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Abstract

This paper presents a novel approach to enhance the accuracy of patch-level Gleason grad-

ing in prostate histopathology images, a critical task in the diagnosis and prognosis of pros-

tate cancer. This study shows that the Gleason grading accuracy can be improved by

addressing the prevalent issue of label inconsistencies in the SICAPv2 prostate dataset,

which employs a majority voting scheme for patch-level labels. We propose a multi-label

ensemble deep-learning classifier that effectively mitigates these inconsistencies and yields

more accurate results than the state-of-the-art works. Specifically, our approach leverages

the strengths of three different one-vs-all deep learning models in an ensemble to learn

diverse features from the histopathology images to individually indicate the presence of one

or more Gleason grades (G3, G4, and G5) in each patch. These deep learning models have

been trained using transfer learning to fine-tune a variant of the ResNet18 CNN classifier

chosen after an extensive ablation study. Experimental results demonstrate that our multi-

label ensemble classifier significantly outperforms traditional single-label classifiers reported

in the literature by at least 14% and 4% on accuracy and f1-score metrics respectively.

These results underscore the potential of our proposed machine learning approach to

improve the accuracy and consistency of prostate cancer grading.

Introduction

Prostate cancer is one of the most common types of cancer in men, posing significant chal-

lenges in diagnosis and treatment. Traditional diagnostic methods, such as biopsy followed by

histopathological examination, are invasive and subject to inter-observer variability. With the

advent of digital pathology, the potential for computer-aided diagnosis has opened up, promis-

ing more accurate and consistent results. In this regard, various researchers have considered

Deep learning, a subset of machine learning, which has shown remarkable success in image

recognition tasks, making it a promising tool for digital pathology as well. In recent years,
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there has been a surge of research exploring the application of deep learning methodologies to

digital pathology in prostate cancer. These studies have spanned a range of tasks, from pre-

processing tasks like quality assessment and staining normalization, to diagnostic tasks like

cancer detection and Gleason grading, and even prediction tasks such as recurrence prediction

or genomic correlations [1]. The research in this area has been fueled by the fact that conven-

tional image recognition tasks and the analysis of whole slide images (WSIs) in digital pathol-

ogy share several similarities, which make deep learning techniques highly applicable and

beneficial for both. Moreover, transfer learning, a powerful technique in deep learning, where

a model trained on one task is repurposed on a related task has been instrumental in this field

since in digital pathology, annotated data can be scarce [2]. Thus, various well-known neural

network architectures pre-trained for general purpose image recognition tasks have been read-

ily adapted by the researchers for digital pathology domain. Network fine-tuning as well as

using activations from inner layers as features have been tried. Thus, by leveraging pre-trained

models, researchers can overcome the challenge of limited annotated data in the field of digital

pathology and improve the performance of deep learning models in detecting and classifying

prostate cancer from WSIs [3–6]. However, as suggested by Rabilloud et al. [7] and Abut et al.

[8], there is still room for improvement and more work is needed to validate these models

externally and ensure their robustness in real-world clinical settings. It is particularly impor-

tant to note here that while there are similarities with the general-purpose imagery, there are

also unique challenges in digital pathology, such as the need for extremely high-resolution

image analysis, that require specialized adaptations of these techniques.

Ruiz-Fresneda et al. [9] have provided a study which examines worldwide scientific output

on the application of machine learning to the most significant types of cancer, using a range of

bibliometric measures. On similar lines, Morozov et al. [10] have provided a comprehensive

review of the precision of various Artificial Intelligence (AI) techniques in diagnosing and

grading prostate cancer based on histological analysis. Their conclusion was that the precision

of AI in identifying and grading Prostate Cancer (PCa) matches that of skilled pathologists.

This promising method has numerous potential clinical uses, leading to faster and more effi-

cient pathology reports. However, they also cautioned that the implementation of AI in routine

practice may be hindered by the complex and time-consuming process of training and fine-

tuning convolutional neural networks. Akinnuwesi et al. [11] have explored the utility of a

conventional machine learning algorithm i.e. Support Vector Machine (SVM) on a small data-

set [12]. They have reported 98.6% accuracy for the binary classification task. Other research-

ers such as Li et al. [13] have considered deep learning approaches in prostate cancer diagnosis

using Magnetic Resonance Imaging (MRI). However, while MRI is more accurate than WSI

testing, it still faces several challenges such as increased cost, lack of broad availability, differ-

ences in MRI acquisition and interpretation protocols. Moreover, WSI is particularly useful

for Gleason grading and has been considered widely by the researchers. For instance, Mandal

et al. [14] have investigated transfer learning for adapting well-known CNN architectures to

the task of cancer detection. However, WSIs require careful processing as noted by Kanwal

et al. [15] and Foucart et al. [16]. Another recent study has developed a deep learning model

that uses gigapixel pathology images and slide-level labels for prostate cancer detection and

Gleason grading [17]. The model first crops whole-slide images into small patches and extracts

features from these patches using a deep learning model trained with self-supervised learning.

Tabatabaei et al. [18, 19] have considered the problem of making manual annotation less labo-

rious through automated retrieval of similar cancerous patches using a CNN-based autoenco-

der. Recently, Morales-Álvarez et al. [20] have proposed the use of multiple instance learning

to tackle the problem of patch-level label generation by exploiting the correlation among

neighboring patches. Although 95.11% accuracy has been reported on SICAPv2 dataset, this
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study is limited to the binary cancer detection task and Gleason grading has not been

considered.

A critical component of prostate cancer diagnosis and prognosis is ‘Gleason Grading’, a sys-

tem used to evaluate the stage of prostate cancer using prostate biopsy samples. However, it

presents several challenges. There is often considerable inter-observer variability even among

expert pathologists, which could lead to unnecessary treatment or missing a severe diagnosis.

This makes the task of Gleason grading difficult and subjective due to the need for visual assess-

ment of cell differentiation and Gleason pattern predominance. In a bid to come up with a

robust automated method for Gleason scoring through deep learning, researchers have com-

monly employed patch-based detection. This method involves dividing the whole slide images

(WSIs) into smaller, manageable ’patches’ of images, which are then analyzed individually

[21, 22]. An initial study by Speier et al. [22] proposed an automatic patch selection process

based on image features. This algorithm segments the biopsy and aligns patches based on the

tissue contour to maximize the amount of contextual information in each patch. The patches

are then used to train a fully convolutional network (machine learning model) to segment high

grade, low grade, and benign tissue from a set of histopathological slides. Another similar study

used a convolutional neural network (CNN) for automated detection of Gleason patterns and

determination of the grade groups [23]. The outcome of the CNN was subsequently converted

into probability maps, and the grade group of the whole biopsy was obtained according to these

probability maps. In a similar approach proposed by Schmidt et al. [24], a multi-class grading

with an F1-score of 0.72 has been reported. However, both works do not reproduce the detailed

results on the four validation and one test sets of SICAPv2 dataset. The latter work has also

reported an F1-score of 0.81 on the PANDA dataset which is another comprehensive collection

of prostate cancer biopsies used for the Prostate Cancer Grade Assessment (PANDA) Challenge

[25]. This dataset consists of almost 11,000 biopsies available as whole-slide images of hematox-

ylin and eosin (H&E) stained tissue specimens. Similar to SICAPv2, the grading process for this

dataset also involves finding and classifying cancer tissue into Gleason patterns (3, 4, or 5) based

on the architectural growth patterns of the tumor. Pati et al. [26] have considered both segmen-

tation of the WSIs as well as the classification at the patch-level on three different datasets

including SICAP. However, their reported F1 score on the latter is merely 0.65 which is lower

than the previously reported results in the literature. Golfe et al. [27, 28] have taken another

innovative approach to improve the Gleason grading in the wake of insufficient, imbalanced

and poorly labelled training examples. Specifically, they have trained a generative network to

artificially create more training examples than are available in the original SICAP dataset. The

main idea is to enhance the classification accuracy through more variations in the training data.

They have reported an average accuracy and F1-score of 0.71 and 0.67 respectively which is a

marginal improvement over the work of Silva-Rodrı́guez et al. [29].

Ambrosini et al. [30] have trained a custom CNN for the detection of cribriform pattern

which is a specific arrangement of cells that is seen in WSIs for some types of cancer, including

prostate cancer. It is characterized by small, round or oval glands that are arranged in a sieve-

like pattern. The cribriform pattern is thought to be associated with more aggressive cancers,

and it may be a factor in determining a patient’s prognosis. They have reported a mean area

under the curve of up to 0.81 in sensitivity vs false positives graph. In comparison, Silva-Rodrı́-

guez et al. [29] have also considered detection of cribriform pattern with a score of 0.82. How-

ever, the comparison is inconclusive since very different datasets have been employed by these

two studies.

Another notable recent effort is the introduction of SICAPv2 dataset [29] consisting of 155

biopsies (WSIs) from 95 different patients. The dataset has pixel-level Gleason Grading (GG)

labeled through consensus of expert pathologists. The authors claimed unprecedented
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detection accuracy using a custom CNN architecture to classify the GG labels at the patch

level. However, as noted earlier, the labelling of WSIs being a tedious task, this dataset also suf-

fers from inexact and incomplete pixel-level labelling [31]. Specifically, the patch-level labelling

has been conventionally done through majority vote of how each pixel in the patch is labeled

according to the Gleason grade. This approach, however, leads to at least three problems i.e.

Loss of Information: The majority voting scheme potentially ignores the information

related to the minority classes which are inevitably present in numerous patches.

Misclassification: If the patch contains a mix of different Gleason grades, the majority vot-

ing scheme could result in misclassification since it is highly sensitive to the manual pixel-level

labelling done by the pathologists.

Labelling Noise: The presence of label noise can negatively affect the training performance

of the machine learning models which rely heavily on the accuracy of the provided labels at the

patch level.

The labelling noise in histopathology datasets has been recognized by researchers and various

techniques have been suggested to mitigate the effects of the same. For instance, Karimi et al. [32]

have suggested model regularization to alleviate this problem. Similarly, Ashraf et al. [33] have

proposed a unique loss-based method for denoising patch-based labels for Gastric cancer histopa-

thology images. However, the problem of labelling noise due to the presence of more than one

type of Gleason Grades has not been addressed. To this end, the work described in this paper,

• Provides a statistical analysis of the patch-level labelling noise in SICAPv2 prostate histology

dataset.

• Proposes an ensemble machine learning classifier to detect all occurrences (multi-labels) of

Gleason grades at the patch level, rather than just the majority grade.

• Provides an open-source framework for Gleason grading at patch and WSI-level based on

the proposed ensemble classifier to facilitate researchers and practitioners working in the

field of digital histopathology.

Materials and methods

This section describes our approach to accurately assign Gleason grades to the patches

extracted from WSIs for prostate cancer using a multi-label approach. Our methodology lever-

ages the power of CNNs and the concept of transfer learning for recognizing intricate imaging

patterns for classification. Specifically, we utilize pre-trained CNN architectures as the back-

bone of our model, capitalizing on their proven ability to extract robust features from image

data. The models are trained and validated using the SICAPv2 dataset, a comprehensive collec-

tion of prostate histopathology images with annotated Gleason grades. This approach allows

us to harness the existing knowledge encapsulated in these architectures and adapt it to the

specific task of Gleason grade detection. Moreover, the multi-label approach enables the

model to predict multiple Gleason grades that may be present in a single image, thereby pro-

viding a more nuanced understanding of the disease’s severity. Specific details of the proposed

detection framework have been given in the following sub-sections. The effectiveness of the

proposed approach has been validated by comparing it with state-of-the-art results reported in

the literature using various metrics, as detailed in Section 4.

Dataset overview

The focus of this research is the SICAPv2 dataset, comprising 155 biopsies from 95 individual

patients. WSIs have been obtained from tissue samples by slicing, staining and ultimately
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digitizing. Skilled urogenital pathologists reviewed these slides and assigned a unified Gleason

score to each biopsy. The distribution of primary Gleason grades (GG) in the biopsies is as fol-

lows: 36 noncancerous regions, 40 samples with Gleason grade 3 (GG3), 64 with Gleason

grade 4 (GG4), and 15 with Gleason grade 5 (GG5). To handle the large WSIs, they were

downsampled to 10x resolution and segmented into 512x512 patches with a 50% overlap. A

tissue presence mask for the patches was generated using the Otsu threshold method. Patches

with less than 20% tissue were excluded for model development aimed at predicting the main

Gleason grade. The database comprises 4417 non-cancerous patches, 1635 labelled as GG3,

3622 as GG4, and 665 as GG5. It’s important to note that in cases where a patch contained

multiple annotated grades, the label of the predominant grade was assigned. Additionally, 763

GG4 patches also contain annotated cribriform glandular regions. To facilitate model training

and optimize the involved hyperparameters, the dataset has been partitioned by the original

authors using a cross-validation approach. Specifically, each patient was exclusively allocated

to one-fold to prevent overestimation of system performance and ensure its generalization. As

such, the database was split into 5 groups (i.e. Val1, Val2, Val3, Val4 and Test), each containing

roughly 20% of the patches. It’s important to highlight that this division aimed to maintain

class balance across sets.

Statistical insight into patch-level labelling inconsistencies

As previously outlined, Gleason grading for prostate cancer involves two distinct labelling

approaches at the patch-level and whole slide image (WSI) level, each with its own set of bene-

fits and challenges. The patch-level labelling method assigns labels to individual "patches"

within a WSI, allowing for a detailed tissue analysis. This is particularly beneficial when a sin-

gle WSI contains multiple Gleason grades. However, this method requires significant time and

expertise for manual annotation of each patch. As mentioned before, SICAPv2 dataset has pro-

vided patch-level labels to facilitate classification. This scheme requires that if a patch contains

more than one annotated grade, the label typically assigned is the majority grade. This practice

can lead to several issues. For instance, it may result in information loss about other grades

present within the same patch, potentially oversimplifying the tissue’s complexity and hetero-

geneity. Additionally, the majority grade may not accurately represent the entire patch’s char-

acteristics. For example, a patch might contain a substantial amount of a higher Gleason grade,

but if it’s not the majority, it could be overlooked, potentially underestimating the disease’s

severity. There can also be variability in the assignment of the majority grade among different

observers, leading to label inconsistencies. This is especially true in cases where the distribu-

tion of different grades within a patch is nearly equal. Lastly, a model trained on such data

might not perform well in real-world scenarios where multiple Gleason grades are present in a

single patch. Thus, a patch might contain a substantial amount of a higher Gleason grade, but

if it’s not the majority, it could be overlooked, potentially underestimating the disease’s sever-

ity. To address these issues, this work has proposed multi-label classification which allows each

patch to be assigned multiple labels corresponding to the different Gleason grades present,

accurately capturing the tissue’s complexity and heterogeneity.

To appreciate the level of label inconsistencies in SICAPv2 dataset, several statistics have

been collected in this study. Fig 1 shows three example patches where pixels depict a variety of

different grades (mask manually annotated by expert histopathologists) while the label has

been assigned based on simple majority vote. Thus, a significant number of pixels in a patch

could be misclassified due to a higher level of granularity. Fig 2 provides a statistical insight

into the label inconsistency problem by showing probability distributions of misclassified pixel

belonging to different grades/classes in the patches belonging to SICAPv2 dataset partition
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‘Val1’. It can be observed that upto 30% of pixels could be mislabeled if they don’t belong to

the majority class.

The misclassification statistics for SICAPv2 dataset have been summarized in Table 1. It

can be noticed that while on average only up to 2% of pixels are misclassified in a given set, as

many as 30% could be misclassified in individual instances. This misclassification can poten-

tially lead to suboptimal performance while training a machine learning classifier especially in

the wake of high level of imbalance. In the light of these observations, this study suggests

implementing a multi-label strategy where each patch could carry multiple labels. The assign-

ment of these labels depends on whether the proportion of pixels that fall into a particular cate-

gory exceeds a specified threshold.

Methods

In this study, we propose an ensemble classifier to generate a multi-label hypothesis for every

individual test input patch. The flowchart for the proposed ensemble classifier has been

depicted in Fig 3. It consists of individual CNN-based one-vs-all classifiers to hypothesize the

presence or absence of each corresponding class i.e. Gleason Grade 3, 4 or 5. The

Fig 1. Examples of misclassified pixels due to majority voting-based labelling in SICAPv2 dataset. The pixels

belonging to the minority class don’t get acknowledged separately (a) RGB Patch; (b) Labelling Mask; (c) Probability

distribution estimate of the grades/classes represented in the Mask.

https://doi.org/10.1371/journal.pone.0304847.g001

PLOS ONE Gleason grading through multi-label ensemble CNN classifier

PLOS ONE | https://doi.org/10.1371/journal.pone.0304847 July 5, 2024 6 / 24

https://doi.org/10.1371/journal.pone.0304847.g001
https://doi.org/10.1371/journal.pone.0304847


rationalization behind the conception of this ensemble classifier is two-fold. First, each one-vs-

all CNN classifier is deemed to perform better since all the layers (initial as well as final) will be

devoted to feature extraction and classification specifically for each class. In contrast, a single

multi-class CNN classifier shares the features extraction (initial layers) for all classes and only

the head is devoted individually to each class. Second, multi-label approach to mitigate the

labelling inconsistency problem can be efficiently handled by one-vs-all ensemble classifier

especially since the number of classes are few and each classifier could be individually fine-

tuned to address a single label.

The input to the ensemble classifier is a 512 × 512 image patch to be consistent with the

default size of SICAPv2 dataset patches. Each individual classifier is a CNN dedicatedly trained

for each of the three Gleason Grades i.e. G3, G4 and G5. These classifiers detect the corre-

sponding class against the default Non-Cancerous (NC) class and all other grades (one-vs-all

classifiers) if the individual detection score is above the selected threshold. The selection of the

optimal thresholds has been described in the next section. Each classifier detects the presence

(positive label) or absence (negative label) of its designated Gleason Grade independent of oth-

ers. The multi-label output hypothesis is a concatenation of the respective outputs from each

classifier. Thus, the multi-label output indicates presence or absence of any combination of

Fig 2. Probability distributions of misclassified pixel belonging to different classes in SICAPv2 dataset partition ‘Val1’

(a) G3 training; (b) G3 test; (c) G4 training; (d) G4 test; (e) G5 training; (f) G5 test.

https://doi.org/10.1371/journal.pone.0304847.g002
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G3, G4 and G5 Gleason Grades. This is in contrast to conventional multi-class classifiers

which only output a single label even if multiple classes are present in the input patch. Due to

the relatively small size of the dataset, a transfer learning approach is proposed to prevent over-

fitting and training difficulties. For this purpose, different well-known CNN architectures such

as ResNet18, ResNet50 and Inception etc. [34] pre-trained on ImageNet dataset [35] and their

Table 1. Summarized statistics related to misclassification of different classes in SICAPv2 dataset partitions.

Class Average area of misclassified pixels Maximum area of misclassified pixels

Val1 (Train) G3 1.7% 30%

G4 1.8% 30%

G5 1.1% 22%

Val1 (Test) G3 1.6% 27%

G4 1.8% 25%

G5 1.8% 30%

Val2 (Train) G3 1.7% 30%

G4 1.9% 30%

G5 1.7% 30%

Val2 (Test) G3 1.3% 25%

G4 1.4% 25%

G5 0.3% 7%

Val3 (Train) G3 1.5% 25%

G4 1.6% 25%

G5 1.7% 30%

Val3 (Test) G3 1.7% 30%

G4 1.9% 30%

G5 1.2% 22%

Test (Train) G3 1.7% 30%

G4 1.9% 30%

G5 1.7% 30%

Test (Test) G3 1.1% 18%

G4 1.0% 17%

G5 0.5% 10%

https://doi.org/10.1371/journal.pone.0304847.t001

Fig 3. Flowchart of the proposed ensemble classifier with individual CNN-based one-vs-all binary classifiers and

multi-label output.

https://doi.org/10.1371/journal.pone.0304847.g003
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derivatives have been considered in the ablation study, presented in the next section, to select

the best performing network.

The training and testing procedure of the proposed multi-label ensemble classifier has been

depicted in Fig 4. Since the original dataset comes only with patch-level labels decided based

on the majority votes, the first step is to generate multi-labels for each patch using the provided

labelling masks. The label for each class (G3, G4 and G5) would be included in the output

multi-label if the pixels corresponding to that class are above a certain percentage threshold.

NC label is issued only if none of the pixels belonging to G3, G4 or G5 are present. Appropriate

threshold values for training and testing respectively have been found using the ablation study

described in the next section. The split between training and test sub-groups is based on the

guidelines of the original dataset. The ensemble model is then trained by individually training

the three component CNN one-vs-all models for each class i.e. G3, G4 and G5. The proposed

multi-label ensemble classifier is then tested on the test examples for detection performance

using standard metrics (e.g. accuracy and F1-Score etc.) as detailed in the next section.

A critical consideration while training the one-vs-all ensemble classifiers for multi-label sce-

nario is the high data imbalance since the "all" category inevitably has many more training

examples than the "one" category, leading to a bias towards the majority class. A potential solu-

tion to this problem is the use of a weighted cross-entropy loss function while training the

models and has been adopted by Silva-Rodrı́guez et al. [29] even for their multi-class model

since SICAPv2 is inherently an imbalanced dataset. Specifically, this function assigns more

weight to under-represented classes and less weight to over-represented classes, penalizing the

model more for misclassifying minority classes. However, setting these weights requires

Fig 4. Training and testing paradigm for the proposed multi-label ensemble classifiers.

https://doi.org/10.1371/journal.pone.0304847.g004
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careful consideration to avoid overfitting to the minority class. In this work, we have used abla-

tion experiments to empirically determine the optimal weights. The findings of the ablation

study have been presented in the next section.

The whole training and testing framework for the proposed ensemble classifier has been

implemented in Matlab environment (R2022b) using Deep Learning Toolbox [34]. The com-

puting environment is Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz with 64 GB RAM and

NVIDIA GeForce RTX 2080 Ti GPU.

Results

This section presents the findings of our comprehensive study using the proposed ensemble

classifier consisting of individual one-vs-all sub-classifiers for Gleason grade scoring task using

multi-label approach. The following sub-section describes the ablation study conducted for a

detailed analysis of the impact of various hyperparameters on the performance of the classifier.

The patch-level Gleason grading results given later in this section demonstrate the effective-

ness of our proposed method in classifying individual patches of histopathological images.

Finally, the WSI-level labelling results illustrate the classifier’s ability to accurately label entire

histopathological slides. These results collectively highlight the robustness and efficacy of our

proposed ensemble classifier in Gleason grade scoring.

Ablation study

This sub-section presents the results of the ablation study conducted to tune various hyper-

parameters for the proposed ensemble classifier. These hyperparameters include the CNN

architectures of the one-vs-all sub-classifiers, the threshold for assigning multi-labels at the

patch level based on the pixel percentage belonging to a particular class, the number of epochs

for training the model, the learning rate, and the L2 regularization factor. By systematically

varying these hyperparameters, the influence of each on the model’s performance has been

studied and used to identify the final configuration suitable for the Gleason grade scoring task

practically. For this purpose, the validation sets i.e. Val1, Val2, Val3 and Val4 of SICAPv2 data-

sets have been employed in all the experimentations.

While selecting the appropriate CNN architecture for each of the one-vs-all sub-classifiers to

be used in the ensemble for each class, we have considered well-known CNNs e.g. ResNet18,

ResNet50 and Inception pre-trained on ImageNet for transfer learning because these have

learned robust feature representations, which can be leveraged to achieve high performance on

our specific task with less data and training time. However, we observed a common trend of

overfitting across these networks. Overfitting is a modeling error that occurs when a function is

too closely fit to a limited set of data points and may therefore fail to predict additional data or

future observations reliably. Fig 5 depicts one such scenario where we used ResNet18 as the

sub-classifier for G3 grade on training set of ‘Val1’. It can be seen that as the training progressed,

the divergence between the training loss and validation loss increases which is a classic sign of

overfitting. This problem can be mitigated through techniques such as using a lower complexity

model, L2 regularization, early stopping, and data augmentation. To this end, we have

employed standard image data augmentation techniques (resizing, rotation, translation and

flipping) and early stopping if the validation loss increases for 8 consecutive epochs.

Additionally, given that even ResNet18 despite being the least complex among all consid-

ered CNNs led to overfitting, we have attempted to simplify it further. This was done by elimi-

nating some of its final layers, thereby reducing its complexity and potentially making it less

susceptible to overfitting. Specifically, the ‘conv5‘layer group and half of the ‘conv4‘layer group

(i.e., ‘4b‘) of the standard ResNet18 architecture have been eliminated. This effectively reduced
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the model’s complexity, making it less prone to overfitting. Thus, the final Global Average

Pooling (GAP) layer has been directly connected to the output of ‘res4a_relu‘. Finally, a fully

connected and SoftMax layer for classification have been placed at the end of the proposed

architecture. The architectural details of this proposed architecture have been given in Table 2.

In addition to the aforementioned modifications, it’s important to note that our initial

attempts at mitigating overfitting by only removing the ‘conv5‘layer from ResNet18 were not

successful. The model continued to overfit despite this simplification. On the other hand,

when we further removed the ‘res4a‘layer, we observed a drop in the accuracy i.e. underfitting.

Thus, the present architecture has been selected to strike a balance.

While training the proposed CNN architectures for each sub-class (G3, G4 and G5), a

learning rate of ‘1e-3’ was selected. This value was found to be optimal as higher learning rates

led to suboptimal results, while lower rates required a greater number of epochs to converge.

The learning rate has been scheduled to drop by 0.1 every 15th epoch. Moreover, the learning

rate of the final fully connected layer is set to be ‘10’ times higher than that of the initial layers,

adhering to the practice of transfer learning. This approach ensures that the initial layers,

which have been pre-trained on the ImageNet dataset, largely retain their learned weights.

Meanwhile, the final layer can quickly adapt to the examples from the Sicapv2 dataset.

Although convergence has been observed to be generally achieved after ‘15’ epochs in all the

conducted experiments, the training is extended to ‘50’ epochs for extra measure. This addi-

tional training helps to fine-tune the model as the initial layers also gradually adopt to the

Table 2. Architecture of the proposed CNN model for binary classification (one-vs-all).

Layer Name Activation Size

Image Input 224 × 224× 3

Conv1 (7 × 7, 64) Stride 2, BN, Relu, MAP-2 112 × 112× 64

Conv2a (3 × 3, 64) Stride 1, BN, Relu 56 × 56× 64

Conv2b (3 × 3, 64) Stride 1, BN, Relu 56 × 56× 64

Conv3a (3 × 3, 128) Stride 2, BN, Relu 28 × 28× 128

Conv3b (3 × 3, 128) Stride 1, BN, Relu 28 × 28 × 128

Conv4a (3 × 3, 256) Stride 1, Relu, GAP 1 × 1 × 256

Fully Connected, SoftMax 2

https://doi.org/10.1371/journal.pone.0304847.t002

Fig 5. Overfitting observed with ResNet18 CNN as sub-classifier for G3 grade classification in ‘Val1’ training set.

https://doi.org/10.1371/journal.pone.0304847.g005
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dataset and potentially improve its ability to generalize from the training data to unseen data.

Adam optimizer has been used throughout all the experiments as the initial experiments with

SGDM did not yield promising results.

Since, overfitting is a serious concern in Sicapv2 dataset owing to its smaller size, in order

to identify the most effective L2 regularization parameter, the study involved a series of experi-

ments on the four validation sets (Val1, Val2, Val3 and Val4), systematically varying the L2

regularization parameter to evaluate its impact on the model’s performance. The results have

been given in Table 3. For sake of brevity, only the experimental values around ‘1e-2’ have

been reported which was found to be the optimal value yielding the highest F1 score of ‘0.71’.

Fig 6 depicts an example training loss curve after optimizing the hyperparameters mentioned

above. It can be noticed that the overfitting has been managed effectively.

Finally, to assign multiple labels to each patch based on the percentage of pixels belonging

to each class i.e. G3, G4 and G5, our experimental results have shown that the presence of even

1% pixels belonging to a particular class is enough for training and classification. For a patch

size of 512 × 512, this corresponds to at least 2621 pixels. Using a higher threshold leads to

elimination of too many training examples which leads to overfitting especially for G5 class

which has too few example patches. On the other hand, a lower threshold means too few repre-

sentative pixels in a given patch for extracting meaningful features.

The proposed ensemble classifier has been trained and tested on the SICAPv2 dataset using

the obtained hyperparameters. The results have been reported in the next sub-section.

Table 3. Effect of L2 regularization parameter on F1-score (validation set).

Value F1-Score

1e-3 0.68

9e-3 0.69

9.5e-3 0.71

1e-2 0.71

1.2e-2 0.71

2e-2 0.68

1e-1 0.6

https://doi.org/10.1371/journal.pone.0304847.t003

Fig 6. Training loss curves for the proposed CNN architecture as sub-classifier for G3 grade classification in

‘Val1’ training set after hyperparameter optimization.

https://doi.org/10.1371/journal.pone.0304847.g006
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Patch-level Gleason grading results

The proposed ensemble classifier has been compared against the state-of-the-art works in Table 4.

Every constituent one-vs-all sub-classifier is based on the CNN architecture depicted in Table 2

and has been trained four times for each of the validation and test sets of SICAPv2 datasets to

ensure consistency of the results. Standard deviation of less than 0.05 has been observed in all the

experiments which indicates high repeatability of the proposed approach. Accuracy and F1-scores

have been reported in each case. Due to the imbalanced nature of the dataset, a higher F1-score is

more important and indicative of a more robust model. It can be observed that the proposed

model achieves higher accuracy as well as F1-score (average of all classes) than the recent works

reported in the literature on both validation and test sets of SICAPv2 dataset.

Precision-recall curves for the individual sub-classifiers on validation and test sets have

been plotted in Figs 7–11. F1-score has been overlayed as well. The values reported in Table 4

correspond to the best value obtained for each curve.

To gain further insight into the decision-making process of the trained CNN models, Figs

12–14 depict ‘Grad-CAM’ [36] visualization of the three sub-classifiers on three different

example patches from SICAPv2 dataset respectively. Grad-CAM provides a visual explanation

of the decision-making process of a CNN, which is crucial in medical imaging. Specifically, it

generates a heatmap that highlights the significant regions in the input image that the CNN

focuses on when making a prediction. This allows medical professionals to understand why a

particular diagnosis was made. Fig 12 shows a patch (Example 1) containing only G5, labelled

orange in the mask. The corresponding heat map for the G5 sub-classifier roughly corresponds

to the labelled mask emphasizing the confidence in its utility.

The patch shown in Fig 13 (Example 2) contains both G4 and G5 categories (Cyan and

Orange labels) and have been rightly classified by their corresponding sub-classifiers as indi-

cated by their respective heatmaps. The heatmap for G5, however, significantly overlaps that of

G4 indicating the similarities between these two classes. Fig 14 shows another interesting

patch (Example 3) containing only G3 class (labelled yellow). The labelling area only makes up

a small portion of the whole mask towards the bottom. Despite this, the corresponding heat-

map for only G3 classifier shows a strong activation map.

Fig 15 shows the corresponding activation maps for the proposed classifier on a whole

biopsy slide with Gleason grades labelled G4 and G5 as primary and secondary respectively.

Discussion

The proposed multi-label classification approach for Gleason grading of prostate cancer at the

patch-level by employing an ensemble of sub-classifiers to individually detect each of the three

Table 4. Comparison of the proposed ensemble classifier on SICAPv2 dataset against reference works.

Model Accuracy F1-Score

Average NC G3 G4 G5

Test Set

Proposed Ensemble Classifier 0.85 0.71 0.85 0.69 0.75 0.54

FSConv [29] 0.67 0.65 0.86 0.59 0.54 0.61

ProGleason-GAN [27] 0.71 0.67 - - - -

WHOLESIGHT [26] - 0.66 - - - -

Validation Set

Proposed Ensemble 0.87 0.75 0.83 0.72 0.77 0.69

FSConv [29] 0.76 0.71 0.88 0.73 0.71 0.54

https://doi.org/10.1371/journal.pone.0304847.t004

PLOS ONE Gleason grading through multi-label ensemble CNN classifier

PLOS ONE | https://doi.org/10.1371/journal.pone.0304847 July 5, 2024 13 / 24

https://doi.org/10.1371/journal.pone.0304847.t004
https://doi.org/10.1371/journal.pone.0304847


Gleason grades (G3, G4, and G5) represents a departure from traditional multi-class classifica-

tion techniques reported in the literature. Specifically, earlier reported works in the domain

have commonly addressed the problem either by binary classification i.e. distinguishing

between cancerous and non-cancerous slides, or as a multiclass problem involving the classifi-

cation of slides at the patch level. We, on the other hand, have emphasized that at the patch

level, labelling inconsistencies are inherent due to the majority voting and thus, the traditional

classification approaches are not optimal. We have proposed the grading of prostate cancer

histopathology slides as a multilabel classification problem since a patch may inevitably

include pixels from multiple grades as show in Fig 1. The results presented in the previous sec-

tion demonstrate the effectiveness of our proposed method since it achieved a significant

Fig 7. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 ‘test’ set (a)

G3 (b) G4 (c) G5.

https://doi.org/10.1371/journal.pone.0304847.g007
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improvement over the state-of-the-art works on both test and validation sets of SICAPv2 data-

set. Specifically, our model outperformed by achieving 14% higher accuracy and a 4% higher

F1-score on the test set as highlighted by the data given in Table 4. Given the imbalance in the

dataset, the F1-score becomes a more significant metric than accuracy. Our proposed classifier

demonstrated superior performance on the G3 and G4 classes, achieving a higher F1-score

compared to competing models. More importantly, despite the individual class performance,

our model maintained a higher average F1-score. This indicates that our model is not only

effective at identifying specific Gleason grades but also maintains a balanced performance

across all classes, which is crucial in the context of imbalanced datasets. This further under-

scores the robustness and reliability of our proposed multi-label classification approach for

Gleason grading in prostate cancer detection.

Fig 8. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 ‘val1’ set (a)

G3 (b) G4 (c) G5.

https://doi.org/10.1371/journal.pone.0304847.g008
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The lower F1-score for the G5 class on the test set can indeed be attributed to the significant

class imbalance, with only 250 examples for G5 compared to 1873 for the remaining classes.

This imbalance can skew the performance metrics and make it challenging to achieve high

scores for underrepresented classes. However, it’s encouraging to see that the performance on

the validation set is better, with only the G3 classifier slightly underperforming i.e. 72% com-

pared to 73% as reported in the literature for FSConv [29]. Moreover, despite these individual

class performances, the average F1-score of our model is superior on both sets. This demon-

strates the robustness of our proposed multi-label classification approach, even in the face of

Fig 9. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 ‘val2’ set (a)

G3 (b) G4 (c) G5.

https://doi.org/10.1371/journal.pone.0304847.g009
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significant class imbalances. ProGleason-GAN [27] and WHOLESIGHT [26] have only pro-

vided results on the Test set of SICAPv2 dataset and it can be noticed from Table 4 that these

are only marginally better on SICAPv2 dataset than the original work of FSConv [29] i.e. by

2% and 1% respectively in terms of average F1-score. Moreover, these works have not reported

detailed scores for individual classes. These results clearly indicate the advantage of the pro-

posed multi-label ensemble classifier over the ones reported in the literature.

Incorporating the important observation of pixels belonging to multiple classes being pres-

ent in each patch, our study’s results demonstrate the superiority of the multi-label approach

over conventional multi-class classification for Gleason grade classification at the patch level.

This is particularly evident in certain patches where pixels belonging to more than one class

Fig 10. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 ‘val3’ set (a)

G3 (b) G4 (c) G5.

https://doi.org/10.1371/journal.pone.0304847.g010
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can be present, making the classification of a patch to just a single Gleason grade inappropri-

ate. Despite the class imbalance, our multi-label approach achieved a higher average F1-score

on both the test and validation sets, indicating effective identification of each Gleason grade

independently. The multi-label approach proved more robust to class imbalance, achieving a

higher average F1-score even with fewer examples of the G5 class. This robustness is crucial in

medical imaging, where certain conditions may be underrepresented. The multi-label

approach also allows for more fine-grained classification, treating each Gleason grade as a sep-

arate label, enabling more nuanced predictions beneficial at the patch level where subtle differ-

ences can be crucial for accurate diagnosis. The improved F1-scores for the G3 and G4 classes

on the validation set further underscore the effectiveness of the multi-label approach. These

results suggest that the multi-label approach provides a more accurate and robust method for

Fig 11. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 ‘val4’ set (a)

G3 (b) G4 (c) G5.

https://doi.org/10.1371/journal.pone.0304847.g011
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Fig 12. Grad-CAM visualization on example 1 a) input patch b) label mask c) G3 sub-classifier heat map d) G4 sub-

classifier heat map e) G5 sub-classifier heat map.

https://doi.org/10.1371/journal.pone.0304847.g012

Fig 13. Grad-CAM visualization on example 2 a) input patch b) label mask c) G3 sub-classifier heat map d) G4 sub-

classifier heat map e) G5 sub-classifier heat map.

https://doi.org/10.1371/journal.pone.0304847.g013
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Gleason grade classification at the patch level, making it a promising technique for improving

the accuracy and reliability of prostate cancer detection.

Conclusions

This study has proposed a multi-label ensemble deep-learning classifier to increase the accu-

racy of Gleason grading by effectively addressing the issue of label inconsistencies inherently

present in the dataset patches. The proposed ensemble classifier consists of three one-vs-all

sub-classifiers, fine-tuned variants of the ResNet18 CNN architecture, to accurately indicate

the presence of one or more Gleason grades (G3, G4, and G5) in each patch. The experimental

results demonstrate the superiority of our approach over traditional single-label classifiers,

thereby enhancing the accuracy and consistency of Gleason grading. One potential improve-

ment for the future tasks is deemed to be the segmentation of the labeling masks at pixel-level

granularity, which could increase the accuracy of patch-level Gleason scoring. Additionally,

the labeling noise due to manual annotation could be mitigated by generating labeling masks

through the trained model and then re-verifying them through human experts. These

enhancements could further improve the precision of Gleason grading and contribute to the

ongoing efforts to leverage advanced machine learning techniques in cancer diagnostics. The

proposed framework has been made available as open-source code to facilitate researchers and

practitioners working in the field of digital histopathology.

In our future research, we plan to extend our experiments to include patch sizes other

than the default 512 x 512 used in the original SICAPv2 dataset. We also aim to explore

pixel-level segmentation alongside patch-based classification for a more detailed scoring of

the entire slides. One limitation of the proposed ensemble classifier is the reliance on pre-

trained networks to avoid overfitting through transfer learning. This is crucial given the

Fig 14. Grad-CAM visualization on example 3 a) input patch b) label mask c) G3 sub-classifier heat map d) G4 sub-

classifier heat map e) G5 sub-classifier heat map.

https://doi.org/10.1371/journal.pone.0304847.g014
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limited number of training examples in the SICAPv2 dataset. Although our experimental

results have shown improvements over previous studies, we believe that further enhance-

ments could be achieved by generating more synthetic examples using the generative mod-

els such as the one proposed by Golfe et al. [27, 28]. Consequently, having a larger number

of training examples could allow us to train that are adapted to the problem at hand while

training from scratch.

Fig 15. Activation maps on a WSI example a) Input image b) G3 c) G4 d) G5.

https://doi.org/10.1371/journal.pone.0304847.g015

PLOS ONE Gleason grading through multi-label ensemble CNN classifier

PLOS ONE | https://doi.org/10.1371/journal.pone.0304847 July 5, 2024 21 / 24

https://doi.org/10.1371/journal.pone.0304847.g015
https://doi.org/10.1371/journal.pone.0304847


Acknowledgments

The authors gratefully acknowledge technical and financial support provided by the Ministry

of Education and Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah,

Saudi Arabia.

Author Contributions

Conceptualization: Muhammad Asim Butt, Muhammad Farhat Kaleem, Muhammad Bilal.

Data curation: Muhammad Asim Butt, Muhammad Bilal.

Formal analysis: Muhammad Asim Butt, Muhammad Bilal.

Funding acquisition: Muhammad Bilal.

Investigation: Muhammad Asim Butt, Muhammad Farhat Kaleem, Muhammad Bilal.

Methodology: Muhammad Asim Butt, Muhammad Bilal.

Project administration: Muhammad Farhat Kaleem, Muhammad Bilal.

Resources: Muhammad Asim Butt, Muhammad Farhat Kaleem, Muhammad Shehzad Hanif.

Software: Muhammad Asim Butt.

Supervision: Muhammad Bilal.

Validation: Muhammad Asim Butt, Muhammad Shehzad Hanif.

Visualization: Muhammad Asim Butt.

Writing – original draft: Muhammad Asim Butt, Muhammad Farhat Kaleem, Muhammad

Bilal.

References
1. Deng S, Zhang X, Yan W, Chang EIC, Fan Y, Lai M, et al. Deep learning in digital pathology image anal-

ysis: a survey. Frontiers of Medicine. 2020; 14(4):470–87. https://doi.org/10.1007/s11684-020-0782-9

PMID: 32728875

2. Mormont R, Geurts P, Marée R, editors. Comparison of Deep Transfer Learning Strategies for Digital

Pathology. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW); 2018 18–22 June 2018.

3. Meng X, Zou T. Clinical applications of graph neural networks in computational histopathology: A

review. Computers in Biology and Medicine. 2023; 164:107201. https://doi.org/10.1016/j.compbiomed.

2023.107201 PMID: 37517325

4. Cooper M, Ji Z, Krishnan RG. Machine learning in computational histopathology: Challenges and

opportunities. Genes, Chromosomes and Cancer. 2023; 62(9):540–56. https://doi.org/10.1002/gcc.

23177 PMID: 37314068

5. George RS, Htoo A, Cheng M, Masterson TM, Huang K, Adra N, et al. Artificial intelligence in prostate

cancer: Definitions, current research, and future directions. Urologic Oncology: Seminars and Original

Investigations. 2022; 40(6):262–70. https://doi.org/10.1016/j.urolonc.2022.03.003 PMID: 35430139

6. Hosseini MS, Bejnordi BE, Trinh VQ-H, Chan L, Hasan D, Li X, et al. Computational Pathology: A Sur-

vey Review and The Way Forward. Journal of Pathology Informatics. 2024:100357. https://doi.org/10.

1016/j.jpi.2023.100357 PMID: 38420608

7. Rabilloud N, Allaume P, Acosta O, De Crevoisier R, Bourgade R, Loussouarn D, et al. Deep Learning

Methodologies Applied to Digital Pathology in Prostate Cancer: A Systematic Review. Diagnostics.

2023; 13(16):2676. https://doi.org/10.3390/diagnostics13162676 PMID: 37627935

8. Abut S, Okut H, Kallail KJ. Paradigm shift from Artificial Neural Networks (ANNs) to deep Convolutional

Neural Networks (DCNNs) in the field of medical image processing. Expert Systems with Applications.

2024; 244:122983. https://doi.org/10.1016/j.eswa.2023.122983

PLOS ONE Gleason grading through multi-label ensemble CNN classifier

PLOS ONE | https://doi.org/10.1371/journal.pone.0304847 July 5, 2024 22 / 24

https://doi.org/10.1007/s11684-020-0782-9
http://www.ncbi.nlm.nih.gov/pubmed/32728875
https://doi.org/10.1016/j.compbiomed.2023.107201
https://doi.org/10.1016/j.compbiomed.2023.107201
http://www.ncbi.nlm.nih.gov/pubmed/37517325
https://doi.org/10.1002/gcc.23177
https://doi.org/10.1002/gcc.23177
http://www.ncbi.nlm.nih.gov/pubmed/37314068
https://doi.org/10.1016/j.urolonc.2022.03.003
http://www.ncbi.nlm.nih.gov/pubmed/35430139
https://doi.org/10.1016/j.jpi.2023.100357
https://doi.org/10.1016/j.jpi.2023.100357
http://www.ncbi.nlm.nih.gov/pubmed/38420608
https://doi.org/10.3390/diagnostics13162676
http://www.ncbi.nlm.nih.gov/pubmed/37627935
https://doi.org/10.1016/j.eswa.2023.122983
https://doi.org/10.1371/journal.pone.0304847
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20. Morales-Álvarez P, Schmidt A, Hernández-Lobato JM, Molina R. Introducing instance label correlation

in multiple instance learning. Application to cancer detection on histopathological images. Pattern Rec-

ognition. 2024; 146:110057. https://doi.org/10.1016/j.patcog.2023.110057

21. Karimi D, Nir G, Fazli L, Black PC, Goldenberg L, Salcudean SE. Deep Learning-Based Gleason Grad-

ing of Prostate Cancer From Histopathology Images—Role of Multiscale Decision Aggregation and

Data Augmentation. IEEE Journal of Biomedical and Health Informatics. 2020; 24(5):1413–26. https://

doi.org/10.1109/JBHI.2019.2944643 PMID: 31567104

22. William S, Jiayun L, Wenyuan L, Karthik S, Corey A. Image-based patch selection for deep learning to

improve automated Gleason grading in histopathological slides. bioRxiv. 2020:314989. https://doi.org/

10.1101/2020.09.26.314989

23. Lucas M, Jansen I, Savci-Heijink CD, Meijer SL, de Boer OJ, van Leeuwen TG, et al. Deep learning for

automatic Gleason pattern classification for grade group determination of prostate biopsies. Virchows

Archiv. 2019; 475(1):77–83. https://doi.org/10.1007/s00428-019-02577-x PMID: 31098801

24. Schmidt A, Silva-Rodrı́guez J, Molina R, Naranjo V. Efficient Cancer Classification by Coupling Semi

Supervised and Multiple Instance Learning. IEEE Access. 2022; 10:9763–73. https://doi.org/10.1109/

ACCESS.2022.3143345

25. Bulten W, Kartasalo K, Chen P-HC, Ström P, Pinckaers H, Nagpal K, et al. Artificial intelligence for diag-

nosis and Gleason grading of prostate cancer: the PANDA challenge. Nature Medicine. 2022; 28

(1):154–63. https://doi.org/10.1038/s41591-021-01620-2 PMID: 35027755

26. Pati P, Jaume G, Ayadi Z, Thandiackal K, Bozorgtabar B, Gabrani M, et al. Weakly supervised joint

whole-slide segmentation and classification in prostate cancer. Medical Image Analysis. 2023;

89:102915. https://doi.org/10.1016/j.media.2023.102915 PMID: 37633177

27. Golfe A, del Amor R, Colomer A, Sales MA, Terradez L, Naranjo V. ProGleason-GAN: Conditional pro-

gressive growing GAN for prostatic cancer Gleason grade patch synthesis. Computer Methods and

PLOS ONE Gleason grading through multi-label ensemble CNN classifier

PLOS ONE | https://doi.org/10.1371/journal.pone.0304847 July 5, 2024 23 / 24

https://doi.org/10.1007/s11356-023-28576-9
http://www.ncbi.nlm.nih.gov/pubmed/37566331
https://doi.org/10.1038/s41391-023-00673-3
https://doi.org/10.1038/s41391-023-00673-3
http://www.ncbi.nlm.nih.gov/pubmed/37185992
https://doi.org/10.1016/j.dsm.2022.10.001
https://doi.org/10.6004/jnccn.2016.0004
http://www.ncbi.nlm.nih.gov/pubmed/26733552
https://doi.org/10.3389/fmed.2021.810995
http://www.ncbi.nlm.nih.gov/pubmed/35096899
https://doi.org/10.1109/ACCESS.2022.3176091
https://doi.org/10.1007/s10489-023-05224-w
https://doi.org/10.1109/ACCESS.2023.3343845
https://doi.org/10.1109/ACCESS.2023.3343845
https://doi.org/10.1016/j.patcog.2023.110057
https://doi.org/10.1109/JBHI.2019.2944643
https://doi.org/10.1109/JBHI.2019.2944643
http://www.ncbi.nlm.nih.gov/pubmed/31567104
https://doi.org/10.1101/2020.09.26.314989
https://doi.org/10.1101/2020.09.26.314989
https://doi.org/10.1007/s00428-019-02577-x
http://www.ncbi.nlm.nih.gov/pubmed/31098801
https://doi.org/10.1109/ACCESS.2022.3143345
https://doi.org/10.1109/ACCESS.2022.3143345
https://doi.org/10.1038/s41591-021-01620-2
http://www.ncbi.nlm.nih.gov/pubmed/35027755
https://doi.org/10.1016/j.media.2023.102915
http://www.ncbi.nlm.nih.gov/pubmed/37633177
https://doi.org/10.1371/journal.pone.0304847


Programs in Biomedicine. 2023; 240:107695. https://doi.org/10.1016/j.cmpb.2023.107695 PMID:

37393742

28. Golfe A, Amor Rd, Colomer A, Sales MA, Terradez L, Naranjo V, editors. Towards the On-Demand

Whole Slide Image Generation: Prostate Patch Synthesis Through a Conditional Progressive Growing

GAN. 2023 31st European Signal Processing Conference (EUSIPCO); 2023 4–8 Sept. 2023.

29. Silva-Rodrı́guez J, Colomer A, Sales M, Molina R, Naranjo V. Going Deeper through the Gleason Scor-

ing Scale: An Automatic end-to-end System for Histology Prostate Grading and Cribriform Pattern

Detection. Computer Methods and Programs in Biomedicine. 2020; 195:105637. https://doi.org/10.

1016/j.cmpb.2020.105637 PMID: 32653747

30. Ambrosini P, Hollemans E, Kweldam CF, Leenders GJLHv, Stallinga S, Vos F. Automated detection of

cribriform growth patterns in prostate histology images. Scientific Reports. 2020; 10(1):14904. https://

doi.org/10.1038/s41598-020-71942-7 PMID: 32913202

31. Anklin V, Pati P, Jaume G, Bozorgtabar B, Foncubierta-Rodriguez A, Thiran J-P, et al., editors. Learning

Whole-Slide Segmentation from Inexact and Incomplete Labels Using Tissue Graphs. Medical Image

Computing and Computer Assisted Intervention–MICCAI 2021; 2021 2021//; Cham: Springer Interna-

tional Publishing.

32. Karimi D, Dou H, Warfield SK, Gholipour A. Deep learning with noisy labels: Exploring techniques and

remedies in medical image analysis. Med Image Anal. 2020; 65:101759. Epub 2020/07/06. https://doi.

org/10.1016/j.media.2020.101759 PMID: 32623277; PubMed Central PMCID: PMC7484266.

33. Ashraf M, Robles WRQ, Kim M, Ko YS, Yi MY. A loss-based patch label denoising method for improving

whole-slide image analysis using a convolutional neural network. Sci Rep. 2022; 12(1):1392. Epub

2022/01/28. https://doi.org/10.1038/s41598-022-05001-8 PMID: 35082315; PubMed Central PMCID:

PMC8791954.

34. Mathworks. Built-In Pretrained Networks: Mathworks Inc.; 2024 [cited 2024 14th Feb]. Available from:

https://www.mathworks.com/help/deeplearning/built-in-pretrained-networks.html.

35. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet Large Scale Visual Recog-

nition Challenge. International Journal of Computer Vision. 2015; 115(3):211–52. https://doi.org/10.

1007/s11263-015-0816-y

36. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations

from Deep Networks via Gradient-Based Localization. International Journal of Computer Vision. 2020;

128(2):336–59. https://doi.org/10.1007/s11263-019-01228-7

PLOS ONE Gleason grading through multi-label ensemble CNN classifier

PLOS ONE | https://doi.org/10.1371/journal.pone.0304847 July 5, 2024 24 / 24

https://doi.org/10.1016/j.cmpb.2023.107695
http://www.ncbi.nlm.nih.gov/pubmed/37393742
https://doi.org/10.1016/j.cmpb.2020.105637
https://doi.org/10.1016/j.cmpb.2020.105637
http://www.ncbi.nlm.nih.gov/pubmed/32653747
https://doi.org/10.1038/s41598-020-71942-7
https://doi.org/10.1038/s41598-020-71942-7
http://www.ncbi.nlm.nih.gov/pubmed/32913202
https://doi.org/10.1016/j.media.2020.101759
https://doi.org/10.1016/j.media.2020.101759
http://www.ncbi.nlm.nih.gov/pubmed/32623277
https://doi.org/10.1038/s41598-022-05001-8
http://www.ncbi.nlm.nih.gov/pubmed/35082315
https://www.mathworks.com/help/deeplearning/built-in-pretrained-networks.html
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1371/journal.pone.0304847

