overall PTB prevalence

estimates agree with the 0.9% overall estimate from the South Africa National TB prevalence

survey [9].

The complete-case analysis of simulated data using the CRS-based approach and Bayesian

LCA failed to alleviate the bias in the overall prevalence and specificity. When used to analyze

the Vukuzazi data, the complete-case analysis using these two approaches produced implausi-

ble estimates of overall PTB prevalence and diagnostic test sensitivity and specificity for any

TB symptom, any chest X-ray abnormality and CAD4TBv7 at the chosen threshold score of

18.28. This finding is consistent with the findings reported elsewhere [14].

This study has confirmed for the first time that Bayesian LCA with simultaneous imputa-

tion of the missing bacteriological test results under the assumption that the missing data is

MNAR can simultaneously alleviate both the reference standard and verification biases when

estimating PTB prevalence, and test sensitivity and specificity. Besides the eligible but unveri-

fied participants, underestimation in PTB prevalence is contributed by the subclinical TB cases

[15,34,35]. Based on our analysis, the ratio of PTB prevalence among the ineligible to the over-

all shows that up to 15.3% (range: 5.0–36.4) of the true PTB cases could have been missed

based on the study design. The uncertainty interval shows that the number of PTB cases in the

ineligible and unverified group can be as low as 5% to as high as 36.4% of the total PTB cases.

In Kendall et al. 2021, the authors demonstrated that up to 8.7% of bacteriologically confirmed

cases were missed because they were asymptomatic with normal chest X-ray findings [34]. Lau

et al. 2022 also established that chest X-ray significantly under-detected lung abnormalities

and consequently missed up to 3.7% of culture-positive cases [35]. Our findings suggest that in

the South African study 13% (based on the estimates of sensitivity of any TB symptom and any

chest X-ray abnormality from Bayesian LCA with simultaneous imputation assuming the data

is MNAR) of the true PTB cases were asymptomatic with normal chest X-ray findings. This is

consistent with the findings by Lau et al. 2022 who showed that up to 17.5% of subclinical

cases have normal chest X-ray findings [35]. In light of these evidence, we recommend Bayes-

ian LCA with simultaneous imputation of the missing bacteriological test results assuming the

missing data is MNAR for the analysis of diagnostic studies in TB with partial verification to

simultaneously alleviate the reference standard and verification biases.

Although Bayesian LCA with simultaneous imputation of the missing Xpert Ultra and cul-

ture test results under the assumption that the data is MAR produced plausible estimates, the
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assumption that Xpert Ultra and culture have the same diagnostic test sensitivity in the bacteri-

ologically tested and untested participants may be unreasonable. This is the same assumption

under which multivariate imputation via chained equations (MICE) is premised. The bacterio-

logically unverified participants comprised a mix of individuals with different characteristics:

some were asymptomatic without lung field abnormalities, others were symptomatic but failed

to be microbiologically verified due to inability to produce sputum, failure to be reached at

home during follow-up visits or use of a higher CAD4TBv5 triaging threshold [36]. As a conse-

quence, the model underestimated the prevalence of PTB among the asymptomatic partici-

pants with normal chest X-ray findings. Therefore, careful consideration of the assumptions

should be made prior to applying such a model.

The results based on Bayesian LCA with simultaneous imputation of the missing bacterio-

logical test results assuming the missing data is MAR and MNAR while adjusting for the mea-

sured covariates did not seem to alter the conclusions. However, care needs to be exercised to

avoid introducing bias via backdoor paths that violate the conditional independence assump-

tion and to avoid overfitting.

We have established that TB symptom screen followed by chest X-ray screening has an

imperfect sensitivity. TB screen alone has poor sensitivity in active case-finding while chest X-

ray screening alone can miss up to 17% of true TB cases who appear with normal lung fields.

Thus, the use of this method as a screening approach needs to be reconsidered. The limitations

of the expert radiologist in the interpretation of the digital chest X-ray images can be overcome

using CAD4TB that can automatically interpret the images. CAD4TBv7 at a chosen threshold

of 18.28 and expert radiologist interpretation of the chest X-ray images have comparable esti-

mates of sensitivity. However, the latter has a lower specificity because CAD4TB interprets any

lung field abnormality irrespective of whether it is suggestive of active TB or not. CAD4TB ver-

sion 7 has low discriminatory power to isolate active TB from other etiologies. Thus, further

improvement of the inbuilt artificial intelligence algorithm is required so as to improve on the

specificity. Meanwhile, TB diagnostic studies can capitalize on the good sensitivity of expert

radiologist interpretations and/or CAD4TBv7 to rule out TB before bacteriological testing.

This has the benefit of expanding the population covered with fewer confirmatory tests, and

leads to more cases detected [37].

Our findings have revealed that ignoring the uncertainty in the bacteriological tests and the

partial information of the unverified participants in the analysis can introduce bias that can be

alleviated pragmatically under realistic assumptions. The simple model that simply assumes

the unverified individuals are negative for the missing bacteriological test results produce real-

istic estimates with CRS-based analysis and may be appealing for the analysis of diagnostic

studies in TB with partial verification. However, bacteriological tests have imperfect sensitivity

for TB detection and the assumption on the true prevalence may be violated. Bayesian LCA

with simultaneous imputation of the missing bacteriological test results assuming non ignor-

able missingness (i.e., MNAR) is robust and safe. Multiple missing value imputation via MICE

followed by Bayesian LCA is also feasible.

While our proposed model yields realistic estimates, it cannot be applied directly in a differ-

ent setting without prior consideration of the diagnostic tests in use, the potential dependen-

cies between the diagnostic tests and the underlying prevalence. The concept is the same but

the model will need to be tweaked appropriately. Based on our analysis of active TB case-find-

ing data, regions with low prevalence may require specification of a weakly-informative prior

to ensure convergence of the prevalence to a realistic distribution. The factors associated with

TB prevalence as well as the diagnostic test properties may be included in the analysis to

improve the precision of the estimates.
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We have tested our methods using simulation analysis and validated them using only one

community-based TB prevalence survey. It would be interesting to understand the perfor-

mance of the model in several other prevalence surveys. Currently there is an ongoing effort to

externally validate these methods in six TB prevalence surveys.

This approach differs from the application in Mungai et al. 2022 who used Bayesian LCA to

infer the prevalence of TB among the participants who were not bacteriologically tested while

using Xpert and culture as the bacteriological reference standard among the bacteriologically

tested participants [38].

This study was not without limitations. Imputation of the missing data can benefit from

information from an individual with fully observed data and similar covariates and test results.

In our analysis, none of the ineligible and unverified participants was bacteriologically tested.

Hence, this might have posed a challenge to the model to learn the outcome of the ineligible

participants who had missing bacteriological test results. Potentially, this was also the case with

the eligible but unverified participants. Particularly, those who were unable to produce spu-

tum. While we acknowledge that bacteriological testing in TB studies is costly, a random sam-

ple of the ineligible participants may need to be bacteriologically tested so as to help with

imputation during the analysis. The lack of verification for the eligible participants who could

not produce sputum is a sticky problem that needs alternative approaches for TB diagnosis.

The estimates based on our analysis were not weighted by the sampling weights as the

model was not developed to account for the sampling weights. Thus, future work can explore

the possibility of accounting for the sampling weight.
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using MICE.
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