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Abstract

The present examination of mass and heat communication looks at the impact of induced

magnetic field, variable thermal conductivity, and activation energy on the flow of second-

order liquid across a stretched surface. The mass-heat transfer is also treated using the

Model for generalized Fourier and Fick’s Laws. The model equations are transformed as

needed to produce a system of nonlinear ODEs, which are then numerically solved with the

help of BVP4C integrated MATLAB approach. The heat-mass flow parameters are analyzed

by the table and graphs. An increment in the estimations of 2nd grade fluid parameter (β)

with magnetic field parameter (M) increase the speed sketch. For the stronger estimations

of Schmidt number (Sc), parameter of magnetic field (M) and Eckert number (Ec) have the

growing behavior on the temperature profile.

1. Introduction

The non-Newtonian fluid in such substances that do not fulfill Newtonian’s law of viscosity.

Aspect and behavior of the non-Newtonian fluids continue to snatch extensive appreciation

owing to its vast consequences in engineering and manufacturing purposes. Particularly, such

type of fluids is experienced in recommended fiber technology, chemical and nuclear indus-

tries, shampoos, material processing, physiology, pharmaceuticals, oil reservoir engineering,

foodstuffs, pharmaceuticals and nuclear industries etc. Instances of such specific fluids are

polymer solutions, oil reservoirs, crystal growth, grease, coating of wires, paints, blood a lower

shear rate, grease, coating of wires, milk, and lot of others. The features of non-Newtonian liq-

uids cannot be effectively explained by the well-established Navier-Stokes theory. For the pur-

pose of better understand the characteristics of non-Newtonian liquids, several models have

been created. Three categories, best-known as the rate, differential, and rate types, have been

established for these non-Newtonian fluid models. Differential fluids are the most
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straightforward class of non-Newtonian fluids. The 2nd-grade fluid model from the differential

type of non-Newtonian liquids is a part of the current work. Shi-junLio [1] discussed the non-

Newtonian fluid flows brought on by a stretched sheet with the consequence of a magnetic

field while also developing the analytical solution utilizing homotopy analysis. The erratic flow

of non-Newtonian fluid with the influence of the magnetic field was described by Xu and Liao

[2] using the analogy of an impulsively stretched sheet. Xu and Liao [3] investigated the heat-

mass communication of non-Newtonian fluid flow in response to the stretched sheet. Sahoo

[4] explored the heat-mass transfer into a 3rd-grade fluid (non-Newtonian) stagnation point

flow with partial slip effect brought on by a linearly stretched sheet using the shooting and

Broyde procedures. By means of an extended sheet, Javed et al. [5] looked at the flow of a Pow-

ell and Eyringfluid flow. The properties of two-dimensional steady Jeffery nanofluid flows

close to a vertically elongating surface were studied by Zhang et al. [6]. Taking into account

the effective thermal effects of a non-uniform internal heat source, they concentrated on situa-

tions where thermal radiation has a linear impact on the viscoelastic nanofluid flows driven by

the surface. El Harfouf et al. [7] conducted a computational study on the flow of a squeezing

nanofluid. They examined how factors such as thermal radiation, magnetohydrodynamics

(MHD), and chemical processes influence the flow within a constrained parallel-wall geome-

try. Reddy et al. [8] conducted an analysis of the mass-heat transportation into a Cassonfluid

flow with the consequences of a stretched surface, thermal diffusion, and magnetic field. Ash-

raf et al. [9] conducted a theoretical study on the lifting and drainage of a third-grade fluid that

includes surface tension. Unsteady radiative magnetohydrodynamic flow of a non-Newtonian

Casson hybrid nanofluid across a vertically moving porous surface with exponential accelera-

tion was studied by Krishna et al. [10] and Wakif et al. [11]. They considered slip velocity in a

revolving frame. Rashidi et al. [12] scrutinized the formation of entropy across a stretched

sheet while observing the convective flow of a 3rd-order liquid with magnetic field influence.

Some other related lately research articles to non-Newtonian fluids are expressed (See Refs.

[12–16]).

Investigation of boundary layer movement through joining mass and heat transportation

past a stretching sheet has acquired great attention by several engineers and scientists in the

modern years for the reason that its various significant practical investigators in many

manufacturing processes. Such applications take account of wire glass blowing, distillation of

towers, cooling of electronic chips, exclusion of plastic sheets, aerodynamic, glass blowing, and

artificial fibers etc. Design of chemical processing equipment, crop damage from freezing, fog

formation and dispersion, moisture and temperature distribution over agricultural arenas and

orchards of fruit trees, chilling tower construction, and food processing all heavily rely on the

interaction of chemical reaction and thermophoresis with mass and heat transport. The cool-

ing towers are a cost-effective technique to manage enormous amounts of water. When the

gap between surface temperature and temperature increases, the influence of the polymer pro-

cessing industry on controlling the heat transportation process in thermal radiation increases.

In light of the effects of heat generation or absorption as well as chemical reactions brought on

by the extended surface, Liu [17] explored the mass-heat transmission of the hydromagnetic

flow. According to Khan et al. [18], the mass-heat transfer in the 2nd-grade fluid flow was stud-

ied in relation to a uniform magnetic effect, a heat sink / source that is temperature dependent,

viscous dissipation, and a permeable medium because of a porous stretched sheet. Afify [19]

investigated how the ensuing heat and mass transport was influenced by a continuous mag-

netic field, chemical reaction, and natural and free convectional flow of a incompressible, vis-

cous, and electrically conducting fluid. Sanyayanand and Khan [20] addressed the mass-heat

communication into a viscoelastic fluid flow using an exponentially expanding sheet. A unique

theoretical model for tri-hybrid nanofluids was presented by Samad, and Mohebujjaman [21]
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in an effort to enhance heat transmission. Samad and Mohebjjaman [22] looked at the specifics

of how mass and heat are transferred into a steady, 2D, free convectional flow of an incom-

pressible and viscous fluid in a high-powered state of a buoyancy force, a uniform magnetic

effect, and heat generation by an isothermal linearly extending sheet. In order to account for

heat radiation in an unstable magnetohydrodynamic (MHD) boundary layer scenario, Madhu

and colleagues [23] studied the flow of a non-Newtonian Maxwell nanofluid over a stretched

surface. The mass and heat transmission have been done by some researchers for different

physical dominating parameters on the stretching sheet in the study [24–29].

A magnetic field can occasionally be produced by moving fluids, however because metals

and partly ionised fluids have very low magnetic Reynolds numbers, this effect is often quite

weak. But this generated magnetic field becomes significant and must be taken into account

when the magnetic Reynolds number is one or higher. In several fields, including engineering,

astrophysics, and geophysics, it is extremely important. It influences, for instance, the flow of

fluids within the Earth, the formation of stars, the behavior of spinning magnetic stars, and

even uses such as the containment of plasma in fusion reactors and the comprehension of phe-

nomena like planetary motions and solar dynamos. We are concentrating on fluids with high

magnetic Reynolds numbers for our investigation because of the substantial influence of gen-

erated magnetic fields in these regions. The movement of a fluid with certain viscosity proper-

ties and the ability to transmit electricity through a porous material along a vertical stretching

surface were studied by Krishna et al. [30]. They examined the effects of thermophoresis, ther-

mal radiation, and circumstances at the fluid-fluid border where heat enters and exits the sys-

tem on this flow. The influence of Hall and ion slip effects on the motion of nanofluids in a

porous media past a revolving, vertical flat plate was investigated by Krishna and Chamkha

[31]. Solar dynamo, magnetohydrodynamics power generation, plasma confinement, crude oil

purification, and spinning magnetic stars are only a few of the scientific and technical difficul-

ties that Kumar et al. [32] investigated. They looked at magnetohydrodynamic mixed convec-

tion, thermal radiation, and viscous dissipation while studying the continuous flow of an

incompressible, viscous, conducting fluid across a vertical plate. A thorough study of the Soret

and Joule effects of magnetohydrodynamic mixed convective flow was carried out by Krishna

et al. [33]. They examined, taking into account Hall effects, the flow of an incompressible, elec-

trically conducting viscous fluid across an endless vertical porous plate. The behaviour of tita-

nium dioxide-particle-containing ethylene glycol-based nanofluids flowing steadily close to a

vertical permeable surface was studied by Wakif et al. [34]. They examined the behaviour of

these fluids under both nonuniform internal heating and uniform blowing. A powerful tech-

nique known as the generalized differential quadrature local linearization approach was devel-

oped by Alghamdi et al. [35]. With the aid of this technique, they are able to analyze the mass

and heat properties of electrically conducting nanofluids in a realistic way as they approach a

vertically heated surface that is being impacted by an active electromagnetic actuator in a non-

Darcian laminar fashion. Some more efforts regarding induced magnetic field effect for the

flow of various fluids can be seen by Refs. [36–38].

The least amount of energy that may cause a particle to undergo a variety of changes or

chemical reactions is referred to as activation energy. The activation energy is frequently char-

acterized by the sign Ea and measured in kcal/mol or kj/mol. In food preparation, geothermal

technology, oil reservoir, chemical engineering, and mechano chemistry, the measurement of

activation energy is usually helpful. It is the smallest quantity of energy a volatile type species

must keep in order enduring an explicit reaction and is a very worthwhile concept in petro-

chemical engineering processes, geothermal and chemical. Awad et al. [39] analyzed an inves-

tigation of the mass-heat transmission into the rotating, incompressible, viscous fluid flow

with binary chemicaland reactionactivation energy by a stretched sheet. The influence of
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activation energy and velocity slip on the 3DErying-Powell fluid flow were described using the

stretching sheet approach by Umar et al. [40]. By using a stretching sheet and a Catteno-Chris-

tov double diffusion thermophoretic, Ali et al. [41] offered evidence for the consequence of

activation energy on the transient rotational flow of Maxwell fluid with nanoparticles under

the influence of Brownian motion. Zaib et al. [42] studied the flow of a generalized Newtonian

Carreau liquid using nonlinear thermal radiation, nanoparticles with binary chemical pro-

cesses, and activation energy, towards a nonlinear stretched surface. In their inquiry of the Jaff-

ery nanofluid flow, Hayat et al. [43] discussed how entropy is generated by stretching sheets of

various thicknesses under the influence of joule heating, brownian motion, viscous dissipation,

thermophoresis, and activation energy. Some more efforts regarding activation energy effect

for the flow of various fluids can be seen by Refs. [44–48].

Examining the consequences of an induced magnetic field influence on a second-order

fluid flow when activation energy, Catteno-Christov, and fluctuating thermal conductivity are

in play is the objective of the current inquiry. Additionally taken into account are the boundary

conditions for velocity and thermal slippage. Subsequently, converting the couple PDEs into

the system of non-linear ODEs through the appropriate transformations, the resulting system

is computed by using a Matlab BVP4C technique. To investigate the relevance of the several

dominant physical characteristics, graphs are created. From the literature overview, it is

revealed that no such exploration is considered for yet.

2. Problem description

The current inquiry aims to investigate the influence of activation energy, Catteno-Christov,

and variable thermal conductivity on the flow of a second-grade fluid when an induced mag-

netic field is present. Additionally considered are the boundary conditions for thermal slip and

velocity slip. The intensity of the magnetic field that is being used is constantH0 and the

induced magnetic effect is used in y-direction and its parallel component isH1 andH2 is of its

normal component (see in Fig 1).

Fig 1. Flow mechanism.

https://doi.org/10.1371/journal.pone.0304794.g001
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The following are the governing boundary layer equations under the aforementioned pre-

sumptions: [49–51]
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Where, k(T) is the variable thermal conductivity is described as:
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Boundary conditions
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Where, ðx; yÞ; ðu; vÞ; ðH1;H2Þ; n; a1; r; m0; a2;T;Cp; kðTÞ;DB;C; lH; lm; k∗∗1 ; m; qr;C

1; k2

r ;m;Ea;K; l1; l2;

and λ3 are Cartesian coordinates, components of speed, components of the induced magnetic

field between the x- y-axes, kinematic viscosity, second grade fluid coefficient, density of the

fluid, magnetic permeability, magnetic diffusivity, temperature of the liquid, thermal
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conductivity, Brownian motion factor, concentration of fluid, thermophoresis coefficient,

ambient temperature, dynamic viscosity, the coefficient of thermal radiation, the moment

when the heat flow relaxes, the time of relaxation of mass flux, chemical reaction coefficient,

ambient concentration, chemical reaction rate constant, fitted rate constant, activation energy

coefficient, reaction rate constant, coefficient of velocity slip, parameter of thermal slip and

concentration slip parameter respectively.

Through the similarity transformations of Eq (9) in the Eqs (3)–(6), are reduced as followed

as,
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Corresponding boundary conditions are as followed,
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2.1. Physical quantities

The physical quantities are absolutely necessary in engineering. The Skin Friction, Nusselt,

and Sherwood numbers are as follows:
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Where, Rex ¼
xuw
n

is the Renolds number.

3. Numerical scheme

The Numerical Scheme is as shown in Fig 2.

4. Method of solution

It is advised to use this section to solve well-known ODEs for flow, temperature, concentra-

tion, and concentration of microorganisms numerically. A built in MATLAB function BVP4C

is applied for these solutions. Upon careful consideration, a step size of 0.001 and convergence

conditions of 10−6 were selected. This function requires the first order ODEs to workout thus,

to convert a provided, the following variables are used equation into 1st order:
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Fig 2. Numerical scheme.

https://doi.org/10.1371/journal.pone.0304794.g002
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y1ð0Þ ¼ S1 þ y2ð0Þ; y1ð0Þ ¼ 0; y1ð0Þ ¼ 0; y5ð0Þ ¼ 0; ð28Þ

y8ð0Þ ¼ 1þS2y9ð0Þ; y7ð0Þ ¼ 0; y10ð0Þ ¼ 1þS3y11ð0Þ;

y2ð1Þ ¼ 0; y5ð1Þ ¼ 0; y6ð1Þ ¼ 1; y8ð1Þ ¼ 0; y10ð1Þ ¼ 0:

5. Result and discussion

The present research segment exposes the graphical and tabulated data aspect of many related

variables on the induced magnetic, temperature, concentration and velocity sketches. Fig 3(A)

describes the velocity sketch for the diverse values of 2nd order fluid parameter β. Physically, it

has been distinguished that by growing the estimations of β, the velocity sketch boosts due to

the viscosity of the momentum boundary layer width. The velocity sketch for the modification

of the magnetic field parameter is shown in Fig 3B). The velocity profile is said to have risen

consequently of the higher estimations ofM. The magnetic field alienates the boundary layer,

increasing its thickness and, as a result, the fluid velocity. For the various iterations of the

reciprocal of the induced Prandtl number, the induced magnetic field is exhibited in Fig 4. The

magnetic parameter has a positive physical effect on average skin-friction profiles, but the

magnetic Prandtl number has the opposite effect.

When λ is augmented, it is perceived that the g0(η) profile grows. Fig 5(A) ravels the temper-

ature sketch for the variations of the variable ε, as a result, an increase in the temperature

sketch, by means of build up the wideness of the thermal boundary layer. The Fig 5(B) displays

the temperature profile for the distinct estimations of the Prandtl number Pr. It has been

observed that as Pr varies more widely, the temperature sketch decreases. Physically, the

Prandtl number is the ration between thermal diffusivity to the momentum diffusivity, There-

fore, the temperature sketch diminishes by the stronger values of Pr. By increasing in the varia-

tions of the Pr, the outcome, the thermal boundary layer width diminishes. The consequences

of the δe on the temperature sketch is seen in Fig 5(C). It is seen that, for the stronger estima-

tions of δe, the energy boundary layer and the temperature of the liquid decreases. Physically,

for the higher estimations of the thermal relaxation parameter, the fluid particles require extra

Fig 3. (a). f0(η) sketch for distinct variations of β. (b). f0(η) sketch for distinct variations ofM.

https://doi.org/10.1371/journal.pone.0304794.g003
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apparently to transfer of heat to its next to the particle. The Fig 5(D) exhibits the consequence

of the Eckert number on the temperature distribution profile. Noted is the fact that, for the

higher values of EC, the outcome, the temperature profile enhances. Actually, EC number is the

relation of the heat enthalpy differential and flow kinetic energy, therefore, enhancement in

the Eckert number effects increment in the kinetic energy, and the average kinetic energy is

used to define temperature. So, on the other hand, temperature of the fluid increases. It can be

analyzed from the sketch that the temperature of the liquid rises if the estimations of the Eckert

number upsurges. Fig 5(E) illustrates the upshot of the magnetic field parameter on the tem-

perature profile. The temperature sketch is shown to grow for M estimations that are stronger.

Physically, the magnitude of the velocity sketch in the boundary layer reduces by growing the

estimations of the parameter of magnetic field, therefore, the temperature in the boundary

layer would increase. The consequence of the parameter of the second grade fluid to the tem-

perature sketch is shown in the Fig 5(F). It has been noted that by increasing the estimations of

the second grade fluid parameter, the temperature profile reduces. Fig 5(G) represents that the

significance of the thermal radiation parameter R on temperature profile. This is what is

noticed, for the higher variations of the parameter of the thermal radiation R, due to this, the

temperature field increases. Actually, the rate of heat transmission reduces by increasing the

thermal radiation parameter.

Fig 6(A). represents the consequences of the parameter of the Schmidt number on the con-

centration sketch. It is noted that, by enhancing the variations of the Schmidt number, as a

Fig 4. Induced magnetic field sketch for distinct variations of λ.

https://doi.org/10.1371/journal.pone.0304794.g004

PLOS ONE Thermal and solutal heat transport investigations of second order fluid

PLOS ONE | https://doi.org/10.1371/journal.pone.0304794 July 11, 2024 10 / 17

https://doi.org/10.1371/journal.pone.0304794.g004
https://doi.org/10.1371/journal.pone.0304794


PLOS ONE Thermal and solutal heat transport investigations of second order fluid

PLOS ONE | https://doi.org/10.1371/journal.pone.0304794 July 11, 2024 11 / 17

https://doi.org/10.1371/journal.pone.0304794


result, the concentration sketch reduces. Given that the Schmidt number is the relationship of

momentum to mass diffusivity. Thus, the concentration field boosts, for the greater estima-

tions of the Schmidt number. Fig 6(B) demonstrations the consequence of δc on the concentra-

tion sketch. It is noticed that, for the higher estimations of the δc, the concentration profile

reduces. Physically, the increment in δc causes boost in retardation time and hence the concen-

tration boundary layer thickness escalates. The consequence of the activation energy parame-

ter to the concentration sketch is seen in the Fig 6(C). An interesting outcome is detected by

increasing the variations of Ae, due to this, the concentration profile increases. Actually, by vir-

tue of upsurge in the parameter of the activation energy parameter guides to an growth the

thermal reaction rate, because, the concentration profile boosts. The Fig 6(D) elucidates that

the impression of velocity slip parameter on the velocity sketch. It is found that the velocity

slip parameter decreases the velocity sketch. Fig 6(E) shows how the thermal slip parameter

affects the temperature sketch. It is noted that for the higher estimations of the thermal slip

parameter, because, the temperature sketch declines. Actually, by enhancing the thermal slip

parameter cause diminishes in the heat-mass communication rates. The impact of the setting

for the concentration slip on the concentration sketch is seen in Fig 6(F). The concentration

Fig 5. (a). Temperature sketch for distinct variations of ε. (b). Temperature sketch for distinct variations of Pr. (c). θ
(η) sketch for distinct variations of δe. (d). θ(η) sketch for distinct variations of Ec. (e). θ(η) sketch for distinct

variations ofM. (f). θ(η) sketch for distinct variations of β. (g). θ(η) sketch for distinct variations of R.

https://doi.org/10.1371/journal.pone.0304794.g005

Fig 6. (a). Concentration sketch for distinct variations of Sc. (b).F(η) sketch for distinct variations of δc. (c). Concentration sketch for distinct variations of Ae.
(d). Velocity sketch for distinct variations of S1. (e). Temperature sketch for distinct variations of S2. (f). Concentration sketch for distinct variations of S3.

https://doi.org/10.1371/journal.pone.0304794.g006
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profile is shown to drop when the concentration slip parameter is increased. Table 1 displays

the behavior of skin friction for some diverse numerical estimation of some parameters. From

the numerical values of second grade fluid parameter (β), the skin friction coefficient upsurges.

Further, both magnetic field parameter (M) and reciprocal Prandtl number (λ) have the increas-

ing behavior on the coefficient of skin friction and there is no impact of the Eckert number (Ec)
to the skin friction coefficient. Table 2 demonstrates the comparison estimations of skin friction

against different variations of second grade fluid parameter (β), magnetic field parameter (M),

radiation parameter (R), and thermal relaxation time parameter (δe). The results presented in

Table 2 align well with those reported in a previous study by Hossam et al. [52].

6. Conclusions

On the second-grade fluid flow produced by an exponentially expanding sheet, the conse-

quences of activation energy and non-linear thermal radiation are examined. The following

are some pertinent conclusions of the current analysis:

• The velocity sketch is increased by adding changes of the 2nd-order fluid parameter (β) and

the magnetic field parameter (M).

Table 1. Skin friction versus variations of distinct dominating parameters.

β M λ Ec Cf x

0.2s 2.38804

0.4 2.57353

0.6 2.74866

1.1 1.36590

1.2 1.35032

1.3 2.33959

0.3 2.35932

0.4 2.34794

0.5 2.32085

1.5 2.35932

2.0 2.35932

2.5 2.35932

https://doi.org/10.1371/journal.pone.0304794.t001

Table 2. Comparison estimations of Skin friction for distinct variations of β,M,R and δe.

β M R δe Present result [Cf x
] Hossam et al. [52] [Cf x

]

0.1 1.7620 1.8230

0.2 1.8703 1.9071

0.3 1.9532 1.9900

0.5 1.7572 1.8349

1.5 1.9332 1.9999

2.0 2.2716 2.3623

0.2 15.9371 15.9999

0.3 16.6546 16.7461

0.4 17.0134 17.3240

0.1 1.3450 1.5000

0.4 1.3571 1.5032

0.7 1.3634 1.4999

https://doi.org/10.1371/journal.pone.0304794.t002
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• An increment in the estimations of parameter of induced magnetic field (λ) upsurges the

profile of the induced magnetic field.

• By increasing in the variations of parameter of variable thermal conductivity (ε) as well as

the Prandtl number (Pr),hence, the temperature distribution has opposite behavior.

• For the stronger estimations of Schmidt number (Sc), the magnetic field parameter (M) and

Eckert number (Ec) have the increasing behavior on the temperature distribution.

• By growing in the estimations of Sc and δc, the concentration profile reduces.

• The growing in the estimations of Ae and S1 have the same behavior on concentration

profile.
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