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Abstract

Low-Dose computer tomography (LDCT) is an ideal alternative to reduce radiation risk in

clinical applications. Although supervised-deep-learning-based reconstruction methods

have demonstrated superior performance compared to conventional model-driven recon-

struction algorithms, they require collecting massive pairs of low-dose and norm-dose CT

images for neural network training, which limits their practical application in LDCT imaging.

In this paper, we propose an unsupervised and training data-free learning reconstruction

method for LDCT imaging that avoids the requirement for training data. The proposed

method is a post-processing technique that aims to enhance the initial low-quality recon-

struction results, and it reconstructs the high-quality images by neural work training that min-

imizes the ℓ1-norm distance between the CT measurements and their corresponding

simulated sinogram data, as well as the total variation (TV) value of the reconstructed

image. Moreover, the proposed method does not require to set the weights for both the data

fidelity term and the plenty term. Experimental results on the AAPM challenge data and

LoDoPab-CT data demonstrate that the proposed method is able to effectively suppress the

noise and preserve the tiny structures. Also, these results demonstrate the rapid conver-

gence and low computational cost of the proposed method. The source code is available at

https://github.com/linfengyu77/IRLDCT.

Introduction

X-ray computed tomography (CT) is an essential imaging modality for clinical purposes, as it

provides high-resolution images of the internal structure of the human body. However, X-ray

radiation is known to be harmful to healthy tissues. In some major clinical tasks, a single CT

scan can expose patients to radiation doses of up to 43 mSv [1], which may increase the risk of

cancer. Consequently, reducing radiation dose while obtaining high-resolution images has

become a significant area of research in CT scanning.

Currently, there are two primary strategies for reducing CT radiation dose: (1) decreasing

the number of projection views and (2) lowering the X-ray tube current. This approach is com-

monly referred to as LDCT. LDCT algorithms can be broadly categorized into four groups:

sinogram domain filtering, iterative reconstruction, and deep learning-based reconstruction.

Sinogram domain filtering methods exploit the distinct distributions of desired signals and

noise in the sinogram domain to reconstruct CT images. This technique involves filtering out
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components corresponding to artifacts or noise in the sinogram domain and then inverting

the filtered sinogram data into the image domain using analytic algorithms. Numerous ana-

lytic filtering methods have been proposed based on the distribution of noise. For instance, fil-

tered back projection (FBP) is a classical reconstruction method for CT images that performs

high-pass filtering in the sinogram domain before back-projection. Sinogram domain filtering

can produce high-quality CT images when the noise distribution is accurately characterized.

However, determining this distribution can be challenging, particularly since artifacts or noise

often correlate with image structures.

Compared with sinogram domain filtering methods, iterative reconstruction approaches

are more flexible and stable. Iterative reconstruction approaches can be further divided into

hybrid iterative reconstruction methods and model-based iterative reconstruction methods.

Hybrid iterative reconstruction method produces an image by adjusting the statistical charac-

ters of the sinogram domain and the image domain. Model-based iterative reconstruction

method utilizes the process of alternative performing the forward-projection (i.e., sinogram

data generation) and back-projection (i.e., CT image reconstruction) to achieve iterative filter-

ing in the sinogram domain and the image domain. Furthermore, the cost function of model-

based iterative reconstruction method usually consists of a fidelity term with the noise model

in the sinogram domain and a regularization term with the prior model in the image domain.

The regularization term plays a vital role in reconstruction, and many regularizations have

been proposed, such as total variation (TV) [2, 3], low-rank [4], non-local means (NLM) [5, 6],

and dictionary learning [7]. The model-based iterative reconstruction method usually has bet-

ter performance than hybrid iterative reconstruction method, but it is also computationally

expensive. Additionally, model-based iterative reconstruction method requires manually

designing the proper regularization and choosing the weight to obtain satisfactory reconstruc-

tion results.

In recent years, deep learning techniques have been widely employed in LDCT reconstruc-

tion, and they have demonstrated better performance than conventional LDCT reconstruction

methods. Deep learning-based LDCT reconstruction methods can be categorized into four

groups: sinogram domain processing (SDP), image domain processing (IDP), dual-domain

processing (DDP), sinogram-image direct mapping (SIDP), and model-based deep learning

(MBDL).

The SDP reconstruction algorithm aims to use a pre-trained neural network to inpaint the

LDCT measurements into sinogram data that is very close to normal-dose CT (NDCT) mea-

surements. For instance, [8] proposed a sinogram domain denoising approach using a convo-

lutional neural network (CNN) with a filter loss function. Compared with image domain

denoising methods, these approaches can easily estimate the noise level in the projection. Ref-

erence [9] proposed a sinogram data interpolation method by leveraging a conditional adver-

sarial network (GAN). Although sinogram domain processing can correct errors in the

sinogram domain, errors produced by the shortcomings of conventional methods can still

negatively affect the final reconstructions.

In contrast to the SDP algorithm, IDP produces high-quality CT images by using a neural

network to denoise the initial reconstructed images with artifacts. Most deep learning methods

employ IDP to improve the quality of reconstructed images obtained using existing methods

such as FBP [10, 11]. Reference [12] introduced a collaborative technique to train multiple

Noise2Noise [13] generators simultaneously and learn the image representation from LDCT

images. Reference [14] proposed Noise2Self that does not require any additional clean or noisy

data. IDP is more straightforward compared to the SDP algorithm. Reference [15] proposed to

a framework for sparse-view tomographic image reconstruction combining an early-stopped

rapid iterative solver with a subsequent pre-trained neural network to complete the missing
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iterations of rapid iterative solver. One main disadvantage of IDP is that it is difficult to recover

information lost from the initial reconstructed images, which serve as inputs to the neural

network.

DDP is a method that combines SDP and IDP. It leverages the advantages of both SDP and

IDP to achieve higher-quality images compared to single-domain processing reconstruction

methods. Reference [16] combined a deep convolutional neural network (CNN) with direc-

tional wavelet transform to extract the directional component of artifacts in low-dose CT

images and exploit intra- and inter-band correlations. Reference [17] proposed a deep learn-

ing-based function optimization method for LDCT imaging, which incorporated the Radon

inverse operator and disentangled each slice. To address of the limitation of acquiring inde-

pendent noisy reference image of Noise2Noise [13, 18] proposed a method to generate both

training inputs and training labels from the existing CT scans for count-domain and image-

domain, which does not require any additional high-dose CT images or repeated scans.

Although DDP can achieve good inversion results, it requires a larger training dataset due to

its two training procedures: sinogram domain and image domain.

SIDP is an end-to-end reconstruction algorithm that directly transforms sinogram data

into CT images. This method has the lowest complexity as it only requires training a neural

network without extra processing such as sinogram data correction and inversion. For exam-

ple, [19] presented a unified framework for image reconstruction called Automated Transform

by Manifold Approximation (AUTOMAP), which directly converts sinogram data into CT

images. Reference [20] proposed a direct reconstruction framework exclusively using deep

learning architectures, which consists of denoising, reconstruction, and super resolution (SR).

SIDP is a highly efficient reconstruction method but demands massive memory as the entire

sinogram data needs to be fed into the neural network.

MBDL, also known as optimization unrolling scheme or plug-and-play, is an effective

approach that replaces the parameters or regularization of conventional iterative schemes with

learnable/pre-trained neural networks. Reference [21] unrolled the proximal gradient descent

algorithm for iterative image reconstruction to finite iterations and replaced terms related to

the penalty function with trainable CNN to reduce memory requirements and training time.

Reference [22] incorporated the benefits from analytical reconstruction methods, iterative

reconstruction methods, and DNNs. They unrolled proximal forward-backward splitting into

iterative reconstruction updates of CT data fidelity and DNN regularization with residual

learning. Reference [23] developed a unified reconstruction framework combining supervised

and unsupervised learning, and physics and statistical models to enhance the accuracy and res-

olution of LDCT reconstruction images. By leveraging the advantages of deep learning and

conventional methods, MBDL offers better interpretability than data-driven deep learning.

Recently, training dataset-free method have drawn much attention in LDCT imaging,

which does not need to pre-train a neural network and works on a single image by utilizing

the consistency between the CT measurements and sinogram data modeled on the recon-

structed image. For instance, the deep image prior (DIP) [24], originally proposed for natural

image denoising by using early stopping to fit the noisy image, has been widely exploited in

medical imaging [25–27]. Also, DIP treats noise as i.i.d random noise rather than artifacts cor-

related to the entries of CT images. Reference [28] proposed an dataset-free reconstruction

method based on Bayesian inference, which takes the J -invariant transform of the FBP recon-

structed image as the initial value. This method can reconstruct high-quality images from mea-

surements; however, its reconstruction time is significantly higher than that of its competitors.

In this paper, we propose an iterative LDCT reconstruction method that ultizes neural net-

work to improve the CT images reconstructed by FBP method without training data. During

the iterative LDCT reconstruction, we minimize the loss, which consists of two components:
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the ℓ1-norm distance between the CT measurements and the sinogram data modeled on the

post-processed image, and the TV value of the post-processed image. We achieve this by train-

ing a neural network. The proposed method does not require collecting any training data and

balancing the contribution of data fidelity and TV regularization in the loss. Once the network

training is complete, the high-quality reconstructed results will be output immediately.

The rest of the paper is organized as follows: Methodology section describes how to build

and solve the optimization problem. Experimental Results section presents the experimental

setup and results using the 2016 Low-dose CT Grand Challenge data and the LoDoPaB-CT

data [29]. Discussion and Conclusion section is the discussion and conclusion.

Methodology

In this section, we introduce a proposed method for reconstructing LDCT from noisy mea-

surements. This method utilizes a DNN to enhance the CT image reconstructed by the FBP

method, without the need for training data.

Problem setup

The forward formulation of LDCT can be formulated as

y ¼ Axþ �; ð1Þ

where y represents the CT measurements, A is the projection matrix of CT imaging, � denotes

the background contributions of scatter and electrical noise, and x represents the ground-

truth CT image. Typically, we can solve the inverse problem of Eq 2 by using the FBP method

F ,

xf ¼ FðyÞ; ð2Þ

where xf is the reconstructed image by FBP. However, due to the low source intensity of X-ray

and/or the random noise, the quality of xfbp is unsatisfactory, often suffering from noticeable

streaky artifacts, random patterns, and low resolution.

Considering a DNN NN with parameters θ that can enhance the image’s quality by

NN ðxf ; θÞ, which means that we can re-formulate Eq 1 as

y ¼ ANN ðxf ; θÞ þ �; ð3Þ

According to Bayes’s rule, we can obtain the posterior density of NN ðxf ; θÞ by

pðNN ðxf ; θÞ j yÞ / pðy j NN ðxf ; θÞÞpðyÞ: ð4Þ

Supposing pðy j NN ðxf ; θÞÞ as Gaussian distribution,

pðy j NN ðxf ; θÞÞ ¼ N ðANN ðxf ; θÞ;Σ�Þ: ð5Þ

where S� represents the covariance of the noise. Furthermore, taking the logarithm on both

sides of Eq 5 then we obtain

ln pðy j NN ðxf ; θÞÞ /
1

2
ðy � ANN ðxf ; θÞÞTΣ� 1

�
ðy � ANN ðxf ; θÞÞ: ð6Þ
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Taking the logarithm on both sides of Eq 4 and substituting ln pðy j NN ðxf ; θÞÞ with Eq 6,

we obtain

ln pðNN ðxf ; θÞ j yÞ / ln pðNN ðxf ; θÞ j yÞpðNN ðxf ; θÞÞ

/
1

2
ðy � ANN ðxf ; θÞÞTΣ� 1

�
y � ANN xf ; θ

� �� �
þ ln p yð Þ:

ð7Þ

Therefore, we can obtain the maximum a posterior (MAP) objective,

maxfln pðNN ðxf ; θÞ j yÞg ¼ minf� ln pðNN ðxf ; θÞ j yÞg

/ min
�

1

2
ðy � ANN ðxf ; θÞÞTΣ� 1

�
ðy � ANN ðxf ; θÞÞ

�

:

ð8Þ

Assuming the noise is Gaussian independent and identically distributed (iid), i.e., Σ� ¼ s
2
�
I.

Furthermore, considering to regularize NN ðxf ; θÞ with Rð�Þ, Eq 8 can be further rewritten as

x∗ ¼ arg min
θ

�
1

2s2
�

ðy � ANN ðxf ; θÞÞðy � ANN ðxf ; θÞÞ
�

subject to ZRðNN ðxf ; θÞÞ;

ð9Þ

where η denotes the weight. To linearize this problem, we reformulate Eq 9 as

x∗ ¼ arg min
θ
k y � ANN ðxf ; θÞ k2

2
þZRðNN ðxf ; θÞÞ: ð10Þ

In fact, the artifacts in LDCT images are highly correlated to the entries of CT images rather

than random noise, and the results inverted through ℓ2-norm loss tend to be over-smoothed,

which is not beneficial for preserving the tiny structures and/or sharp edges. Hence, we pro-

pose to optimize θ by minimizing the ℓ1-norm misfit,

x∗ ¼ arg min
θ
k y � ANN ðxf ; θÞ k1 þ ZRðNN ðxf ; θÞÞ: ð11Þ

Furthermore, we add the TV term of the reconstructed CT image x̂ ¼ NN ðxf ; θÞ into Eq

11 as a smooth penalty to overcome the potential over-fitting induced by the noise in the CT

measurements. Eq 11 thus becomes

x∗ ¼ arg min
θ
fk y � ANN ðxf ; θÞk1 þrðNN ðxf ; θÞÞg;

rðx̂Þ ¼
1

NM
ð
XN

i¼1

XM� 1

j¼1

k x̂ i;jþ1 � x̂ i;jk1 þ
XN� 1

i¼1

XM

j¼1

k x̂ iþ1;j � x̂ i;jk1Þ;

ð12Þ

where x̂ 2 RN�M. Eq 12 can be solved by NN training, and we can derive x* with the forward

propagation of NN once θ be optimized by

x∗ ¼ NN ðxf ; θ∗Þ: ð13Þ

Solving the MAP

The proposed method can be considered as a kind of NN training-based reconstruction

method, which optimizes the NN’s parameters by minimizes the loss from both sinogram
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domain and image domain. The proposed LDCT reconstruction method can be divided into

two steps: (1) Reconstructing the initial CT image: The initial CT image is reconstructed using

the the FBP method. Although this initial CT image may contain many artifacts due to the low

intensity of X-ray, FBP provides fundamental information about the internal structure of the

human body, which is helpful for enhancing the reliability of the inversion result by NN.

Moreover, FBP performs much faster than iterative reconstruction approaches such as com-

pressive sensing; (2) Post-processing the initial reconstruction result: Once the initial CT

image is achieved, it will be fed into a pre-defined NN and will be improved through the NN

training. To achieve θ, we establish the loss function for NN training based on Eq 12,

Lðy; xf Þ ¼
1

NM
k y � ANN ðxf ; θÞ k1 þrðNN ðxf ; θÞÞ; ð14Þ

and we use gradient descent-based optimization algorithms such as stochastic gradient descent

to optimize θ to minimize the loss function. It is worth noting that the proposed method does

not require setting weights for both the data fidelity term and the regularization term, which

significantly reduces the difficulty of manually setting the weights. In summary, the visual

flowchart of the iterative reconstruction for LDCT is shown in Fig 1. Algorithm 1 further

explains the construction algorithm in detail.

Algorithm 1 Iterative reconstruction for LDCT imaging
Require: number of iterations: n; CT measurements: y; FPB operator: F;
projection matrix: A; learning rate: λ
Ensure: optimal θ
initial i = 1, initial CT image x0 ¼ FðyÞ
While i < = n
reconstruct the CT image NN ðx0; θÞ
compute the loss LðyÞ ¼ 1

NM k y � ANN ðx0; θÞ k1 þrðNN ðx0; θÞÞ
update θ∗  θ � l @L

@θ

i  i + 1
return x∗ ¼ NN ðx0; θ∗Þ

NN architecture

To enhance the quality of the initial CT image, we have designed a DNN with a straightfor-

ward structure. As depicted in Fig 1, the network primarily consists of 2-D convolution, batch

normalization, and LeakyReLU layers. The first layer is a convolution layer, followed by a Lea-

kyReLU layer and a block composed of convolution, batch normalization (BN), and LeakyR-

eLU. The convolution layers are employed for feature extraction, the BN layers for enhancing

the stability of network training, and the LeakyReLU layers to ensure non-linearity throughout

the network. LeakyReLU is defined as,

LeakyReLUðxÞ ¼ maxð0; xÞ þ � ∗minð0; xÞ: ð15Þ

In the subsequent experimental test, we set the value of ϕ to 0.01.

Experimental results

In this section, we evaluate the performance of the proposed method by comparing it with

four representative methods: FBP, TV (post-processing and unsupervised method), DIP

(unsupervised and data-free method), and RED-CNN (post-processing and supervised

model).
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Parameter setting

The FBP, TV and DIP reconstruction are implemented by using Deep Inversion Validation

Library (https://github.com/jleuschn/dival) and Operator Discretization Library (https://

github.com/odlgroup/odl). For TV and DIP reconstruction, we use the parameters recom-

mend by [30] (https://github.com/oterobaguer/dip-ct-benchmark). The NN training related

tasks are all implemented on the PyTorch platform [31].

For TV reconstruction, the weight for ℓ1-norm term is set to 2.15 × 10−7, and the number of

iterations is set to 200, and we utilize the Douglas-Rachford Primal-Dual method as the solver.

In addition, the initial reconstruction results for the TV method are obtained by the FBP

method, and the parameters for the FBP method are the same as those for the proposed

method, which means that both the TV method and the proposed method have the same input

for the neural network. For DIP reconstruction, we use a learning rate of 0.0005, 6 scales, 1000

iterations for AAPM challenge data and 2000 iterations for LoDoPaB-CT data, and 128 chan-

nels for the U-Net at every scale. We adopt mean square error (MSE) as the loss function for

both TV and DIP reconstruction. In the proposed method, we set the iterations to 2000, and

save the result with the highest peak signal-to-noise ratio (PSNR). For all reconstruction meth-

ods, the filter and frequency scaling of FBP reconstruction are set to Hann and 0.8,

respectively.

For RED-CNN training, we use the AAPM Challenge Data as the training dataset. We train

the RED-CNN using full-dose CT scans from nine patients, reserving one patient (L067) for

evaluation. In the training data generation process, we use a patch size of 64. The batch size for

RED-CNN training is set to 32, the number of training epochs is 100, the loss function is MSE

loss, and we use Adam optimizer with a learning rate of 10−5. We train three models for differ-

ent low-dose levels by using pairs of FBP reconstructions of low-dose simulations and corre-

sponding full-dose CT images.

There are 30 convolution layers in our NN, the size of filter kernels of the first convolution

layer is 64 × 1 × 3 × 3, where the format is number of filters×number of channels × width ×
height. From the second to the penultimate convolution layer, we set the size of all filter ker-

nels to 64 × 64 × 3 × 3. For the last convolution layer, the size of filter kernels is set to 1 × 64 ×

Fig 1. Schematic diagram of the proposed method.

https://doi.org/10.1371/journal.pone.0304738.g001
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3 × 3. We minimize the loss defined by Eq 8 by using the AdamW method with learning rate

of 10−3.

Data specification

To evaluate the effectiveness of the proposed method, we test its performance on on two data-

sets: AAPM challenge data and LoDoPaB-CT data [29]. The AAPM challenge data consists of

reconstructed simulated data from human abdomen CT scans provided by Mayo Clinic for

the AAPM Low Dose CT Grand Challenge (https://www.aapm.org/GrandChallenge/

LowDoseCT/). We use 1-mm slice thickness reconstructions with dimensions of 512 px × 512

px for RED-CNN training and performance comparison. The CT images form LoDoPaB-CT

data are sampled from AAPM challenge data and have been cropped to dimensions of 362

px × 362 px. Additionally, these images have been subjected to dequantization noise uniformly

distributed in [0, 1] for each pixel.

For sinogram data simulation, we construct a 2-D fan-beam geometry with 1000 angles,

1000 pixels, source to axis distance 500 mm, and axis to detector distance 500 mm [32]. The

LDCT image are simulated by adding Poisson noise with Ii = [1 e 3, 1 e 4, 5 e 4] following the

Poisson distribution according to the process of photon generation, attenuation, and detec-

tion, which can be expressed as,

yi � Poisson
n
Iie� ½Ax�i þ σi

o
; i ¼ 1; . . . ;m; ð16Þ

where Ii denotes the source intensity of the i-th X-ray, yi represents the CT measurements pro-

duced by the i-th X-ray, A is the projection matrix of CT imaging, σi denotes the background

contributions of scatter and electrical noise, and x represents the full-dose CT image. Addi-

tionally, the full-dose CT images x are normalized before sinogram simulation by

x ¼
x � minðxÞ

maxðxÞ � minðxÞ
: ð17Þ

Quantitative indices

We adopt two quantitative indices, PSNR and structural similarity index (SSIM), to quantify

the quality of the reconstructed CT images. The PSNR expresses the ratio between the maxi-

mum possible power of a signal and the power of corrupting noise, which is measured by the

mean squared error (MSE),

PSNRð~x; xÞ ¼ 10 log
10

maxðxÞ2

MSEð~x; xÞ

� �

;

MSEð~x; xÞ ¼
1

n

Xn

i¼1

k ~xi � xi k
2;

ð18Þ

where x and ~x denotes the ground truth image and the reconstruction, respectively, and n is

the number of pixels in the reconstructed image. A higher PSNR value indicates better recon-

struction quality.
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The SSIM, which lies in the range [0, 1], is used to measure the similarity between the

ground-truth image and the reconstruction image,

SSIMð~x; xÞ ¼
1

M

XM

j¼1

ð2~m jmj þ C1Þð2Sj þ C2Þ

ð~m2
j þ m

2
j þ C1Þð~s

2
j þ s

2
j þ C2Þ

; ð19Þ

where ~m j and μj are the average pixel intensities, ~s2
j and s2

j represent the variances, and Sj is

the the covariance of ~x; x at the j-th local window. The constants 2C1 = (K1L)2 and C2 = (K2L)2

tend to be zero to avoid instability. Following [33, 34], we choose K1 = 0.01, K2 = 0.03, L = max

(x) − min(x), and the window size is 7 × 7. A higher SSIM value indicates better reconstruction

quality.

Reconstruction results

AAPM challenge data. We randomly select three full-dose CT images from AAPM chal-

lenge data to evaluate effectiveness of the propose method with the X-ray source intensity Ii =

[1e3, 1e4, 5e4]. From Figs 2–4, we can observe that the quality of the FBP reconstruction

images degraded significant as the X-ray source intensity decreased, resulting in amplified

noise and artifacts distributed throughout the entire image. As a post-processing method, TV

achieves higher quality images by post-processing the reconstructed images through FBP.

Another post-processing and supervised method RED-CNN, can effectively remove noise and

artifacts, but it tends to smooth out some tiny structures. Although DIP is unsupervised and

takes random noise as input, it can effectively remove noise while producing images with

higher resolution than RED-CNN. Comparing the reconstructed results by different methods,

we can see that the proposed method achieves the best performance in terms of noise and arti-

facts attenuation and preservation of tiny structures.

Fig 2. Reconstruction results of case AAPM-1 at different dose levels by different methods. Zoomed parts over the region of interest (ROI) marked

by the red box in the ground-truth image.

https://doi.org/10.1371/journal.pone.0304738.g002
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To better illustrate the effectiveness of the proposed method, we further demonstrate the

zoomed-in results corresponding to the red box in each ground truth. As shown in Figs 2–4,

the reconstructed results by FBP and TV are contaminated by noise and artifacts. Although

RED-CNN and DIP can suppress the noise, many valuable details are smoothed out. In

Fig 4. Reconstruction results of case AAPM-3 at different dose levels by different methods. Zoomed ROI images from the ground-truth image.

https://doi.org/10.1371/journal.pone.0304738.g004

Fig 3. Reconstruction results of case AAPM-2 at different dose levels by different methods. Zoomed ROI images from the ground-truth image.

https://doi.org/10.1371/journal.pone.0304738.g003
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comparison, the proposed method achieves better reconstruction accuracy than the competi-

tive methods. It is worth noting that although the ground-truth images are norm-dose CT

images, slight noise and artifacts still remain in them. Furthermore, the reconstructed results

by the proposed method outperform the ground-truth images in terms of resolution, particu-

larly with Ii = 1e4 and 5e4.

LoDoPab-CT data. For the LoDoPab-CT data, the reconstruction results are shown in

Fig 5. From Fig 5, we can observe that the performance of each reconstruction method is simi-

lar to their performance for the above AAPM challenge data reconstruction. The reconstructed

results by FBP and TV suffer from noise and artifacts, although TV can suppress a lot of noise.

The textures and edges in the reconstructed results by RED-CNN are smoothed out, whereas

DIP can remove noise and preserve tiny structures more effectively. The proposed method

achieves the best performance with regard to noise suppression and preservation of tiny struc-

tures. Furthermore, the reconstruction errors (Fig 6) further demonstrate that FBP method

sacrifices a lot of useful information. TV and RED-CNN can effectively improve the recon-

structed results by FPB; however, TV can not preserver edges well, and RED-CNN tends to

smooth edges and textures. DIP has slighter residual errors in terms of edges and textures.

Compared with the competitive methods, the proposed method significantly decreases the

reconstruction errors by FBP and achieves minimal reconstruction errors.

To quantitatively analyze the performance of our method, we calculate the the PSNR and

SSIM values of the above reconstruction results, including the AAPM challenge data and the

LoDoPab-CT data. As shown in Table 1, our method achieves the highest PSNR and SSIM

among the five approaches, except for the reconstruction task of AAPM-2 with respect of the

SSIM under Ii = 1e3 and of AAPM-3 with respect of the PSNR under Ii = 1e3. Specifically, the

SSIM and PSNR of DIP are 0.06 and 0.24 dB higher than those of the proposed method.

In addition, we take the evolution curves of PSNR and SSIM versus iteration of LoDoPab-

CT data reconstruction as an example to illustrate the convergence of the proposed method.

Fig 5. Reconstruction results of LoDoPab-CT data at different dose levels by different methods. Zoomed ROI images from the ground-truth image.

https://doi.org/10.1371/journal.pone.0304738.g005
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As shown in Fig 7, the PSNR and SSIM increase while the loss decreases rapidly, which reveals

that the proposed method can converge quickly. Specifically, the curves of PSNR and SSIM

begin to converge after about 250 iterations, and the curves of loss start to converge after about

100 iterations. Although there are some fluctuations in these curves since the measurements

contain noise, they converge quickly again, which indicates the good robustness of our

method. Table 2 lists the computation time of different method on a single GPU (Nvidia Tesla

K80), it can be seen that FBP, TV and the proposed method have great disadvantages in terms

Fig 6. Reconstruction errors of LoDoPab-CT data at different dose levels by different methods.

https://doi.org/10.1371/journal.pone.0304738.g006

Table 1. Quantitative results (PNSR/SSIM) of different algorithms.

Data Ii FBP TV RED-CNN DIP Proposed

AAPM-1 1e3 10.92/0.09 14.51/0.19 23.54/0.64 29.83/0.81 32.37/0.82

1e4 10.92/0.09 21.19/0.37 25.39/0.74 30.22/0.82 35.99/0.92

5e4 10.92/0.09 26.25/0.54 24.23/0.69 30.36/0.82 37.85/0.94

AAPM-2 1e3 9.75/0.12 12.86/0.16 24.89/0.68 31.46/0.85 31.56/0.79

1e4 9.75/0.12 19.32/0.31 27.49/0.79 30.33/0.83 35.30/0.92

5e4 9.75/0.12 25.21/0.49 25.89/0.75 31.94/0.85 38.06/0.94

AAPM-3 1e3 10.89/0.13 13.30/0.17 25.71/0.73 35.71/0.90 35.47/0.90

1e4 10.89/0.13 19.99/0.30 28.35/0.83 36.24/0.91 38.07/0.93

5e4 10.89/0.13 26.03/0.47 26.64/0.80 35.20/0.90 37.72/0.94

LoDoPab-CT 1e3 10.65/0.09 15.72/0.22 24.33/0.65 32.76/0.88 33.25/0.89

1e4 10.65/0.09 24.26/0.45 26.12/0.73 33.14/0.88 35.84/0.94

5e4 10.65/0.09 29.24/0.65 24.95/0.70 32.82/0.87 36.39/0.95

https://doi.org/10.1371/journal.pone.0304738.t001
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of reconstruction time. Although RED-CNN only need one inference to reconstruct the high-

quality image, the process of NN training is time consuming. Therefore, one can set a larger

number of iterations to ensure that good reconstruction results can be obtained due to the

rapid convergence and low computational cost of the proposed method.

Discussion and conclusion

For the initial LDCT reconstruction, we utilize the results reconstructed by FBP as the initial

model for the proposed method. FBP can extract fundamental information about the internal

structure of the human body, despite potential contamination from artifacts caused by the low

Table 2. Computation time of different algorithms for LoDoPab-CT data reconstruction.

Method GPU time

Training Reconstruction

FBP (s) / 0.1

TV (s/iteration) / 0.07

RED-CNN (s/epoch) 310 5.1

DIP (s/iteration) / 3.11

Proposed (s/iteration) / 1.02

https://doi.org/10.1371/journal.pone.0304738.t002

Fig 7. Convergence analysis of the proposed method in LoDoPab-CT data reconstruction. (a1), (a2) and (a3) represent the PSNR, SSIM, and loss

curve, respectively, for Ii = 1e3. (b1), (b2) and (b3) depict the PSNR, SSIM, and loss curve, respectively, for Ii = 1e4. (c1), (c2) and (c3) is the PSNR,

SSIM, and loss curve, respectively, for Ii = 5e4.

https://doi.org/10.1371/journal.pone.0304738.g007
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intensity of X-ray. This is crucial for neural network-based LDCT imaging, as the black-

box nature of these networks can significantly decrease the reliability of LDCT reconstruction

results. It’s also important to note that the quality of the initial reconstructed image can impact

the performance of the proposed method. One could substitute the FBP input with a high-

quality image to further improve resolution. Additionally, FBP often performs much faster

than iterative reconstruction approaches such as compressive sensing, which aids in enhancing

inversion efficiency. Although our proposed method can converge rapidly, fluctuations due to

noise in measurements might negatively impact the reconstruction efficiency. In future work,

we aim to investigate better regularization techniques to promote convergence stability.

In this work, we propose an unsupervised and training data-free method for LDCT imag-

ing. The proposed method aims to improve the initial reconstruction results with low quality,

which reconstructs the high-quality image by DNN training without any training samples. We

implement the DNN training by minimizing the ℓ1-norm distance between the CT measure-

ments and their corresponding simulated sinogram data on the reconstructed image and the

TV value of the reconstructed image. Notably, the proposed method dose not need to set

weights for both the data fidelity term and the regularization term, which significantly reduces

the difficulty of manually setting the weights. Experimental results on the AAPM challenge

data and LoDoPab-CT data demonstrate that the proposed method could achieve better per-

formance than the representative non-learning methods and supervised method, with higher

resolution and lower computational cost. The proposed method can be implemented flexible

and has the potential to be applied to other medical image reconstruction problems, including

sparse-view CT reconstruction and image reconstruction from sparse samples in MRI. These

applications are particularly useful when collecting training samples is either expensive or

difficult.
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