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5,
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Abstract

This study investigates the influence of cadmium (Cd) stress on the micropropagation of

Goji Berry (Lycium barbarum L.) across three distinct genotypes (ERU, NQ1, NQ7), employ-

ing an array of machine learning (ML) algorithms, including Multilayer Perceptron (MLP),

Support Vector Machines (SVM), Random Forest (RF), Gaussian Process (GP), and

Extreme Gradient Boosting (XGBoost). The primary motivation is to elucidate genotype-

specific responses to Cd stress, which poses significant challenges to agricultural productiv-

ity and food safety due to its toxicity. By analyzing the impacts of varying Cd concentrations

on plant growth parameters such as proliferation, shoot and root lengths, and root numbers,

we aim to develop predictive models that can optimize plant growth under adverse condi-

tions. The ML models revealed complex relationships between Cd exposure and plant phys-

iological changes, with MLP and RF models showing remarkable prediction accuracy (R2

values up to 0.98). Our findings contribute to understanding plant responses to heavy metal

stress and offer practical applications in mitigating such stress in plants, demonstrating the

potential of ML approaches in advancing plant tissue culture research and sustainable agri-

cultural practices.

Introduction

Goji berry (Lycium barbarum, L.) is a species that belongs to the Solanaceae family and is

native to Asia but can also be grown in tropical and subtropical regions of the world [1]. The

Goji berry species used in the project (L. barbarum L.; 2n = 2x = 24) is diploid with 24 chromo-

somes [2]. L. barbarum L., L. chinenseM., and L. ruthenicumM. are the most commonly used

goji berries worldwide, with 89 different species grown in various regions. Goji berry, or wolf-

berry, is a shrub-like plant with red, soft fruit traditionally used in medicine and food [3].
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While it is found in tropical regions, it primarily grows in dry, semi-dry, slightly salty areas [4].

Goji berry plants are generally spiny shrubs that can grow up to 1–4 meters tall [5]. Goji berry

is not selective in location, but it can tolerate dry summer days and grows well in light-sandy,

medium-strength, and heavy-clay soil types [6]. Goji berries are typically consumed as dried

fruit and add flavor and color to chocolate, pastries, desserts, salads, and granola. Due to their

anti-aging, metabolism-boosting, skin-renewing, and cell-growth-accelerating properties, they

have also been used in many cosmetic products to increase skin vitality and elasticity, prevent

sunspots, and reduce scars and blemishes [7, 8]. Goji berries are known for their high antioxi-

dant and vitamin content, making them effective against various health issues. Goji berry is a

deciduous, shrubby plant that is tolerant to cold and hot weather and can grow in almost any

type of soil. Its fruits and leaves are rich in chemical compounds such as polysaccharides, fatty

acid compositions, carotenoid accumulations, and mineral contents, which make it a valuable

medicinal and aromatic plant. It has been used in Chinese traditional medicine for over 2000

years due to its potential health benefits and traditional uses [9].

The increasing demand for goji berry plants has led to the development of micropropaga-

tion techniques for mass production. Micropropagation is when small plant parts regenerate

whole plants under aseptic conditions on in vitro. This technique offers several advantages

over traditional propagation methods, including rapid multiplication, disease-free plant pro-

duction, and year-round availability of planting material. Micropropagation of goji berry typi-

cally involves the selection of a suitable explant, surface sterilization, and culture initiation on

an appropriate growth medium. The process can be optimized by adjusting hormone concen-

trations, light intensity, and temperature. The resulting plantlets are then acclimatized to the

soil and transplanted into the field. Several studies have reported successful micropropagation

of goji berry using different explants and growth media. For example, shoot tips have been

used as explants to produce high-quality plantlets using MS medium supplemented with plant

growth regulators such as BA and NAA [10]. In another study, nodal segments produced mul-

tiple shoots on an MS medium supplemented with cytokinins and auxins [11]. Overall, micro-

propagation is a promising technique for the mass production of high-quality goji berry

plants. It can help meet the increasing demand for goji berries and contribute to the develop-

ment of the goji berry industry.

The accumulation of Cd in the soil and plants because of Cd contamination has been an

important research topic in recent years due to its potential impact on human health [12, 13].

In addition to natural Cd in the soil, Cd mainly enters the soil through anthropogenic sources

such as atmospheric deposition, sewage sludge application to agricultural lands, and fertilizers

[14–16]. Cd can accumulate in plant tissues at toxic levels, limiting plant growth. Although not

an essential nutrient for plants, it can easily be taken up by plant roots and accumulate in plant

products at levels that pose a risk to food chains. When present in high concentrations in plants,

animals, and humans, Cd is a toxic element that can cause health problems such as lung, liver,

and kidney diseases, vision impairment, anemia, and high blood pressure [14, 17, 18].

Cd is a toxic heavy metal that can accumulate in plant tissues and negatively affect plant

growth and development. Several studies have investigated the impact of Cd on different plant

species [12].

In vitro techniques can be used to study the effects of Cd stress on plant growth and devel-

opment. In this process, plants are grown under controlled conditions in a sterile environment

with different concentrations of Cd in the growth medium. Here are some studies investigat-

ing the effects of in vitro Cd stress on plant growth and development. Zhang et al. [19] studied

the effects of Cd stress on the growth and physiological characteristics of potato (Solanum
tuberosum L.) plantlets on in vitro. They found that exposure to Cd caused a decrease in plant

growth, photosynthesis, and chlorophyll content. Kaur and Bhandari [20] investigated the
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effect of Cd stress on the in vitro growth and antioxidant defence system of a medicinal plant,

Phyllanthus amarus Schum. & Thonn. They found that Cd stress caused a significant decrease

in plant growth, biomass, and antioxidant enzymes, such as superoxide dismutase (SOD), cata-

lase (CAT), and peroxidase (POD). Rahmati and Ghasemnezhad [21] studied the effect of Cd

stress on in vitro growth and accumulation of Cd in two cultivars of Rosa sp. Overall, these

studies suggest that in vitro Cd stress can negatively affect plant growth and development and

physiological and biochemical processes in plants.

The accumulation of Cd in the soil and its plant uptake pose significant challenges to agri-

cultural productivity and food safety. Cd induces various physiological and biochemical

changes in plants, leading to growth inhibition, oxidative stress, and disruptions in photosyn-

thesis and nutrient uptake. Traditional methods of studying these effects often involve labor-

intensive experiments and complex data analysis, which can be time-consuming and may not

fully capture the intricate interactions within the plant system [22]. This is where machine

learning (ML) comes into play. ML techniques can potentially revolutionize how we analyze

and interpret complex biological data. By leveraging ML algorithms, we can process large data-

sets more efficiently, identify patterns and relationships that may not be immediately apparent,

and develop predictive models to forecast plant responses under different environmental con-

ditions. In plant tissue culture, ML can optimize experimental conditions, improve the accu-

racy of predictive models, and ultimately enhance our understanding of how plants respond to

stress factors such as Cd.

ML is a prominent subfield in artificial intelligence that can predict and classify outcomes

based on specific inputs [23, 24]. By utilizing ML techniques, computers can autonomously

learn and convert data into meaningful knowledge, thus eliminating the need for explicit

human programming [25–27].

However, despite its popularity in various scientific domains, the application of ML in plant

tissue culture studies is relatively limited [28]. In the context of in vitromicropropagation, a

complex biological process influenced by genotypes, culture media, and conditions, traditional

statistical methods often struggle to analyze large and intricate datasets [29]. Nevertheless,

recent advancements have demonstrated the successful application of ML models, such as neu-

ral networks and decision-tree-based models, in predicting and optimizing plant tissue culture

procedures [30, 31].

Numerous ML models effectively forecast and refine plant tissue culture procedures across

various studies [32–37]. ML has demonstrated significant potential in enhancing various

aspects of in vitro culture systems, providing improvements over traditional statistical meth-

ods. Conventional approaches often struggle with the complexity and non-linearity of biologi-

cal processes in plant tissue culture. In contrast, ML algorithms, such as artificial neural

networks (ANNs), support vector machines (SVMs), and genetic algorithms (GAs), offer

higher accuracy and efficiency. For instance, ML has been successfully applied to optimize

sterilization protocols [38, 39], seed germination conditions [31, 40], and callus induction pro-

cesses [41–44]. Additionally, ML has optimized somatic embryogenesis [45, 46] and haploid

production [47, 48]. Furthermore, ML has been used to improve gene transformation effi-

ciency [49, 50], indirect shoot regeneration [51], root formation [52, 53] and, secondary

metabolite production [54], shoot proliferation [45, 46, 55–57]; these applications highlight

the versatility and effectiveness of ML in improving in vitro culture outcomes. By leveraging

ML techniques, this study aims to enhance the precision and predictive power in assessing

genotype-specific responses to cd stress in goji berry micropropagation, thereby providing

valuable insights for developing more resilient crop varieties. This study utilized five different

ML models: multilayer perceptron (MLP), random forest (RF), Gaussian process (GP), sup-

port vector machines (SVM), and extreme gradient boosting (XGBoost), each with its unique
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strengths and capacity to capture complex relationships within the data. By applying these

models, the study aimed to understand better the intricate relationships between goji berry

genotypes, micropropagation, and rooting efficiency. Using diverse ML techniques reflects a

deliberate effort to enhance the study’s ability to analyze the complex dataset. The primary

objective of this study is to elucidate the effects of Cd stress on the micropropagation of differ-

ent goji berry genotypes using advanced ML algorithms. By integrating the topics of goji berry

cultivation, Cd stress, and ML, this research aims to uncover genotype-specific responses to

heavy metal stress and develop predictive models that can optimize plant growth under

adverse conditions. The convergence of these areas addresses the critical need for innovative

approaches in agricultural practices, particularly in enhancing the resilience of crops to envi-

ronmental contaminants. This study contributes to understanding plant responses to Cd stress

and demonstrates the potential of ML techniques to revolutionize plant tissue culture and sus-

tainable agricultural practices.

Material and methods

Plant material

As plant material, NQ1 and NQ2 commercial goji berry varieties and a source of unknown ori-

gin grown at the Campus of Erciyes University, Kayseri, Türkiye (ERU) were used. Commer-

cial varieties were obtained from a specialized nursery company.

Nutrient medium and culture of shoot tips

The shoot tips of the plant material used in the study were washed under tap water for ten min-

utes, followed by soaking in 70% ethanol for 3 minutes and a 20% sodium hypochlorite

(NaClO) solution for 10 minutes. Afterwards, they were washed three times with sterile dis-

tilled water. After the sterilization stage, the shoot tips were cultured in MS (Murashige and

Skoog, 1962) nutrient medium containing 1 mg/L BA, 30 g/L sucrose, and 8 g/L agar. The cul-

tures were incubated under a 16-hour light/8-hour dark photoperiod and 25˚C temperature

conditions.

Micropropagation and rooting under in vitro Cd stress

The Cd stress experiment was conducted with the cultured and propagated plants. For this

purpose, MS nutrient media containing 0, 100, 200, 300, 400, and 500 μM concentrations of

Cd were prepared, and the plants were transferred to these media supported with 1 mg/L BAP.

The plants were cultured under 16-hour light/8-hour dark and 25˚C temperature conditions.

The plants were subcultured every 4 weeks 3 times. At the end of each subculture, the micro-

propagation coefficient (number of plantlets/plant) and plant height (cm) were calculated. To

investigate in vitro rooting under Cd stress conditions, 0, 100, 200, 300, 400, and 500 μM con-

centrations of Cd were added to MS media containing 1 mg/L IBA, and plants from Cd-free

control media were transferred to rooting media. After 8 weeks, rooting rate (%), root length

(cm), and number of roots per plant were calculated.

Statistical analysis

The micropropagation and rooting of NQ7, NQ1, and ERU Goji berry cultivars under in vitro
conditions of Cd stress were examined using a factorial order random plot trial design. The

data obtained was analyzed using an analysis of variance (ANOVA), and the software pro-

grams exhibiting significant changes were subjected to the LSD test. The statistical analyses
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were performed using the R-programming language. The Pearson correlation coefficients for

the parameters were computed using the corrplot package in R software version 4.3.1.

Modeling procedure

The aim was to estimate the output (proliferation, shoot length, number of roots, and root

length) variables using this input (different concentrations of 0 μM, 100 μM, 200 μM, 300 μM,

400 μM, and 500 μM and three different genotypes) for modeling. In this study, the dataset

was divided into training and testing subsets using a 10-fold cross-validation method. Specifi-

cally, the dataset was randomly partitioned into 10 equal parts. Each part was used as a testing

set once while the remaining nine parts were used as the training set. This process was repeated

10 times to ensure each part of the data was used for testing exactly once, providing a robust

evaluation of the model’s predictive performance. To ensure the partitions were representative,

stratification was employed, meaning that the distribution of the target variable was consistent

across all folds. Additionally, the overall ratio of the dataset split into training and testing was

maintained at 80% for training and 20% for testing in each fold. This stratified approach helps

to maintain the balance of class labels in each fold, thereby improving the predictive perfor-

mance of the MLP and ML models (Fig 1A). R-programming was used to implement coding

with the help of Caret packages. The Caret package was used for data partitioning, model train-

ing, prediction, and performance evaluation. Specifically, we used the train function for train-

ing the models, specifying the method parameter for each algorithm (e.g., method = ’rf’ for

Random Forest, method = ’svmRadial’ for Support Vector Machines with radial basis function

kernel). The trainControl function was employed to set up the cross-validation method

(method = ’cv’, number = 10) and other relevant parameters. Several metrics were used to

assess and compare the accuracy and precision of MLP and ML models. These metrics

Fig 1. A. Schematic diagram of step-by-step ML approach of this study, B. Multilayer perceptron.

https://doi.org/10.1371/journal.pone.0305111.g001
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included the coefficient of determination (R2), which shows the degree of relationship between

the model and the dependent variable Eq 1; and Root Mean Square Error (RMSE), which

shows how closely the regression line matches the observed data points in Eq 2, and the Mean

Absolute Error (MAE), which calculates the average error between the predicted and observed

values in Eq 3.

R2 ¼ 1 �

Pn
i¼1
ðYi � Ŷ iÞ

2

Pn
i¼1
ðYi � ~Y Þ2

ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
Pn

i¼1
ðYi � Ŷ iÞ

2
Þ

n

s

ð2Þ

MAE ¼
1

n

Xn

i¼1

jYi � Ŷ ij ð3Þ

While Yi = actual value, Ŷ i = Predicted value, ~Y = mean o the actual values and n = sample

count.

Multilayer perceptron. A multilayer perceptron (MLP) is a feedforward neural network

consisting of a series of processing nodes arranged in a linear, feedforward configuration. It

consists of multiple layers, all of which are fully interconnected. The MLP has an input layer,

an output layer, and one or more hidden layers (Fig 1B). Using backpropagation in the train-

ing process involves adjusting the weights and biases by minimizing the error expressed in Eq

4 until the desired accuracy is achieved.

E ¼
1

n

Xn

n¼1

ðys � ŷsÞ ð4Þ

y: the observed value of data point n; n: number of samples.

Support Vector Machines. Support Vector Machines (SVMs) are a class of algorithms

that encompass both supervised and unsupervised learning techniques. These algorithms are

designed for regression analysis, clustering, and classification tasks. Two common types of

SVMs are Support Vector Classification (SVC) and Support Vector Regression (SVR). One of

the advantages of SVMs is that they are efficient even with small datasets. Additionally, SVMs

address issues that conventional AI algorithms often struggle with, such as overfitting, low

convergence rates, and local minima entrapment. The SVM algorithm is defined by Eq 5,

which helps determine the optimal separator plane for distinguishing between classes.

f ðxÞ ¼ wφðxÞ þ b ð5Þ

Random Forest. Random Forest (RF), a technique for ensemble learning comprised of

unpruned trees that was innovated by Breiman [58], has demonstrated effectiveness in both

regression and classification tasks. Due to its efficiency and ease of implementation, RF can

prevent overfitting, effectively manage noise, and handle many features. The RF model incor-

porates randomness by introducing two sources into each tree during construction, reducing

correlation while preserving individual strengths. During training, bootstrap replicas are

employed, and random variable subsets are used to create optimal splits. The trees that have

reached maturity, characterized by low bias and high variance, are utilized for both regression
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and classification tasks, as specified in Eq 6.

y ¼
Xn

i¼1

ðai � a
∗
i Þkðx; xiÞ þ b ð6Þ

y = data point value; n = sampling size (number). ai and ai*ai* are coefficients associated with

the predictor variables, k(x,xi) computes the similarity between the input vector x and the i-th

data point xixi. b is the bias term or intercept

Gaussian Process. The Gaussian Process (GP) model, a widely used supervised learning

technique, extends the Gaussian probability distribution to encapsulate the spread of random

variables. Applicable for both classification and regression tasks, the GP model determines the

probability of input samples belonging to particular classes. This method is particularly advan-

tageous for small datasets as it provides consistency, accuracy, and computational efficiency.

Eq 7 illustrates the derivation process, which relates the input (x) to the output (y) for each

individual data point.

yi ¼ f ðxiÞ þ ε ð7Þ

Extreme Gradient Boost. The XGBoost algorithm is a highly effective tool for addressing

regression and classification challenges. It is a member of the gradient boosting decision tree

family and is distinguished by its exceptional performance and rapid processing capabilities.

In a gradient boosting framework, XGBoost excels at learning from errors and progressively

reducing the error rate through multiple iterations.

Results

This study explores the repercussions of different Cd concentrations on micropropagation of

three distinct genotypes: ERU, NQ1, and NQ7. Cd, recognized as a hazardous heavy metal,

poses potential threats to living organisms, particularly in the context of ecological systems.

The experimental design involved subjecting the genotypes mentioned above to a range of Cd

concentrations (0 μM, 100 μM, 200 μM, 300 μM, 400 μM, and 500 μM), with subsequent mea-

surement of their multiplication rates (proliferation).

The results indicate discernible variations in the multiplication rates across genotypes and

Cd concentrations. For all genotypes, a gradual decline in multiplication rates is observed with

increasing Cd concentrations. Specifically, ERU exhibited the highest multiplication rate at the

absence of Cd at a rate of (7.63). At the same time, ERU with Cd 500 μM showed the lowest

micropropagation rate, gradually decreasing as concentrations escalated. Similarly, NQ1 and

NQ7 consistently reduced multiplication rates with elevated Cd levels Table 1. Notably, the

multiplication rates of all genotypes experienced a substantial decline at higher Cd concentra-

tions, reflecting this heavy metal’s deleterious impact on the studied organisms’ reproductive

Table 1. Effect of Cd concentrations on the proliferation of different genotypes.

Cd (0 μM) Cd (100 μM) Cd (200 μM) Cd (300 μM) Cd (400 μM) Cd (500 μM) Genotype Average

ERU 7.63±0.66 7.23±0.23 6.82±0.45 5.54±0.41 3.55±0.41 2.56±0.67 5.56±2.10

NQ1 7.41±1.36 6.72±0.55 6.37±0.49 5.85±0.84 3.43±0.67 2.13±0.39 5.32±2.07

NQ7 7.18±0.65 6.93±0.32 6.50±0.34 5.52±0.67 3.41±0.33 2.10±0.33 5.27±2.05

Cd Average 7.41±0.17A 6.96±0.25B 6.56±0.18 B 5.63±0.18 C 3.46±0.06 D 2.26±0.24 E

LSD Genotype: N.S, LSD Cd Concentration: 0.412***, LSD Genotype* Cd Concentration: N.S.

N.S.: Not significant.

https://doi.org/10.1371/journal.pone.0305111.t001
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capacities. The averaged multiplication rates across genotypes reinforce the overall trend, illus-

trating a Cd concentration-dependent decrease in multiplication rates.

The study also delves into the impact of varying Cd concentrations on shoot length across

the mentioned genotypes. Table 2. reveals discernible differences in shoot lengths across geno-

types and Cd concentrations. ERU exhibited a consistent reduction in shoot length as Cd con-

centrations increased, reflecting its heightened sensitivity to Cd-induced stress. Similarly, NQ1

and NQ7 gradually declined shoot length with escalating Cd concentrations. Notably, at higher

Cd concentrations, a substantial reduction in shoot length is observed across all genotypes,

emphasizing the adverse effects of Cd on plant growth. Overall, NQ1 without Cd showed the

highest shoot length, while ERU at 500 μM showed the lowest.

The averaged shoot lengths across genotypes further underscore the concentration-depen-

dent inhibition of growth induced by Cd.

The results of the root length study, as presented in Table 3, demonstrate that genotype

NQ7 showed the greatest root length in the absence of Cd, with a measurement of 4.83. How-

ever, when exposed to 500 μM Cd, NQ7 displayed no root length. It is worth noting that under

Cd-free conditions, all three genotypes exhibited considerable root lengths. Furthermore,

increased Cd concentration resulted in a progressive decrease in root length for all genotypes.

These findings emphasize the influence of Cd concentration on the development of roots in

the examined genotypes.

Table 4 presents data on the influence of varying Cd concentrations (0 μM, 100 μM,

200 μM, 300 μM, 400 μM, 500 μM) on the root number of three different genotypes (ERU,

NQ1, and NQ7). Across all genotypes, an increase in Cd concentration was associated with a

consistent decrease in root number. While NQ7 consistently exhibited the highest number of

roots at a rate of 4.8, it also experienced a considerable reduction in root growth as Cd concen-

trations increased. Notably, at the highest Cd concentration (500 μM), all genotypes experi-

enced a complete cessation of root growth. The overall Cd averages support the descending

Table 2. Effect of Cd concentrations on shoot length of different genotypes.

Cd (0 μM) Cd (100 μM) Cd (200 μM) Cd (300 μM) Cd (400 μM) Cd (500 μM) Genotype Average

ERU 5.24±0.79 5.13±0.50 4.01±0.58 3.17±0.37 2.31±0.46 1.74±0.22 3.60±1.29

NQ1 5.65±0.65 5.08±0.52 4.29±0.70 3.22±0.64 2.63±0.33 1.84±0.28 3.78±1.33

NQ7 5.56±0.81 5.06±0.46 4.17±0.53 3.20±0.46 2.75±0.34 2.03±0.14 3.79±1.33

Cd Average 5.48±0.20A 5.09±0.03B 4.15±0.11 C 3.19±0.02D 2.56±0.18E 1.87±0.11F

LSD Genotype: N.S, LSD Cd Concentration: 0.268***, LSD Genotype* Cd Concentration: N.S.

N.S.: Not significant.

https://doi.org/10.1371/journal.pone.0305111.t002

Table 3. Effect of Cd concentrations on root length of different genotypes.

Cd

(0 μM)

Cd

(100 μM)

Cd

(200 μM)

Cd

(300 μM)

Cd

(400 μM)

Cd

(500 μM)

Genotype Average

ERU 3.75±2.08 3.19±2.23 1.75±1.87 0.70±1.13 0.33±0.70 0.00±0.0 1.62±1.52 B

NQ1 4.18±1.51 3.40±1.80 3.04±1.62 2.07±1.79 1.27±1.64 0.25±1.79 2.36±1.38 A

NQ7 4.83±0.59 3.93±1.41 2.60±1.80 1.10±1.47 0.65±1.06 0.00±0.0 2.18 ±1.50 A

Cd Average 4.25±0.54 A 3.50±0.37B 2.46+0.65C 1.29±0.66D 0.75±0.46DE 0.08±0.12E

LSD Genotype: 0.515**, LSD Cd Concentration: 0.729***, LSD Genotype* Cd Concentration: N.S.

N.S.: Not significant

https://doi.org/10.1371/journal.pone.0305111.t003
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trend in root length with increasing Cd levels, providing valuable insights into the varying sen-

sitivities of the genotypes to Cd-induced stress.

Table 5 indicates genotype-specific responses to Cd exposure, with ‘ERU,’ ‘NQ1’, and

‘NQ7’ exhibiting distinct rooting rate patterns across the range of Cd concentrations. ‘ERU’

demonstrates a steady decline in rooting rate as Cd concentrations increase, suggesting height-

ened sensitivity to Cd-induced stress. In contrast, ‘NQ1’ and ‘NQ7’ show a more gradual root-

ing rate decrease with escalating Cd levels. Overall, ‘NQ7’ had the highest rate of 100 without

Cd. The calculated average rooting rates across genotypes highlight a concentration-dependent

reduction in rooting rates, with a clear trend of decreasing averages as Cd concentrations rise.

Pearson correlation coefficients for various physiological parameters in three plant varieties

(’NQ1’, ’NQ7’, and ’ERU’) under different concentrations of Cd. Strong positive correlations

are observed between the parameters such as proliferation (MR), shoot height (SH), rooting

rate (RR %), root length (RL in cm), and number of roots (NR) (Fig 2).

Machine learning analysis

Machine learning algorithms employ statistical and computational methods to identify pat-

terns in data, establish models from those patterns, and then utilize those models to make pre-

dictions or judgments. In this study, we employed MLP, SVM, RF, GP, and XGBoost

algorithms to predict the relationship between inputs and outputs, compare and evaluate the

performance of the models, and analyze the data generated from the experiments. The input

variables for this study comprised three distinct genotypes and six different Cd concentrations.

The output variables included observations derived from in vitro-cultivated explants of goji

berry plants. RMSE, R2, and MAE were employed as evaluation metrics for the model’s valid-

ity. The R2 values range from 0 to 1, with 1 representing an ideal prediction and 0 signifying

no predictive capacity. Model precision is represented by the RMSE values, which typically

range from 0 to positive infinity. Lower values indicate improved performance. Additionally,

MAE represents the predicted accuracy and ranges from 0 to positive infinity, with lower

Table 4. Effect of Cd concentrations on number of roots of different genotypes.

Cd (0 μM) Cd (100 μM) Cd (200 μM) Cd (300 μM) Cd (400 μM) Cd (500 μM) Genotype Average

ERU 3.9±2.18 2.7±2.00 1.6±1.78 0.9±1.44 0.5±1.08 0.0±0.0 1.60±1.61B

NQ1 4.3±1.64 3.0±1.70 2.7±1.49 1.9±1.66 1.1±1.45 0.2±0.63 2.20±1.42 A

NQ7 4.8±0.79 4.4±1.65 2.7±2.00 1.2±1.62 1.0±1.63 0.0±0.0 2.35±1.71 A

Cd Average 4.33±0.45A 3.36±0.71B 2.33±0.63C 1.33±0.52D 0.86±0.30D 0.06±0.09E

LSD Genotype: 0.534*, LSD Cd Concentration: 0.755***, LSD Genotype* Cd Concentration: N.S.

N.S.: Not significant.

https://doi.org/10.1371/journal.pone.0305111.t004

Table 5. Effect of Cd concentrations on root rate of different genotypes.

Cd (0 μM) Cd (100 μM) Cd (200 μM) Cd (300 μM) Cd (400 μM) Cd (500 μM) Genotype Average

ERU 80±42.2 70±48.3 50±52.7 30±48.3 20±42.1 0±0.0 41.66±49.7 B

NQ1 90±31.6 80±42.2 80±42.2 60±51.6 40±51.6 10±31.6 60.00±49.4 A

NQ7 100±0.0 90±31.6 70±48.30 40±51.6 30±48.30 0±0.0 55.00±50.2 AB

Cd Average 90±14A 80±17AB 66.7±11 B 43±6.6 C 30±10C 3.33±3.33 D

LSD Genotype: 14.40*, LSD Cd Concentration: 20.37***, LSD Genotype* Cd Concentration: N.S.

N.S.: Not significant.

https://doi.org/10.1371/journal.pone.0305111.t005
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values signifying greater accuracy. Table 6. summarizes the study’s results and shows the out-

puts of the machine learning models used in the research.

Table 6 illustrates a comprehensive assessment of the performance metrics of training and

testing data for various machine learning models utilized in predicting plant growth variables,

Fig 2. Correlation triangle obtained for studied morphological traits of in vitro grown seedlings of goji berry varieties: A. ERU variety; B. NQ1 variety; C. NQ7

variety. MR: Multiplication Rate; SH: Shoot Height; RR: Root Rate; RL: Root Length; NR: Number of Roots.

https://doi.org/10.1371/journal.pone.0305111.g002

Table 6. Performance metrics of ANN-based MLP and ML models.

Model Parameter RMSE MAE R2

Training Testing Training Testing Training Testing

MLP Proliferation 0.07 0.07 0.05 0.06 0.91 0.94

Shoot Length 0.09 0.08 0.07 0.07 0.87 0.94

Root Length 0.06 0.06 0.04 0.05 0.97 0.99

Root Number 0.10 0.08 0.07 0.06 0.92 0.89

RF Proliferation 0.06 0.07 0.05 0.06 0.90 0.95

Shoot Length 0.10 0.09 0.08 0.07 0.84 0.93

Root Length 0.05 0.07 0.03 0.05 0.98 0.98

Root Number 0.09 0.07 0.06 0.04 0.93 0.99

XGBoost Proliferation 0.07 0.05 0.05 0.04 0.90 0.91

Shoot Length 0.11 0.08 0.08 0.07 0.82 0.91

Root Length 0.05 0.05 0.04 0.04 0.97 0.98

Root Number 0.10 0.10 0.08 0.08 0.92 0.91

GP Proliferation 0.08 0.07 0.06 0.06 0.86 0.92

Shoot Length 0.09 0.07 0.07 0.06 0.85 0.93

Root Length 0.08 0.08 0.06 0.06 0.96 0.95

Root Number 0.10 0.08 0.08 0.06 0.92 0.95

SVM Proliferation 0.08 0.08 0.07 0.07 0.87 0.93

Shoot Length 0.09 0.08 0.07 0.07 0.85 0.91

Root Length 0.07 0.08 0.05 0.06 0.94 0.94

Root Number 0.11 0.09 0.08 0.07 0.91 0.95

ANN: Artificial Neural Network; ML: Machine learning; MLP: Multilayer perceptron; RF: Random Fores; XGBoost: Extreme Gradient Boost; GP: Gaussian Process;

SVM: Support Vector Machine; R2: Coefficient of determination; MAE: Mean absolute error; RMSE: Root mean square.

https://doi.org/10.1371/journal.pone.0305111.t006

PLOS ONE Impact of cadmium stress on goji berry micropropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0305111 June 13, 2024 10 / 20

https://doi.org/10.1371/journal.pone.0305111.g002
https://doi.org/10.1371/journal.pone.0305111.t006
https://doi.org/10.1371/journal.pone.0305111


such as proliferation, shoot length, root length, and root number. In the Artificial Neural Net-

work-based Multilayer Perceptron (ANN-MLP) model, the testing metrics closely align with

the training metrics, indicating consistent performance. For example, the RMSE for prolifera-

tion is 0.07 for both training and testing, and the R2 value slightly increases from 0.91 in train-

ing to 0.94 in testing, demonstrating the model’s strong generalization capability. Similarly, for

shoot length and root length, the testing RMSE values are either equal to or lower than the

training values, with high R2 values indicating effective prediction accuracy. The root number

prediction shows a slight decrease in R2 from training (0.92) to testing (0.89), but overall, the

MLP model maintains high performance across parameters.

RF also demonstrates robust predictive power. For root length, the testing R2 value remains

outstanding at 0.98, matching the training R2, and the RMSE values are consistently low. The

model shows impressive generalization in predicting shoot length, where the testing R2 (0.93)

is higher than the training R2 (0.84). Similarly, for root number, the RF model achieves a near-

perfect R2 of 0.99 in testing, surpassing its training R2 of 0.93.XGBoost showed competitive

performance, particularly in predicting root length, where the training and testing RMSE val-

ues are 0.05 and the R2 values are close to 0.98. For proliferation and shoot length, XGBoost

exhibits strong generalization with lower testing RMSE values compared to training and test-

ing R2 values, indicating robust predictive capability. The GP model shows moderate perfor-

mance with testing R2 values ranging from 0.92 to 0.95, slightly lower than some other models

but still indicating good predictive power. The model’s RMSE and MAE values are generally

low, with root length prediction maintaining a high R2 value of 0.95. Lastly, the SVM model

displays strong generalization capabilities, testing RMSE values comparable to training RMSE

values across all parameters. The testing R2 values are consistently high, particularly for root

length (0.94), demonstrating the model’s reliable performance in predicting plant growth

metrics.

The testing metrics confirm that the machine learning models effectively generalize to

unseen data. The MLP and RF models stand out with their low errors and high R2 values, indi-

cating their robustness in predicting plant growth parameters. XGBoost and SVM also show

competitive performance, with SVM excelling in root length prediction. While the GP model

shows slightly higher errors, it still provides reliable predictions, confirming its utility in this

context. These findings highlight the effectiveness of machine learning models in handling

complex biological data and improving tissue culture outcomes.

Fig 3 compares the actual and predicted values, with the individual samples depicted on the

horizontal axis and the corresponding predicted outcomes displayed on the vertical axis. This

visual representation clearly demonstrates the alignment or deviation between the actual and

predicted values for the specified dataset.

Discussion

The recent study on the effects of Cd on micropropagation of three distinct genotypes, ERU,

NQ1, and NQ7, highlights the significant impact of Cd stress on plant physiology, including

multiplication rates, shoot and root lengths, and root numbers. These results are discussed

within the context of existing research, facilitating a comprehensive understanding of plant

responses to Cd and strategies for mitigation. Cd’s detrimental effects on plant growth and

development have been well-documented across various species and genotypes. The observed

decline in multiplication rates and inhibition of shoot and root growth with increasing Cd

concentrations aligns with findings from Sanità di Toppi et al. [59], who reported similar

stress-induced alterations in in vitro plants and cell suspension cultures exposed to Cd, includ-

ing the induction of phytochelatins without lipid peroxidation in carrot plants. This supports
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the notion that plants employ specific biochemical pathways, such as phytochelatin synthesis,

to manage heavy metal stress, thereby mitigating Cd’s toxic effects without directly causing

oxidative damage. The variation in Cd-induced responses among different genotypes suggests

inherent differences in metal tolerance and accumulation capabilities. This is consistent with

the broader literature, indicating species-specific and genotype-specific heavy metal detoxifica-

tion and tolerance mechanisms. For instance, research by Soleimani et al. [60] on Narcissus
tazetta revealed a significant accumulation of Cd and alterations in alkaloid content under Cd

stress, underscoring the complex interplay between metal stress and secondary metabolite pro-

duction. Moreover, the increase in peroxidase activity and the appearance of new isoenzymes

under Cd stress, as observed in Narcissus tazetta, highlight the role of antioxidant defense sys-

tems in coping with heavy metal-induced oxidative stress. This adaptive response is pivotal for

maintaining cellular homeostasis and protecting plant tissues from Cd-induced damage. Com-

paratively, the resilience of certain genotypes to Cd, as evidenced by lesser reductions in root

and shoot lengths under high Cd concentrations, may offer insights into breeding and biotech-

nological approaches for enhancing plant tolerance to heavy metals. Research on chickpea cul-

tivars exposed to Cd stress demonstrated genotype-specific differences in growth responses,

reinforcing the potential for selecting and engineering crops with enhanced Cd tolerance. The

Fig 3. Actual and predicted values of ML models, a. MLP model; b. RF model; c. XGBoost model; d. GP model; e.

SVM model.

https://doi.org/10.1371/journal.pone.0305111.g003
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comprehensive analysis of plant responses to Cd across different studies emphasizes the multi-

faceted nature of plant-metal interactions involving physiological, biochemical, and molecular

adjustments. Future research should focus on elucidating the genetic and molecular bases of

Cd tolerance and accumulation, leveraging advances in genomics and biotechnology to

develop plants capable of efficient Cd detoxification and phytoremediation [61].

The findings of Baktemur [62] on the tolerance of garlic (Allium sativum L.) to various

heavy metals, including Cd, under in vitro conditions offer a parallel to our observations on

the impact of Cd on the micropropagation of three distinct genotypes: ERU, NQ1, and NQ7.

Similar to Baktemur’s [62] results, where an increase in heavy metal concentrations led to a

decline in leaf and root development, with no root formation at the highest concentrations of

Cd and other metals, our study also documented a Cd concentration-dependent decrease in

multiplication rates, shoot and root lengths, and rooting rates across all genotypes studied.

This confluence of findings underscores the broad spectrum of plant responses to heavy metal

stress, highlighting Cd’s particularly inhibitory effect on plant growth and development. The

absence of root formation at high Cd concentrations noted by Baktemur [62] reinforces the

critical impact of this metal on root development. This observation aligns with our results

showing a significant reduction in root length and number under increasing Cd stress. These

parallel observations emphasize the importance of further research, both in vitro and in vivo,

to elucidate the mechanisms of plant tolerance and adaptation to heavy metal stress, ultimately

guiding the development of strategies to mitigate these adverse effects. The investigation by

Karmous et al. [63] into the ameliorative effects of Zinc Oxide nanoparticles (ZnONPs) on Cd

toxicity in Capsicum annuum L. presents a novel approach to mitigating heavy metal stress in

plants, which complements and broadens the scope of our study on the impact of Cd on the

micropropagation of ERU, NQ1, and NQ7 genotypes. While our research documented the

inhibitory effects of increasing Cd concentrations on plant growth parameters such as multi-

plication rates, shoot, and root lengths, Karmous et al. [63] highlighted the potential of

ZnONPs to counteract Cd-induced growth inhibition and oxidative stress in pepper plants.

This capacity of ZnONPs to enhance antioxidant enzyme activities and improve plant growth

metrics under Cd stress suggests a promising strategy for enhancing plant tolerance to heavy

metals through the application of nanoparticles. Our findings, together with those of Karmous

et al. [63], underscore the critical need for innovative approaches to protect plants from the

deleterious effects of environmental contaminants like Cd, potentially offering new directions

for research in plant science and agriculture aimed at environmental remediation and sustain-

able crop production.

The research by Manquián-Cerda et al. [64] on Vaccinium corymbosum L. and the impact

of Cd on the production of phenolic compounds and antioxidant responses provides a valu-

able context for our findings on the effects of Cd on micropropagation in three genotypes:

ERU, NQ1, and NQ7. Similar to their observation of increased malondialdehyde (MDA) levels

and the positive correlation between phenolic compound changes and antioxidant activity in

response to Cd, our study also revealed a genotype-specific response to varying Cd concentra-

tions, manifesting in decreased multiplication rates, shoot and root lengths, and rooting rates.

Particularly, the adjustment in phenolic profiles, as noted by Manquián-Cerda et al. [64],

could parallel the physiological adjustments we observed, suggesting a shared underlying

mechanism of enhanced antioxidant defense against Cd-induced oxidative stress. This cross-

species similarity underscores the complexity of plant responses to heavy metals and highlights

the potential for phenolic compounds to play a critical role in mitigating Cd toxicity, further

emphasizing the need for detailed mechanistic studies to explore these adaptive strategies.

While our study identifies genotype-specific responses to Cd stress in goji berry micropro-

pagation using advanced machine learning algorithms, it is essential to discuss the underlying
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physiological mechanisms that may drive these responses. Cd stress induces various physiolog-

ical changes in plants, including oxidative stress, photosynthesis disruption, and secondary

metabolism alterations. Although our study did not measure these physiological parameters

directly, understanding these mechanisms can provide insights into the observed genotype-

specific differences. Oxidative stress is one of the primary physiological responses to Cd expo-

sure, where Cd produces reactive oxygen species (ROS) that can cause cellular damage. Plants

typically counteract this stress through enhanced antioxidant defense systems involving enzy-

matic antioxidants such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT),

and ascorbate peroxidase (APX), as well as non-enzymatic antioxidants like glutathione (GSH)

and ascorbic acid (AsA) [22]. The variation in Cd tolerance among the genotypes observed in

our study may be linked to differences in their antioxidant capacities, with more tolerant geno-

types possibly having more robust antioxidant defense systems. Cd also disrupts photosynthe-

sis by damaging the photosynthetic machinery and inhibiting chlorophyll biosynthesis. This

reduces photosynthetic efficiency and can severely affect plant growth and productivity. While

we did not measure photosynthetic parameters, the more Cd-tolerant genotypes in our study

likely maintain better photosynthetic function under Cd stress. Additionally, secondary

metabolism is crucial in plant responses to Cd stress. Secondary metabolites such as flavo-

noids, alkaloids, and phenolics are known to help chelate Cd ions and mitigate their toxic

effects. Although our study focused on genotypic responses and did not measure secondary

metabolite levels, the enhanced tolerance observed in certain genotypes could be partially

attributed to their ability to accumulate protective secondary metabolites. Our findings align

with previous research on Cd stress’s physiological and molecular mechanisms in plants, sug-

gesting that antioxidant defense, photosynthetic maintenance, and secondary metabolism are

critical factors in Cd tolerance [22, 65]. By leveraging machine learning algorithms, our study

provides a predictive framework for identifying Cd-tolerant genotypes based on their

responses. It offers a valuable tool for future breeding programs to improve Cd tolerance in

goji berries and other crops.

Furthermore, the practical implications of our findings are significant for mitigating heavy

metal stress in plants. Phytoremediation, using plants to remove contaminants from the envi-

ronment, is an effective and environmentally friendly strategy. Studies have demonstrated that

plants like Narcissus tazetta can accumulate high levels of Cd without showing toxicity symp-

toms, indicating their potential for phytostabilization of contaminated soils [60]. Additionally,

understanding the mechanisms by which different genotypes of goji berry respond to Cd stress

can inform breeding programs to develop more resilient crop varieties. By employing machine

learning models to predict plant performance under Cd stress, we can optimize selection pro-

cesses and improve the efficiency of breeding strategies, ultimately contributing to sustainable

agricultural practices and environmental remediation efforts [59].

Integrating ML and artificial neural network (ANN) algorithms has shown promise in

enhancing predictive accuracy and efficiency in plant tissue culture and propagation. Our

analysis employed a suite of ML algorithms, including MLP, SVM, RF, GP, and XGBoost, to

predict plant growth outcomes under Cd stress, yielding high accuracy, especially with the

MLP and RF models, evident in their RMSE, MAE, and R2 values. Similarly, Şimşek [28]

found RF to excel in predicting drought stress effects on strawberry cultivars, underscoring

RF’s capability in handling complex biological data sets. This consistency across studies rein-

forces the versatility and reliability of RF in plant tissue culture applications, offering a robust

framework for predictive modeling. The integration of machine learning (ML) algorithms in

plant tissue culture, as explored by Şimşek et al. [37] and further substantiated by our research

findings, underscores the pivotal role computational methodologies are beginning to play in

advancing plant science. Our study, utilizing algorithms such as MLP, SVM, RF, GP, and
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XGBoost, shares a common narrative with Şimşek et al. [37] in harnessing these tools to refine

predictions on plant growth outcomes under varying conditions, such as Cd stress. In both

instances, the differential effectiveness of these ML models highlights the importance of strate-

gic model selection tailored to the specific objectives of the research. For example, our findings

show that the RF model predicts root length with remarkable precision, as evidenced by an

outstanding R2 value of 0.98, resonating with Şimşek et al. [37]’s discovery of XGBoost’s supe-

rior performance in similar parameters. This congruence underscores the capability of these

algorithms to handle complex datasets and intricate biological relationships, reinforcing their

invaluable contribution to plant science research.

Moreover, applying ML to fine-tune variables in plant propagation protocols, such as cul-

ture media composition and growth regulator treatments, as suggested by Şimşek et al. [37],

aligns with our methodological approach. It underscores a broader scientific endeavor to

enhance the efficiency of plant propagation techniques, leading to more accurate and stream-

lined experimental efforts. The implications of incorporating ML in plant tissue culture extend

beyond methodological enhancements. They pave the way for advancing sustainable and effi-

cient plant propagation techniques, fostering the preservation and exploitation of genetic

resources. This collaborative endeavor between traditional plant science and computational

innovation exemplifies the interdisciplinary approach required to tackle global agricultural

challenges. Kirtis et al. [55] also explored ML algorithms for optimizing in vitro regeneration

protocols for chickpea, where RF demonstrated superior performance in predicting shoot

count and length, mirroring our findings in the high accuracy of RF across different genotypes

under Cd stress. The parallel success of RF in these diverse applications points to its strength

in capturing the nuanced relationships between various growth parameters and environmental

stressors. On the other hand, Aasim et al. [66]’s exploration into quantum computing-

enhanced ML models for optimizing black mulberry regeneration protocols introduces an

innovative dimension to ML applications in plant tissue culture. While traditional ML models

like SVC showed robust performance, incorporating quantum computing techniques opened

new avenues for enhancing model predictions. This novel approach, albeit in its infancy, sug-

gests potential for significant advancements in predictive accuracy and computational effi-

ciency, albeit with the current limitations of quantum computing infrastructure. Pepe et al.

[29]’s investigation into optimizing in vitro Cannabis growth highlights the importance of

selecting suitable ML models based on the specific traits and responses studied. Their use of

GRNN over MLP and ANFIS models due to its superior performance in predicting plant

growth under different light and sucrose conditions emphasizes the need for careful model

selection to achieve optimal results. This selection process is crucial, as different models may

exhibit varying degrees of effectiveness depending on the dataset’s characteristics and the com-

plexity of the relationships between inputs and outputs. Our study employs advanced ML algo-

rithms to model and optimize the micropropagation of goji berries under Cd stress. Similar

approaches have been successfully applied in various other plant tissue culture contexts. For

instance, Hesami et al. [45] used a Radial Basis Function-Non-dominated Sorting Genetic

Algorithm-II (RBF-NSGAII) to optimize the medium composition for shoot regeneration in

chrysanthemum, demonstrating high predictive accuracy and efficiency. Similarly, Farhadi

et al. [53] applied an Adaptive Neuro-Fuzzy Inference System-Genetic Algorithm (ANFIS-GA)

to model paclitaxel biosynthesis in Corylus avellana cell cultures, achieving robust model per-

formance and providing valuable insights into the optimization of elicitation conditions.

Other studies have also highlighted the utility of machine learning in plant tissue culture. For

instance, Munasinghe et al. [41] utilized ML models to predict the chemical composition for

callus production in Gyrinops wallaGaetner, demonstrating the capability of ML algorithms

in handling complex datasets and optimizing plant tissue culture conditions. Similarly, Hesami
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et al. [48] leveraged ML models to predict off-target activities of sgRNA in Cannabis sativa,

highlighting the precision of ML in genome editing applications. Moreover, Rezaei et al. [44]

employed ML techniques to enhance tissue culture efficiency in petunia, showcasing the effec-

tiveness of ML in improving callogenesis outcomes. These studies underscore the versatility

and effectiveness of ML techniques in optimizing various in vitro culture parameters. Our

work builds on these advancements by specifically addressing the challenges posed by Cd

stress in goji berries, employing a comprehensive suite of ML models, including SVM, RF, and

XGBoost. These models enable us to capture complex, non-linear relationships within our

dataset, leading to more accurate predictions and a better understanding of genotype-specific

responses to Cd stress. By comparing our approach with these existing works, it is evident that

ML provides a powerful tool for enhancing the efficiency and outcomes of plant tissue culture

studies. Our findings contribute to this growing body of knowledge, offering practical applica-

tions for improving the resilience of crops to heavy metal stress through data-driven modeling

and optimization.

In conclusion, our study and the referenced works showcase the expansive potential of ML

and ANN models in advancing plant tissue culture research. The strengths of current works

include the successful application of ML models to optimize various in vitro culture parame-

ters, resulting in high predictive accuracy and efficiency. These studies have demonstrated that

ML can handle complex, non-linear biological data more effectively than traditional statistical

methods. Additionally, various ML algorithms allow researchers to capture intricate relation-

ships within the data, leading to more precise and reliable predictions. However, there are also

some weaknesses in current works. One of the main limitations is the reliance on specific

types of ML models, which may not always be the best fit for all datasets or biological contexts.

Additionally, these studies have shown promising results but often lack comprehensive valida-

tion across different species or experimental conditions. This can limit the findings’ generaliz-

ability and applicability to broader contexts.

Our study builds on these advancements by specifically addressing the challenges posed by

Cd stress in goji berries. We employ a comprehensive suite of machine learning models,

including SVM, RF, and XGBoost, to capture complex, non-linear relationships within our

dataset. This approach leads to more accurate predictions and a better understanding of geno-

type-specific responses to Cd stress. By comparing our approach with existing works, it is evi-

dent that ML provides a powerful tool for enhancing the efficiency and outcomes of plant

tissue culture studies. Our findings contribute to this growing body of knowledge, offering

practical applications for improving the resilience of crops to heavy metal stress through data-

driven modeling and optimization.

Conclusion

Integrating ML algorithms into the study of Cd stress on goji berry micropropagation has

revealed critical insights into genotype-specific responses and demonstrated the value of

computational methods in plant science research. Our study highlighted significant variations

in multiplication rates, shoot, and root growth across different Cd concentrations and geno-

types. Among the ML models utilized, MLP and RF showed exceptional predictive accuracy,

underscoring their utility in analyzing complex biological data. While current works success-

fully apply ML models to optimize in vitro culture parameters with high predictive accuracy,

they often rely on specific models and lack comprehensive validation across diverse species

and conditions. Our study addresses these limitations by employing a comprehensive suite of

ML models, including SVM, RF, and XGBoost. This leads to more accurate predictions and a

better understanding of genotype-specific responses to Cd stress. The main contributions of
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our framework include enhanced predictive accuracy, detailed genotype-specific insights, and

practical applications for optimizing plant growth under adverse conditions. Future research

should expand the application of ML techniques to various aspects of plant science, integrating

genomic and proteomic data to uncover the molecular mechanisms of Cd tolerance. Exploring

ML models across different plant species and environmental stressors will also help validate

and generalize our findings. Enhancing the interpretability of ML models will make predic-

tions more actionable for plant breeders and agronomists, and integrating quantum comput-

ing techniques could further revolutionize predictive modeling in plant sciences. In

conclusion, our study demonstrates the expansive potential of ML models in advancing plant

tissue culture research, offering practical solutions for sustainable agriculture and food security

through enhanced plant propagation protocols and strategies to mitigate environmental

stressors.
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Özhan Şimşek.

References

1. Levin RA, Miller JS. Relationships within tribe Lycieae (Solanaceae): paraphyly of Lycium and multiple

origins of gender dimorphism. Am J Bot. 2005; 92(12): 2044–2053. https://doi.org/10.3732/ajb.92.12.

2044 PMID: 21646122

2. Yue YI, Wei AN, Zhao JH, Li YL, Fan YF, Chen JH, et al. Constructing the wolfberry (Lycium spp.)

genetic linkage map using AFLP and SSR markers. J Integr Agric. 2022; 21(1): 131–138. http://dx.doi.

org/10.1016/s2095-3119(21)63610-9

3. Goji Potterat O. (Lycium barbarum and L. chinense): phytochemistry, pharmacology and safety in the

perspective of traditional uses and recent popularity. Planta Med. 2010; 76(01): 7–19. http://dx.doi.org/

10.1055/s-0029-1186218

4. Fukuda T, Yokoyama J, Ohashi H. Phylogeny and biogeography of the genus Lycium (Solanaceae):

inferences from chloroplast DNA sequences. Mol Phylogenet Evol. 2001; 19(2): 246–258. http://dx.doi.

org/10.1006/mpev.2001.0921

PLOS ONE Impact of cadmium stress on goji berry micropropagation

PLOS ONE | https://doi.org/10.1371/journal.pone.0305111 June 13, 2024 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0305111.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0305111.s002
https://doi.org/10.3732/ajb.92.12.2044
https://doi.org/10.3732/ajb.92.12.2044
http://www.ncbi.nlm.nih.gov/pubmed/21646122
http://dx.doi.org/10.1016/s2095-3119(21)63610-9
http://dx.doi.org/10.1016/s2095-3119(21)63610-9
http://dx.doi.org/10.1055/s-0029-1186218
http://dx.doi.org/10.1055/s-0029-1186218
http://dx.doi.org/10.1006/mpev.2001.0921
http://dx.doi.org/10.1006/mpev.2001.0921
https://doi.org/10.1371/journal.pone.0305111


5. Bryan JK, Costa D, Giese N, Nummy K, Rapp C, Seamon E. Goji (Lycium spp) in natural standardmo-

nograph. Nat Stand.

6. Sönmez E. Development of New Hopeful Genotypes Through Hybridization in Some Lycium Barbarum

L. and Lycium Ruthenicum M. Goji Berry Genotypes Growing from Seeds. Ph.D. Thesis, Erciyes Uni-

versity. 2021. Available Form: https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=

KVPGbJUhQ34fELarzSn0Pg&no=pdH8T4gyqoJkkvhUjDnN9w

7. Yi R, Liu X, Dong Q. A Study of Lycium barbarum polysaccharides (LBP) extraction technology and its

anti-aging effect. Afr J Tradit Complement Altern Med. 2013; 10(4): 171–174. https://doi.org/10.4314/

ajtcam.v10i4.27 PMID: 24146519
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