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Abstract

The adaptative responses and divergent evolution shown in the environments habited by

the Cichlidae family allow to understand different biological properties, including fish genetic

diversity and structure studies. In a zone that has been historically submitted to different

anthropogenic pressures, this study assessed the genetic diversity and population structure

of cichlid Caquetaia kraussii, a sedentary species with parental care that has a significant

ecological role for its contribution to redistribution and maintenance of sedimentologic pro-

cesses in its distribution area. This study developed de novo 16 highly polymorphic species-

specific microsatellite loci that allowed the estimation of the genetic diversity and differentia-

tion in 319 individuals from natural populations in the area influenced by the Ituango hydro-

electric project in the Colombian Cauca River. Caquetaia kraussii exhibits high genetic

diversity levels (Ho: 0.562–0.885; He: 0.583–0.884) in relation to the average neotropical

cichlids and a three group-spatial structure: two natural groups upstream and downstream

the Nechı́ River mouth, and one group of individuals with high relatedness degree, possibly

independently formed by founder effect in the dam zone. The three genetic groups show

recent bottlenecks, but only the two natural groups have effective population size that sug-

gest their long-term permanence. The information generated is relevant not only for man-

agement programs and species conservation purposes, but also for broadening the

available knowledge on the factors influencing neotropical cichlids population genetics.

Introduction

Cichlids are one of the most diverse families, having 1756 valid species distributed in 257 gen-

era, and having a notable presence in Africa, and Central and South America [1]. Their

remarkable divergent evolution and fast adaptation to different environments make them an

evolutionary model for researching their biological properties [2–6]. Their adaptive radiation
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may be the result of the combination of intrinsic factors and the environment, namely, the

interaction between morphological or behavioral innovations and ecological opportunities [6–

9]. Furthermore, plasticity in genetic, morphological, and reproductive features allow this spe-

cies to survive in different environments, take advantage of ecological opportunities and, ulti-

mately, to diversify [10–13]. Another important factor is hybridization, which has provided

the species with advantageous genetic variability to face the environmental changes, differenti-

ate or remain in their surroundings [6, 14, 15].

Most cichlids have shown particular life histories such as parental care [16], assortative mat-

ing [17–21] and a tendency to sedentarism [22, 23], features that influence the genetic diversity

patterns of various sea and freshwater fish [24]. Namely, fish species that reach maturity at an

early age show higher levels of genetic variability than the species that reach maturity later

[24]. Besides, life expectancy is inversely correlated to genetic diversity as individuals with

lower life expectancy often have higher genetic diversity [25, 26]. Moreover, individuals that

migrate and reproduce with distant populations exhibit gene flow and, thus, high genetic

diversity [24, 25].

On the other hand, sedentary species and/or species having parental care with egg or larvae

retention display little to no gene flow which may lead to genetic isolation among populations

if the effective population size is not large enough [27]. As for other species, habitat-preference

population isolation in cichlids may be influenced by environmental heterozygosity or geo-

graphical barriers [28]. Interestingly, some cichlids avoid reproducing with close relatives

spreading to habitats occupied by unknown individuals, which allows preventing inbreeding

and keeping the genetic diversity [29].

In neotropical cichlids, studies of population genetics on natural populations have focused

on sedentary species such as Geophagus brasiliensis [22], Cichla temensis [23], Apistogramma
agassizii [30], Geophagus aff. Brasiliensis [31], Apistogramma gephyra and Apistrogramma per-
tensis [32], Pterophyllum scalarae [33] and Cichla ocellaris var. kelberi [34], that exhibit moder-

ated genetic diversity and spatial genetic structured populations. Contrastingly, rheophile

species Gymnogeophagus setequedas exhibited high genetic diversity and absence of spatial

genetic structure when analyzed with the heterologous microsatellite loci developed for Geo-
phagus brasiliensis [35]. Additionally, genetic diversity and inbreeding were tested using heter-

ologous microsatellites for Oreochromis niloticus, a species kept captive for food production

[36].

To contribute to the knowledge of neotropical cichlids population genetics, this study

selected yellow ‘mojarra’ Caquetaia kraussii (Steindachner, 1878), one of the 104 cichlid spe-

cies described for Colombia and one of the four species registered in the Magdalena-Cauca

basin [37]. This species, also naturally distributed in the basins of rivers Atrato, Sinú and Mara-

caibo, is subject to artisanal fishery for human consumption, performs important ecosystem

services like redistribution and maintenance of sedimentologic processes [38], and preferen-

tially habits swamps, ponds, and undisturbed waters in the lower areas of the rivers and

streams in altitudes of up to 500 m s. n. m. [39]. Regarding reproductive features, C. kraussii
shows an average generational time of eight months [40], has partial spawning events through

the year in the Atrato [41] and Sinú [42] rivers, an equilibrium reproductive strategy associated

with low relative fecundity, parental care, and sedentary tendency [42, 43].

Furthermore, C. kraussii is in the Ituango hydroelectric project (PHI, for its acronym in

Spanish, from Bolombolo of Venecia, Antioquia to Pinillos, Bolı́var) influence area. This proj-

ect encompasses the last 500 km of the Cauca River, which is 1350 km long and has a 63,300

km2 area [44]. Some studies have noted that equilibrium strategy species like C. kraussii are

threatened for their habitat fragmentation due to hydroelectric constructions [45]; nonethe-

less, the effects of these anthropogenic activities may vary since downstream there is a
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reduction in the lateral and longitudinal conductivity and the flow regime stabilizes while the

conditions in the dam change from lotic to lentic, increasing the thermal stratification [46].

Historically, this area has been exposed to the negative influence of other anthropogenic fac-

tors such as water contamination, livestock, fishing, and mining [47], that may explain the

genetic bottlenecks in various species sampled prior to the hydroelectric construction [48–50].

The impact of hydroelectric plants on cichlids in neotropical environments is poorly docu-

mented and fish responses appear to depend on their life history [35], the duration of fragmen-

tation [31], and potential impacts resulting from hybridization between invasive or introduced

species [34]. For example, Gymnogeophagus setequedas, an endangered cichlid that seems to

prefer fast waters, was reported to have disappeared after the construction of the Itaipu reser-

voir [51]. However, it exhibited gene flow in lotic environments of the Iguaçu River basin [35].

For populations fragmented for approximately 17 years or longer, Geophagus aff. brasiliensis
and other neotropical non-migratory fish species show significant genetic structure [31].

Recent evidence of hybridization between two introduced species in a reservoir (Cichla ocel-
laris var. kelberi and Cichla piquiti) and the high genetic diversity found using microsatellite

loci raises concerns about its indication of a possible increase in local adaptability that could

enhance establishment success in novel areas [34].

Namely, this study aimed to provide a response to C. kraussii genetic diversity and structure

related questions in the medium and lower sections of the Cauca River. Since C. kraussii is in

strongly anthropogenic pressured habitats and is a sedentary species with parental care, the a
priori expectation was for it to exhibit low genetic diversity and spatial structure in the PHI

influence area. To contrast these hypotheses, microsatellite loci were developed as a molecular

tool to assess this species genetic diversity and structure. This approach was used for avoiding

heterologous loci-related genotyping errors [52–55], considering that to date microsatellite

loci have been developed for phylogenetically distant neotropical cichlids like Amphilophus
cichlasoma [56], Symphysodon discus [57], Astronotus crassipinis [58], Cichla piquiti [59],

Cichla monoculus [60], Cichla temensis and Cichla orinocensis [61], Geophagus brasiliensis [62]

Apistogramma agassizii [63], Apistogramma gephyra [64] and Pterophyllum scalarae [33].

Materials and methods

Study area

This study assessed fin and muscle tissues preserved in ethanol 95%, obtained from 319 C.

kraussii individuals captured in different sections of the Cauca River between 2020 and 2022

(Fig 1) by Universidad de Antioquia, Universidad de Córdoba, and Universidad Nacional de

Colombia Sede Medellı́n, through scientific cooperation agreement CT-2019-000661, under

environmental license # 0155 of January 30th, 2009, from Ministry of Environment, Housing

and Territorial Development for the Ituango hydroelectric construction. These sections previ-

ously identified [65] include the medium (PHI: 100 samples) and lower (S4, S5, S6, S7 and S8:

21, 43, 80, 49 and 26 samples, respectively) sections of the Cauca River. The PHI section,

which is 46 km long, corresponds to the dam zone, a lentic system that before the hydroelectric

construction had rapids and strong streams. The remain sections (S4: 38 km, S5: 61 km, S6: 78

km, S7: 29 km, S8: 17 km) are downstream the dam and comprise lentic (swamps) and lotic

(streams and rivers) systems in a floodplain influenced by the Nechı́ River mouth.

Microsatellite loci design

Microsatellite loci were designed following Landı́nez-Garcı́a & Márquez [66]. To this end,

genomic DNA (gDNA) was extracted from a C. kraussii individual with QIAamp DNA Mini

Kit (Qiagen). A genomic library was created from said DNA using Truseq Nano DNA Library
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Prep Kit, and sequencing was performed through Illumina MiSeq, generating 300 base paired

end reads. Then, raw read cleaning was carried out with CUTADAPT v2.10 [67], sequences

containing the microsatellites were selected with PAL_FINDER v0.02.03 [68], and PRIMER3

v2.0 [69] was used for the primer designs in the flanking sequences of the microsatellite. Subse-

quently, the correct evaluation of the primers was tested in silico with electronic PCR [70].

To test polymorphism in 30 selected loci, DNA was extracted from 24 individuals of all of

the sections using GF-1 kit (Vivantis). PCR reactions were carried out in final volumes of

10 μl, using 0.22 X Master Mix (Invitrogen) buffer, 2.5% v/v enhancer, 0.25 pmol/μl forward

primer, 0.5 pmol/μl reverse primer (Macrogen), 0.25 pmol/μl adapters [71] fluorescently

labeled (Applied Biosystems FAM, VIC, NED, or PET) at the 5’ end and ~30 ng/μl DNA. Ther-

mal profile, carried out in a thermocycler T100 (Bio-Rad, CA, USA), comprised a heating step

at 95 ˚C for 3 m, followed by 40 denaturalization cycles at 90 ˚C for 30 s and an annealing step

at 50 ˚C for 40 s, with no final elongation. Amplicons were separated by capillary

Fig 1. Caquetaia kraussii sampled sites in the Cauca River, Colombia. PHI: Ituango hydroelectric project, 17 sites (purple). S4: 3 sites (light blue). S5: 5 sites

(blue). S6: 13 sites (red). S7: 3 sites (orange). S8: 2 sites (yellow). Self-made creation of the map based on contour lines scaled 1:100,000 from the Instituto

Geográfico Agustı́n Codazzi source, 2019 (Available from: IGAC Geoportal, https://geoportal.igac.gov.co/contenido/datos-abiertos-cartografia-y-geografia).

https://doi.org/10.1371/journal.pone.0304799.g001
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electrophoresis using SeqStudio (Applied Biosystems) with GS600 LIZ as molecular weight

marker. Finally, GeneMarker v3.0.0 (SoftGenetics LLC1) carried out the genotypes reading

and recording, selecting 16 species-specific microsatellite loci according to their polymor-

phism level.

Population genetics analysis

Prior to assessing C. kraussii genetic diversity, ARLEQUIN v3.5.2.2 [72] was used for evaluat-

ing expected (He) and observed (Ho) heterozygosities, inbreeding coefficient (FIS), and depar-

tures from Hardy-Weinberg equilibrium and linkage disequilibrium among loci, applying, in

the latter, the sequential Bonferroni correction for the statistical significance in the multiple

comparisons [73]. BayeScan v2.1 [74] was used for identifying outlier loci presence. The num-

ber of alleles per locus (Na) and the allelic range (Ra) were calculated with GenAlex v6.51 [75]

and the polymorphism information content (PIC) was determined using Cervus v3.0.7 [76].

GENEPOP 4.7 [77, 78] was used for finding the multilocus values (across-loci) and FSTAT v

2.9.4 [79] for the allelic richness (Ar). The correlation analysis between He, Ar, and estimators

of genetic differentiation (described below) with the physical (km) or geographical distances of

the sections of the Cauca River mouth in the Magdalena River was performed using Pearson

correlation with the R-packages ecodist and GGPLOT2 [80, 81].

The relatedness coefficient (rxy) estimation among all possible pair of individuals was ana-

lyzed using the R-related package [82]. In absence of a pedigree, relatedness inferences for

non-model species were based in simulated relatedness measures from empirical data [83].

Initially, the best estimator between maximum likelihood (Dyadml in [84] and Trioml in [85])

and non-maximum likelihood (Lynchli in [86]; Lynchrd in [87]; Quellergt in [88]; Wang in

[89]) estimators was determined from simulated relatedness values among 100 pairs. The best

estimator for analyzing the data was the one having relatedness estimations with the highest

correlation between the simulated data from the empirical allelic frequencies and the theorical

values, in each of the four relatedness categories: unrelated (UR, rxy = 0.00), half sibs (HS,

rxy = 0.25), full sibs (rxy = 0.50) and parent–offspring (PO, rxy = 0.50). Once the best estima-

tor was selected for each species, pairwise relatedness was estimated. The same estimator was

used for calculating individual inbreeding with COANCESTRY [90].

Genetic structure was determined through the analysis of molecular variance (AMOVA)

and calculation of estimators F’ST [91, 92] and Jost’s DEST [92, 93] using GenAlEx v6.51b2

[75]. The Bonferroni correction [73] was applied for the statistical significance of the estima-

tors. Furthermore, a discriminant analysis of principal components (DAPC) was performed

using the R-package Adegenet [94], with 32 principal components (a-score: 0.422; explaining

60% of total variation) and six discriminant functions retained. Other approach included a

Bayesian analysis in STRUCTURE 2.3.4 [95], with 1,000,000 Monte Carlo Markov chains with

100,000 regarded as the burn-in period, admixture model and correlated allele frequencies as a

priori models. This analysis was repeated 20 times for each K, assuming 1 to 10 K. Then, Struc-

tureSelector [96] was used for determining the best estimation of K value based on Puech-

maille [97] estimators MEDMEANK, MEDMEDK, MAXMEANK and MAXMEDK, ΔK [98]

and Ln Pr (XlK) [99], and the integrated software Clumpak [100] was utilized for graphically

representing the results. Individuals were assigned to their respective genetic stocks in accor-

dance with the co-ancestry estimators and they were submitted to population genetics analysis

following the above-mentioned methodology.

Recent bottleneck detection was performed through two approaches: Bottleneck v.1.2.02

[101] for calculating excess heterozygosity (HE > HO mutational equilibrium assumption)

under the infinite alleles (IAM), stepwise mutational (SMM), and two-phase (TPM; parameter
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settings: IAM: 10%, SMM: 90%, Variance: 10.00, Probability: 90%) models, through Wilcoxon

signed rank test with 1000 iterations [102], and ARLEQUIN v3.5.2.2 [72] for calculating the M

Ratio [103]. Moreover, the population effective size was estimated with the linkage disequilib-

rium method [104] implemented in NeEstimator v2.1 [105] considering the allelic frequency

of 0.05. Following Lonsigner and company [106], all individuals were included in the Ne anal-

ysis, even those with some relatedness degree, since including related individuals generates lit-

tle bias in the linkage disequilibrium method [107] while small population sizes may cause

large bias in the estimation [108].

Lastly, GENECLASS2 [109] was used for testing whether an individual resides in the sam-

pled site or is immigrant from another section. Analysis was carried out with the Bayesian

method [110], and simulations with the Monte Carlo resampling method [111] with 16 loci,

10,000 and 0.01 as threshold of type I error. Likewise, the BA3MSAT extension of the BAYE-

SASS software [112, 113] was employed for the recent estimation of gene flow between sec-

tions, utilizing 50,000,000 MCMC, with a burn-in of 5,000,000 and sampling intervals of 5,000.

Delta values for migration rates (deltaM), allele frequencies (deltaA), and inbreeding coeffi-

cients (deltaF) were set at 0.49, 0.39, and 0.46, respectively. Convergence was assessed using

the Tracer v1.7.2 program [114].

Results

Microsatellites development and detection of outlier loci

A total of 16 (4mer: 15; 5mer: 1) out of 30 preselected loci satisfied the polymorphic criteria

(Table 1). The remaining loci either exhibited inconsistent amplification, low levels of poly-

morphism, or were monomorphic (S1 Table). In the 319 samples (S2 Table), the allelic size

range oscillated between 110–369 pb, the Na between 9–29 (Ckra13/Ckra 27; Ckra24) and PIC

between 0.69–0.915 (Ckra 13; Ckra01). Moreover, all loci showed linkage equilibrium, indicat-

ing independent segregation (S3 Table), and Hardy-Weinberg equilibrium in most of the sam-

pled sites (S4 Table), indicating that departures are not attributable to technical causes.

Furthermore, Bayescan posterior probability (PO) values for the loci detection under selec-

tion (S5 Table) evidenced that the only paired comparison showing one locus under selection

(Ckra 21; reference value > 0.76) was S4-S5 v. S6-S7-S8. Moreover, another parameter found,

Alpha, had a value of -1.234 which suggests the existence of balancing or purifying selection.

The results presented below are based on 16 loci, as consistent findings were obtained when

including or excluding this locus in subsequent analyses.

Population genetic diversity

Genetic diversity by site showed a slight heterozygosity deficit in S4 and two genetic groups

(S6-S7-S8, S4-S5) revealed by the genetic structure analysis (Table 2). This deficit was related

with a significant inbreeding only in S4 (FIS: 0.058; PFIS: 0.036). Genetic diversity showed a

decreasing gradient from the lower to the middle section of the Cauca River

(S8>S7>S6>S5>S4; Table 2; S1 Fig) and reached its lower values in the confined environ-

ment PHI. This gradient remained still when diversity was compared among genetic groups

(S6-S7-S8>S4-S5>PHI). The distribution of genetic diversity was negatively related with the

distance to the Cauca River mouth (S1 Fig), for both He (R: -0.970, p: 0.001) and Ar (R: -0.980,

p< 0.0001).

The relatedness coefficient using estimator Dyadml that showed the higher correlation

(Dyadml = 0.915, Trioml = 0.913, Wang = 0.912, Linchli = 0.909, Quellergt = 0.905,

Lynchrd = 0.826; S6 Table) indicates a high percentage of unrelated pairs of C. kraussii in the

global analysis (86%), stocks (S4-S5: 76%; S6-S7-S8: 88%) and sections where the species is
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Table 2. Caquetaia kraussii genetic diversity in the middle and lower sections of the Cauca River, Colombia.

Section N Na Ar Ho He PHWE FIS PFIS

S8 26 14.063 ± 4.683 12.845 ± 4.063 0.874 ± 0.080 0.884 ± 0.069 0.598 0.007 0.360

S7 49 14.813 ± 5.180 11.977 ± 3.787 0.885 ± 0.067 0.880 ± 0.058 0.295 -0.008 0.732

S6 80 14.938 ± 5.285 11.178 ± 3.423 0.862 ± 0.083 0.871 ± 0.061 0.164 0.008 0.249

S5 43 11.375 ± 3.810 9.501 ± 2.651 0.835 ± 0.084 0.823 ± 0.080 0.143 -0.020 0.905

S4 21 9.688 ± 3.572 9.424 ± 3.469 0.727 ± 0.130 0.779 ± 0.115 <0.0001 0.058 0.036

Stock S6-S7-S8 155 17.125 ± 6.076 15.255 ± 5.393 0.871 ± 0.070 0.879 ± 0.059 0.046 0.006 0.232

Stock S4-S5 64 12.438 ± 4.427 12.362 ± 4.391 0.800 ± 0.089 0.812 ± 0.092 0.006 0.008 0.289

PHI 100 7.250 ± 2.017 5.475 ± 1.225 0.664 ± 0.128 0.667 ± 0.121 0.128 0.001 0.493

N: number of individuals. Na: number of alleles per locus. Ar: allelic richness. Ho: observed heterozygosity. He: expected heterozygosity. PHWE: p-value for the departure

from Hardy-Weinberg equilibrium. FIS: inbreeding coefficient. PFIS: p-value for the inbreeding. Values in bold denote statistical significance.

https://doi.org/10.1371/journal.pone.0304799.t002

Table 1. Primer sequences, features, and genetic diversity of the 16 Caquetaia kraussii species-specific microsatellite loci.

Locus Motif F (forward) and R (reverse) primers Ra Na PIC Adapter

Ckra01 (ATCT)n F: CATGCAGTTATCACATTATTGTCC
R: CATCACGTAGTATGGCACTCC

205–337 28 0.915 Tail B

Ckra02 (ATGG)n F: AGGCCAAAAGATGGATGGG
R: TTGAACAAAATACCTTAGCCTCAGC

219–291 17 0.778 Tail B

Ckra03 (ATCT)n F: CCAGAACAAAATGCTCACTGC
R: GTGGCCAATAAAACATAAAGACC

110–170 15 0.843 Tail B

Ckra04 (ATCT)n F: CAATAGCCTACACTCTGGACAGG
R: GCCTGTCGGTCAAATGTAGC

128–228 24 0.910 Tail B

Ckra05 (ATCT)n F: GGATGCTCATATTGAGCGTAACC
R: GTTCGAAGTATCCTTGGGCG

274–354 20 0.882 Tail B

Ckra06 (ATGG)n F: TCGCTTCATAGAAATGTTGTTGG
R: TCTGTTGAGTCTGTTGGGGC

163–215 14 0.785 Tail B

Ckra07 (ATCT)n F: ACACATGTCAGGTGGATGGG
R: GTCACTGACTCTGCATACCAGC

207–319 25 0.910 Tail B

Ckra08 (ATGG)n F: AACATCCTGCAGCATTCACG
R: TGACCCTGAAAAGGATACATGG

166–206 11 0.798 Tail B

Ckra12 (ATGG)n F: ATGATGTGCTGATGGATGGG
R: CGCCAATGAATTGGATAAGTGG

255–299 12 0.768 Tail A

Ckra13 (ATGG)n F: AGACCCTGAACAGGATAAGTGG
R: GAGGCTGACCAGAGGAAAGG

222–254 9 0.690 Tail A

Ckra18 (ATGG)n F: TGAAACAAACTGGTTGGAAGG
R: ATAACCCAAAACAGGGCACC

160–220 16 0.790 Tail D

Ckra21 (ATCT)n F: GTGGAGACGACACCAAGTGC
R: TGGCTTATGGATGAAGCACC

232–352 23 0.864 Tail D

Ckra22 (ATGG)n F: ACATGGAGCTGATTCCAGCC
R: AGGTGACTTCGCCTCTCACC

210–282 19 0.881 Tail D

Ckra24 (ATCT)n F: CACCCTGTTGTGGTTAACGG
R: GAATAATGCAGCAGCAAGGC

241–369 29 0.927 Tail D

Ckra27 (ATGG)n F: CTGTGGCAGCTGGGATAAGC
R: AGGGTTCCTGCAAACACAGG

156–188 9 0.731 Tail C

Ckra29 (ATATC)n F: TCCAAACACGGTCAGTCTGC

R: AGTGGGCCTATTGTTGGGG
185–240 12 0.838 Tail C

Ra: Allelic range. Na: number of alleles per locus. PIC: polymorphism information content. Tail A: GCCTCCCTCGCGCCA. Tail B: GCCTTGCCAGCCCGC. Tail C:

CAGGACCAGGCTACCGTG. Tail D: CGGAGAGCCGAGAGGTG.

https://doi.org/10.1371/journal.pone.0304799.t001
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naturally distributed (S4: 67%; S5: 77%; S6: 84%; S7: 88%; S8: 92%), with a low number of indi-

viduals which individual inbreeding exceeds 10% (S4: 8; S5: 9; S6: 15; S7: 6; S8: 3). The contrary

was observed in sections with explicit anthropic intervention that exhibited low percentages of

unrelated pairs (PHI: 8.4%) and high percentages of pairs with some relatedness degree (PHI:

91.6%), with a high number of individuals which individual inbreeding exceeds 10% (PHI:

78).

Population genetic differentiation

AMOVA (FST = 0.935, P value = 0.001) and pairwise comparisons of the standardized statistics

F’ST and DEST showed significant differences among sites (Table 3), evidencing that all sections

are genetically different from each other, except for S7 and S8 in both tests.

Both the DAPC (Fig 2) and the Structure population assignment Bayesian analysis (Fig 3)

suggested that C. kraussii is formed by three or four genetic groups (ΔK = 2; MedMed = 3;

MedMean, MaxMed, MaxMean = 4; Mean LnP(K) = 3). Ultimately, three stocks were deter-

mined: PHI, stock S4-S5 and stock S6-S7-S8.

Population genetic demography

Bottleneck tests summarized in Table 4 were significant in all sites (except S4) under the IAM;

S6 and S7 and genetic group S6-S7-S8 under the TPM, and none of the evaluated groups was

significant under the SMM. Additionally, M ratio was below 0.680 indicating recent bottle-

necks in all sites and genetic groups. Moreover, effective population sizes were superior to

1,000 in S7 (1665) and stocks S4-S5 (2220), S6-S7-S8 (5349), exhibited low values in PHI (161),

S4 (49) and S6 (723) and it was not possible to precisely estimate said sizes for S5 and S8

(Table 4). As for migratory events, eight individuals were detected as potentially immigrants in

the sampled sites and were assigned to the most likely origin sections; a S4 individual in S5 (p

value: 0.005); two S5 individuals in S4 (p value: 0.007); a S6 individual in S7 (p value< 0.0001);

and a S7 individual in S6 (p value: 0.002). Results from BayesAss (S7 Table) showed that the

highest migration rates were observed within each section, ranging from 67.3% to 98.1% (m

Table 3. Caquetaia kraussii pairwise comparisons of the standardized statistics F’ST and DEST in lower and middle sections of the Cauca River, Colombia.

PHI S4 S5 S6 S7 S8

F’ST pairwise comparisons

PHI - 0.001 0.001 0.001 0.001 0.001

S4 0.108 - 0.005 0.001 0.001 0.001

S5 0.080 0.013 - 0.001 0.001 0.001

S6 0.085 0.035 0.022 - 0.001 0.002

S7 0.079 0.038 0.024 0.007 - 0.254

S8 0.079 0.040 0.028 0.011 0.008 -

DEST pairwise comparisons

PHI - 0.001 0.001 0.001 0.001 0.001

S4 0.584 - 0.007 0.001 0.001 0.001

S5 0.478 0.033 - 0.001 0.001 0.001

S6 0.597 0.265 0.197 - 0.001 0.002

S7 0.553 0.289 0.218 0.036 - 0.267

S8 0.545 0.292 0.238 0.062 0.008 -

Below diagonal, estimator value found. Upper diagonal, significant statistic. Values in bold denote statistical significance.

https://doi.org/10.1371/journal.pone.0304799.t003
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[PHI][PHI]: 0.981±0.008, m[S6][S6]: 0.963±0.013, m[S5][S5]: 0.940±0.021, m[S4][S4]: 0.679

±0.012, m[S8][S8]: 0.677±0.010, m[S7][S7]: 0.673±0.006). Additionally, a higher migration

rate upstream (25.8%) was observed between S4 and S5, while higher migration rates down-

stream (26.2%–29.5%) were observed between S6, S7, and S8. The remaining migration rates

ranged from 0.3% to 1.9%.

Mantel test showed correlation between the distance matrixes with 0.1 as threshold of the

type I error, where genetic distances were significantly correlated with the geographical dis-

tances (RF’ST = 0.633, p = 0.045; RDEST = 0.717, p = 0.009) (S2 Fig).

Discussion

This study demonstrated the presence of spatial structure and high levels of genetic diversity of

C. kraussii populations in the middle and lower sections of the Cauca River. Additionally, this

study provides a group of 16 C. kraussii species-specific microsatellite loci with long repetition

motifs (4-mer, 5-mer) and are highly polymorphic since its PIC values> 0.5 were above the

range proposed by Botstein and company [115]. Both the diversity levels and the PIC values of

the loci here developed were found within the range of the loci designed for other neotropical

cichlids which repetition motifs are mostly short (2-mer) and compound [33, 56–64]. Addi-

tionally, loci here developed exhibited amplification consistency and high definition of the

electropherograms that ease the allele assignation and, thus, their genotypification, for which

they are considered informative and appropriate for the C. kraussii population genetics study.

According to the a priori expectations, C. kraussii showed a spatial genetic structure that

may result from features of its life history for being a resident species with parental care [40,

43], which limits the gene flow and increases the differentiation of its genetic pool. A similar

Fig 2. Discriminant analysis of principal components of Caquetaia kraussii of seven sections in the Cauca River,

Colombia.

https://doi.org/10.1371/journal.pone.0304799.g002

Fig 3. Graph bar of the population co-ancestry coefficient estimated by Structure for K = 3.

https://doi.org/10.1371/journal.pone.0304799.g003
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result was found for other cichlid species like Cichla temensis [23], Geophagus brasiliensis [22],

Apistogramma agassizii [30], Geophagus aff. Brasiliensis [31], Apistogramma gephyra and Apis-
trogramma pertensis [32], Pterophyllum scalarae [33] and Cichla ocellaris var. kelberi [34].

Spatial structure due to events such as interruption of migratory pathways are not expected

for sedentary fish species, as they typically exhibit a spatial genetic structure associated with

their life history. In such cases, the potential threats associated with hydroelectric construc-

tions may be related to factors that affect fish species downstream, such as fluctuations in

nutrient transportation and shifts in oxygen concentrations [116], water quality and tempera-

ture, sediment accumulation, variations in water flow, alterations in the morphology of the

main river channel and swamps [117–120]. The impact of these factors on the population

genetics of C. kraussii remains unknown due to the lack of previous information on these sub-

jects. However, the significant gene flow observed in various migratory fish species coexisting

in this area [48–50, 121–123] suggests the absence of physical or chemical barriers limiting

gene flow in these species.

Because this species is considered resident, a reduction in the genetic similarity among pop-

ulations is expected as the geographical distance among them increases. In this study, the

genetic differentiation estimators were spatially autocorrelated in distances 2–6 times longer

than the dispersion range estimated for the species, providing a strong support to the isolation

by distance explanation.

Moreover, the analysis for detecting immigrants indicated that PHI show low migration

rate from downstream, corroborating the restriction of gene flow among these sections. Due

to the rapids and high velocities of waterflow in the zone before the hydroelectric construction,

results found in this study on the genetic structure and immigration, along with the low levels

of genetic diversity and Ne< 1,000, suggest that C. kraussii individuals sampled in PHI may

represent a founder effect from populations that do not originate from downstream the dam.

Origin of the founder population remains to be explored in future studies. Since 91.6% of the

population in this section is formed by individuals that show some relatedness degree, the lat-

ter explanation seems more likely than the alternative of a fast genetic differentiation in the

short-term between PHI and the remaining populations downstream, caused by new environ-

mental conditions and habitat preferences of C. kraussii, despite cichlids appear to respond

rapidly to changing conditions.

Under this scenario, C. kraussii is formed by two natural stocks, S4-S5 and S6-S7-S8, that

are approximately 15 km apart and separated from each other by the Nechı́ River mouth. The

Table 4. Recent bottlenecks detection tests and effective population size in Caquetaia kraussii populations.

Sections and stocks IAM SMM TPM M Ratio Ne

S8 <0.0001 0.628 0.248 0.234 ± 0.030 Infinite (460, Infinite)

S7 <0.0001 0.628 0.017 0.229 ± 0.030 1665 (350, Infinite)

S6 <0.0001 0.684 0.042 0.240± 0.029 723 (360, 15881)

S5 <0.0001 0.989 0.768 0.210 ± 0.037 Infinite (454, Infinite)

S4 0. 0800 1.000 1.000 0.219 ± 0.033 49 (31, 101)

S6-S7-S8 <0.0001 0.851 0.025 0.240 ± 0.029 5349 (1157, Infinite)

S4-S5 <0.0001 1.000 0.983 0.225 ± 0.036 2220 (364, Infinite)

PHI 0.0040 0.999 0.942 0.180 ± 0.042 161 (114, 254)

IAM: infinite alleles model. SMM: stepwise mutational model. TPM: two-phase model. Probabilities according to Wilcoxon signed rank test (excess heterozygosity),

calculated through Bottleneck v1. M ratio values calculated by Arlequin v3.5.2.2. Ne: number of individuals of the effective population size, calculated by NeEstimator

v2.1. Values in bold denote statistical significance.

https://doi.org/10.1371/journal.pone.0304799.t004

PLOS ONE Spatial population genetic structure of Caquetaia kraussii evidenced by species-specific microsatellite loci

PLOS ONE | https://doi.org/10.1371/journal.pone.0304799 June 4, 2024 10 / 20

https://doi.org/10.1371/journal.pone.0304799.t004
https://doi.org/10.1371/journal.pone.0304799


presence of immigrants among sections was displayed within each stock, while low migration

rate between stocks was found. The low dispersion potential of the species and its larvae

because of parental care, the variation in its dispersion behavior (upstream in the S4-S5 stock

and downstream in the S6-S7-S8 stock), and the confluence magnitude of the Nechı́ River and

the Cauca River may explain the existence of two C. kraussii stocks, one upstream and other

downstream of the Nechı́ River mouth. It has been indicated that the confluence position, in

addition to the river branching degree, and the asymmetric migration levels downstream influ-

ence the genetic variation patterns in the riverside populations showing an increase of 20

times the global genetic diversity in the very branched rivers and of 7 times the genetic differ-

entiation among local populations [124].

Based on its distribution in habitats exposed to anthropogenic activities and their particular

life history, the a priori expectation was that C. kraussii exhibited low genetic diversity in the

studied area. In contrast with this a priori expectation, Ho (0.562–0.885) and He (0.583–0.884)

levels in C. kraussii exceeded the heterozygosity levels described for other neotropical cichlids

like Geophagus brasiliensis (Ho: 0.474–0.628, He:0.534–0.706, [22]), Cichla temensis (Ho:

0.183–0.619, He:0.292–0.657, [23]), Gymnogeophagus setequedas (Ho:0.593, He: 0.673, [35]),

Apistogramma agassizii (Ho: 0.364–0.762, He: 0.350–0.754, [30]), Geophagus aff. brasiliensis
(Ho: 0.532–0.556, He: 0.635–0.640, [31]), Apistogramma gephyra (Ho: 0.631–0.662, He: 0.633–

0.669) and Apistrogramma pertensis (Ho: 0.664–0.742, He: 0.612–0.663; with heterologous loci

of Apistogramma gephyra) [32], Pterophyllum scalarae (Ho: 0.376–0.562, He: 0.512–0.568,

[33]) and Cichla ocellaris var. kelberi (Ho: 0.538–0.733, He: 0.521–0.642, [34]). It is notable

that the high diversity of C. kraussii was evidenced based on longer repetition motifs (4-mer,

5-mer), which were expected to show less variability than hypervariable short repetitions

(2-mer, [125]) mostly used for other neotropical fishes like Cichla temensis [61], Geophagus
brasiliensis [62], Apistogramma gephyra [64] and Pterophyllum scalarae [33].

Differences in the genetic diversity between C. kraussii and the other neotropical cichlids

may be caused by typical features of their life history [126], since species that reach maturity

earlier or have lower life expectancy show higher levels of genetic diversity [24, 27, 126]. Alter-

natively, discrepancies may be related to differences in the effective population size, estimator

that has been associated with genetic diversity [26]. However, both explanations are difficult to

contrast due to the limited information available for neotropical cichlids reproductive features

and effective population size; for this reason, it would be convenient to advance in complete

studies on its reproduction, population size, and genetic diversity to further explore the factors

influencing its population genetics.

Furthermore, genetic diversity measures, He and Ar were negatively related to the distance

from the Cauca River mouth to the Magdalena River since genetic diversity decreases as dis-

tance to the mouth increases. This genetic diversity distribution pattern of populations is pos-

sibly due to habitats diversity downstream the Nechı́ River mouth, which are preferred by C.

kraussii and the existing gene flow in this zone, allowing the allelic exchange and maintenance

of the high genetic diversity. This idea aligns with genetic data simulation in different land-

scapes that show that the dendritic net and the riverbed connectivity interfere in the genetic

variation distribution [124, 127, 128]. Likewise, the slope of the riverbed may also influence in

the genetic variation distribution of a species [129] as in low altitudes there is more diversity of

habitats ideal for C. kraussii while in medium and lower altitudes the habitats are more

limited.

Although the averages of heterozygosity in C. kraussii were high, small but significant defi-

cits of Ho were observed in stocks S4-S5 and S6-S7-S8. Since this study used species-specific

microsatellite loci, individuals were organized by stocks and the FIS values were not significant,

results do not appear to be explained, respectively, by the presence of null alleles, Wahlund
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effect, or inbreeding. Another likely explanation would be assortative mating, a behavior

observed in other neotropical cichlids like in genera Geophagus [19] and Cichla [21]. Nonethe-

less, it is important to remark that there are no available data on this behavior in C. kraussii,
hence, further exploration on the reproductive behavior of this species is necessary for deter-

mining its potential role on the Ho deficit.

Detection of recent bottlenecks in C. kraussii in the influence area of the Ituango project

matches those found in the same area in Prochilodus magdalenae [48], Pseudoplatystoma mag-
daleniatum [49], Ageneiosus pardalis, Pimelodus grosskopfii and Sorubim cuspicaudus [50],

which were attributed to anthropic pressures like fishing, mining, and water contamination.

These pressures may be the cause of recent bottlenecks in C. kraussii, although in this case

there is an additional factor related to the habitat alteration because of the PHI dam construc-

tion. Additionally, recent bottlenecks have also been detected in other cichlid species as in Geo-
phagus brasiliensis [22] and Geophagus aff. Brasiliensis [31], where anthropogenic impacts

were appointed as the causes. These results differ from those described for Gymnogeophagus
setequedas which did not show recent bottlenecks, possibly for having a large and stable popu-

lation or for stablishing contact among different lineages [35].

In contrast with the effective population size in PHI (< 1,000), natural environment popu-

lations and stocks S4-S5 and S6-S7-S8 exhibited effective population sizes above 1,000, show-

ing a high long-term evolutionary potential [130]. Furthermore, the effective population size

in stocks followed a genetic diversity-associated pattern (Ho, He, Ar) concordant with the

indirect relationship between the effective population size and the genetic variation observed

in other studies [25, 131] that are influenced by maturity age and life expectancy [26]. Studies

on effective population sizes in cichlids are relatively limited. Within the examined area, cer-

tain low-migration-range species (Astyanax caucanus, [132]) and medium-migration-range

species (Prochilodus magdalenae, [121]) exhibit high effective population sizes. However, Pseu-
doplatytoma magdaleniatum, also classified as a medium-migration-range species, displayed

effective population sizes below 1000 [49].

Conclusions

This study unveils a spatial structure within C. kraussii, comprising three genetic groups that

exhibit high genetic diversity compared to neotropical cichlids. Both natural stocks, located

upstream and downstream the Nechı́ River mouth, display high effective population size, indi-

cating a high long-term evolutionary potential. Nevertheless, the dam group, probably origi-

nated by founder effect, is susceptible to potential harmful effects because of their low effective

population size and high relatedness degree. Additionally, this study developed a group of 16

highly polymorphic species-specific microsatellite loci for C. kraussii that are proposed as a

tool for the future genetic population monitoring of the species. The information obtained

reveals the importance of providing the fishing and consumption of the species a differentiated

management at local level and contributes to the knowledge of factors modulating the popula-

tion genetics of neotropical cichlids.
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S1 Fig. Correlation of genetic diversity and distance to the Cauca River mouth. Ar: allelic

richness; He: expected heterozygosity. He vs Distance to the Cauca River mouth (R: -0.970, p:

0.001). Ar vs Distance to the Cauca River mouth (R: 1.000, p< 0.0001).
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