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4 Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Ouro Preto, MG, Brazil,

5 Department of Clinical Analysis, Federal University of Ouro Preto, Ouro Preto, MG, Brazil

* geovani@ufop.edu.br

Abstract

Optical microscopy videos enable experts to analyze the motion of several biological ele-

ments. Particularly in blood samples infected with Trypanosoma cruzi (T. cruzi), microscopy

videos reveal a dynamic scenario where the parasites’ motions are conspicuous. While par-

asites have self-motion, cells are inert and may assume some displacement under dynamic

events, such as fluids and microscope focus adjustments. This paper analyzes the trajectory

of T. cruzi and blood cells to discriminate between these elements by identifying the follow-

ing motion patterns: collateral, fluctuating, and pan–tilt–zoom (PTZ). We consider two

approaches: i) classification experiments for discrimination between parasites and cells;

and ii) clustering experiments to identify the cell motion. We propose the trajectory step dis-

persion (TSD) descriptor based on standard deviation to characterize these elements, out-

performing state-of-the-art descriptors. Our results confirm motion is valuable in

discriminating T. cruzi of the cells. Since the parasites perform the collateral motion, their

trajectory steps tend to randomness. The cells may assume fluctuating motion following a

homogeneous and directional path or PTZ motion with trajectory steps in a restricted area.

Thus, our findings may contribute to developing new computational tools focused on trajec-

tory analysis, which can advance the study and medical diagnosis of Chagas disease.

Introduction

The motility of the parasite Trypanosoma cruzi (T. cruzi), which is the etiological agent of Cha-

gas disease [1], is an important visual stimulus in optical microscopy analyses. The low con-

trast presented by this microorganism makes its motion an essential indicator of its presence

in the analysis of blood samples without staining techniques. However, T. cruzi is not the only

dynamic element observed during these analyses. Blood cells also show some dynamic

responses to different stimuli. Except in situations in which the parasitologist is fatigued or
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inexperienced, which often leads to incorrect analyses and diagnoses, the dynamic behavior of

these elements differentiates them.

Trypanosomatids are a group of highly versatile microswimmer parasites. The motility of

these parasites depends greatly on their morphology (size, shape, propulsion mechanism) and

on the environment in which they move. Some works present important insights into the

motility of trypanosome species, such as T. brucei [2–7], T. carassii [8], T. congolense, T. evansi,
and T. vivax [9]. T. cruzi motility studies focus on the epimastigote [10–12] and trypomastigote

[13] stages of its life cycle. Video microscopy and the vectorial analysis of T. cruzi trajectories

indicate the alternation of rectilinear and intricate motility paths. In addition, this parasite’s

flagellar and ciliary beating generates different distances traveled [10]. The speed during its

tumbling motion is less than that of the nearly rectilinear persistent motion [11]. From the per-

spective of diffusive motion patterns, the spreading of its trajectory is strongly superdiffusive

for short-times, and the speed time series present long-range correlations [12]. Various factors

can affect T. cruzi motility [14, 15]. A recent finding establishes that T. cruzi trypomastigotes

can detect the presence of mammalian cells and change their motility patterns [13].

The parasitemia level is high during the acute phase of Chagas disease, favoring the detec-

tion of motile trypomastigotes by blood microscopy. In contrast, the diagnosis in the chronic

phase relies on serological methods [16]. When laboratory procedures require examining sam-

ples containing live parasites, they typically consider motion in their analysis, such as detecting

motile trypomastigotes in newborns from mothers with Chagas disease [17]. Although the

motion is an intrinsic and indispensable biological aspect of T. cruzi, this characteristic still

needs to be better explored and investigated using computational approaches to aid the study

and medical diagnosis of Chagas disease. Among the approaches used to detect these parasites

[18–31], few studies consider motion [18, 19, 25, 26, 29, 31]. The dynamic context involved in

the optical microscopy of blood samples infected with T. cruzi parasites is one of the challenges

encountered by these approaches, which can be sensitive to different stimuli [29]. To the best

of our knowledge, the motion-based approaches focus on detecting parasites without particu-

larly identifying blood cells. However, cells are elements that can introduce false positives.

Tracking these elements and analyzing their trajectories can improve detection performance.

Fig 1 shows the movement patterns observed in T. cruzi parasitological analysis videos.

Collateral motion corresponds to stimuli perceived during the locomotion of T. cruzi, which

interacts with neighboring cells and fluids. It is not the parasite’s intrinsic motion but a motion

resulting from collisions with other elements in the scene. Fluctuating motion is mostly identi-

fied in cells suspended in the blood sample. Although cells do not have a self-motion, they are

susceptible to dynamic events that make them vulnerable to sudden movements. An example

is the handling of moving parts of the microscope, which can destabilize the cells. Pan–tilt–

zoom (PTZ) motion is related to the focus adjustments of the microscope lenses or even the

camera that captures the visual field. In this case, static elements can express apparent motion

due to the focus adjustments. Generally, this type of motion influences the performance of

computational approaches that extract the spatio-temporal features of the scene.

The study of the trajectory of the elements involved in the parasitological analysis of

T. cruzi can reveal interesting insights about the reported motion patterns and thus contribute

to developing new applications. While parasites are mobile elements by nature, cells are inert

and start to move under the influence of dynamic events, as observed in optical microscopy

videos. We hypothesize that the dynamic context emphasized by Martins et al. [29] generates

distinct trajectory patterns between the biological elements and may be explored to character-

ize T. cruzi and blood cells by computational approaches. While collateral motion-stimulated

blood cells exist, our study is restricted to cells that do not interact with parasites. This enables

us to identify the regular dynamic patterns of cells. By investigating how the trajectories differ,
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our contributions are the following: i) an approach to distinguishing the element that performs

the motion based on its trajectory; ii) an approach to analyzing the type of cell motion; and iii)

a descriptor for measuring the standard deviation of steps in different trajectory segments at

constant time intervals. The following sections present the proposed methodology used to test

our hypothesis, the obtained results, a discussion, and conclusions.

Materials and methods

We present the pipeline of this work in Fig 2. We propose two experimental approaches. The

first one defines a supervised tree-based method to classify cells and parasites based on motion

parameters. The second one defines a clustering method to differentiate the two cell motions

(fluctuating/PTZ).

Dataset

Here, we utilized the dataset introduced by Martins et al. [29], which comprises optical micros-

copy videos of blood samples and trajectories of T. cruzi trypomastigotes. Videos are up to 10

seconds long, with a frame rate of approximately 30 frames per second (fps) and a resolution

of 640 x 480 pixels. The training and testing videos have distinct parasite trajectories. We per-

formed the same procedure as Martins et al. [29] to generate the trajectories of the cells. We

randomly selected three cells for each parasite in the video as our sample. It is important to

emphasize that no chosen cell interacts with the parasites along its trajectory. Then, we labeled

these cells using the Tracker tool [32], which is free and open source, and an expert validated

the trajectories obtained. A trajectory is a sequence of positions of an element that moves

within a spatio-temporal context [33, 34]; it can be represented as traj =< p1, p2, p3, . . ., pn>
where pn = (xn, yn, tn) is the nth trajectory point, that is, the point in frame n. The (xn, yn) coor-

dinates represent the spatial location of pn; x and y represent the horizontal and vertical coordi-

nates, respectively, in video pixels. tn is the time at which pn is regularly recorded. Since the

videos were taken at 30 frames per second, Dt ¼ 0:0�3 s for two consecutive frames between 1

and n.

Fig 1. Dynamism in video microscopy of T. cruzi parasites. Three motions are illustrated: (A) collateral motion observed during the locomotion of T.
cruzi parasites between cells; (B) the fluctuating motion of cells or other artifacts present in the blood; and (C) PTZ motion due to microscope or camera

focus adjustments.

https://doi.org/10.1371/journal.pone.0304716.g001
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Fig 2. Overview of trajectory analysis. (A) The trajectories of parasites and cells are split to form training and test datasets. (B) The trajectories

are partitioned into segments for a better analysis of their behavior. (C) Features are extracted from trajectory segments. (D) Approach to

discriminate between elements. Supervised learning classification models learn the training dataset’s motion patterns and categorize the test

dataset’s trajectory segments. (E) Approach to identify cell motion patterns. Unsupervised learning models identify hidden patterns in training

and test trajectory segments and group similar segments into a cluster. (F) We evaluated the performance of the experiments according to the

classification accuracy (distinguishing between parasites and cells) and the clustering quality (distinguishing between fluctuating and PTZ

motion).

https://doi.org/10.1371/journal.pone.0304716.g002
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Trajectory splitting

One of the techniques used in the pre-processing of trajectory data is splitting, which makes it

possible to prepare these data for future classification and clustering tasks. Trajectory splitting

reduces the computational complexity and allows better analysis and discovery of trajectory pat-

terns [33]. We consider time intervals of the same duration for trajectory splitting. Thus, a seg-

ment is part of a complete trajectory, and it is represented as trajseg =< pi, pi+1, pi+2, . . ., pi+(k−1)>

where pi is the initial point of the trajectory segment, and k is the total number of successive

points to be considered.

Feature extraction

We propose the trajectory step dispersion (TSD) descriptor to estimate the step length disper-

sion of trajectory segments. Since T. cruzi’s motion is conspicuous in the scene [29] and this

microorganism is the only one with self-motion, we consider that parasites and cells can be

distinguished by analyzing the variance between different segments of their trajectories at con-

stant time intervals. The TSD can be computed as follows for a trajectory segment consisting

of k points:

TSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k � 1

Xk� 1

i¼1

ðli � �lÞ2
v
u
u
t ; ð1Þ

where the step length is li = pi+1 − pi 8i 2 [1, k − 1], and the mean is�l ¼ 1

k� 1

Pk� 1

i¼1
li.

Since the mean speed and mean square displacement power-law exponent (λ-MSD) are rel-

evant to describing the motility patterns of T. cruzi trypomastigotes [13], we consider both in

our study.

Element discrimination

Our classification task is a binary classification problem in which we need to label a trajectory

segment according to whether it was followed by a parasite or a blood cell. We used three vari-

ations of tree-based classifiers: the decision tree [35, 36], which is a simple decision making-

diagram; random forest [37, 38], which consists of a collection of decision trees combined

using averages or majority rules at the end of the decision-making process; and extreme gradi-

ent boosting (XGBoost) [39], which implements the concept of gradient boosting using more

precise approximations to find the best tree model.

Cell motion identification

We combine cell trajectory segments from the training and test datasets. As blood cells can per-

form two motions, we propose trajectory clustering to group similar trajectory segments and

thus investigate the mobile behavior of each cluster. The best performance occurs with the maxi-

mization of the homogeneity within and heterogeneity between clusters [40]. We use the spectral

clustering method [41, 42], since this method outperformed the classical algorithms on a wide

variety of datasets [43]. Spectral clustering is based on a graph partitioning problem in which

nodes in the graph are associated with minimum distances. It requires the number of clusters to

be specified a priori; this number corresponds to the cell motion patterns to be investigated.

Statistical analysis

We evaluate the relationship between features through correlation analysis. We compute the

pairwise correlation of features using the Pearson method [44]. The value of Pearson’s
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correlation coefficient varies from −1 to + 1, where −1 indicates a strong negative correlation,

and + 1 indicates a strong positive correlation. If 0, there is no relationship between the fea-

tures. We also analyze the probability distribution of parasite and blood cell trajectory features

based on kernel density estimation (KDE). We estimate density using Gaussian kernels and

Scott’s rule to get the bandwidth [45]. From the perspective of diffusion models, we explore

the behavior of MSD curves, as the increase in this statistical measure with time can be fitted

to the power law MSD(t)/ tλ (λ-MSD). The value of λ defines whether the motion is subdiffu-

sive (λ< 1), diffusive (λ = 1), or superdiffusive (λ> 1) [46].

Metrics

Accuracy, precision, recall, and F1 metrics evaluate the classification performance [47]. The

clustering experiments are evaluated in terms of the silhouette coefficient [48, 49].

Results and discussion

We analyze trajectory segments of 1 second, which correspond to sequences of 30 trajectory

points (k = 30). We define this k value based on the video frame rate of 30 fps. Martins et al.

[29] introduced sequences of 25 frames to detect T. cruzi motion. Arias-del-Angel et al. [13]

used a 0-2s interval to define parasite motility patterns. Thus, our parameter k is within an

acceptable range in the literature. We also consider that smaller or larger sequences may have

a loss in the motion definition.

We present the complete trajectory of a T. cruzi parasite and the trajectory splitting strate-

gies in Fig 3. The sequential splitting approach generated a total of 548 trajectory segments,

including 432 (blood cells—324 and parasites—108) training and 116 (blood cells—87 and

parasites—29) test segments. We applied random splitting to the training segments only as a

data augmentation strategy to reduce overfitting in the element discrimination experiment.

This procedure can increase the decision capacity of the trained models [50], as shown in the

next section. Fig 3A also shows the surrounding region of the parasite in some video frames. It

is important to note that the T. cruzi’s low contrast makes it difficult to locate. Its shape is not

consistent; it varies along the trajectory. This is especially true when it overlaps with cells, as in

frame 150. In addition, the surrounding elements change with the displacement of the parasite,

which affects its trajectory. The parasite starts its path by colliding with groups of cells located

above and below, as shown in frames 40 and 91. The flagellar beats are intense, and the shocks

propel the parasite against the opposite group of cells. Then the parasite swims persistently,

crossing restricted spaces between cells. We observed a gradual increase in the number of

blood cells around the parasite, including a confinement scenario in frame 207. The last seg-

ments depict the parasite’s interactions in another containment situation between cells. The

trajectory is limited to a certain region with circular aspect.

We analyze the features extracted from the training trajectory segments in Fig 4. Fig 4A

shows the pairwise correlation of features using the Pearson method [44]. All feature pairs are

positively correlated, with values above 0.70. The mean speed is highly correlated with the

TSD, while the λ-MSD has a moderate correlation with these two features. Fig 4B presents the

data distribution by feature. The trajectory segments of parasites are more dispersed compared

to the cells. The disordered flagellar beating and intense collisions with cells contribute to the

distribution of trajectory segments in high-value ranges. The cells have trajectory segments

concentrated in low-value ranges for the mean speed and TSD, which indicates that the trajec-

tory steps are restricted and tend to preserve the overall behavior of the trajectory. Although

the two elements have similar dispersions of the λ-MSD, the medians of the distributions

occupy opposite regions in the graph. Fig 4C confirms the superdiffusion behavior of the
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Fig 3. Trajectory segments of the T. cruzi parasite obtained from the sequential and random splitting strategies. (A) Sequential split:

segments are generated sequentially along the complete trajectory at regular intervals of k points. Different colors in the complete

trajectory represent the segments. The parasite region is highlighted for some trajectory segments. (B) Random split: segments are

obtained by randomly choosing a starting point on the trajectory and the k − 1 following points.

https://doi.org/10.1371/journal.pone.0304716.g003
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parasites since the trajectory segments had a λ-MSD that was greater than 1. On the other

hand, the λ-MSD of the cells of less than 1 indicates that they perform subdiffusive motion

[46]. This result was expected since the cells do not have a self-motion like the parasites. Note

that although cells tend to subdiffusive motion, they can occasionally have λ-MSD greater than

1. Parasites in confinement may have difficulty in locomotion, exhibiting subdiffusive

behavior.

Element discrimination

Our classification experiment aims to study the problem of element discrimination based on

trajectory analysis. Initially, the hyperparameters of the classification algorithms were tuned

using grid search with 4-fold cross-validation on the training dataset. We repeated this experi-

ment 10 times, training the classification algorithms with different arrangements of trajectory

segments generated with random splitting. This splitting strategy increased the amount of

Fig 4. Feature analysis from training trajectory segments. (A) Pairwise correlation of features. The values correspond to the correlation coefficient: -1.00

indicates a perfect negative correlation, +1.00 indicates a perfect positive correlation, and 0 indicates no correlation between the features. (B) Distribution

and probability density of trajectory segments by feature. Blood cell and parasite segments are represented by pink and green rhombuses, respectively.

White rhombuses indicate the median of the distribution. The width of each curve corresponds to the approximate frequency of trajectory segments in the

region. (C) Mean squared displacements (MSDs) versus the number of video frames. The curves summarize the computed MSD at intervals of 1 to 10 video

frames (8j 2 [1, 10] in MSD(tj)) for all trajectory segments.

https://doi.org/10.1371/journal.pone.0304716.g004
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training data and provided balanced classes, reducing overfitting during model building. We

established 30 segments for each parasite trajectory and 10 for each cell trajectory per video.

Thus, the classifiers were trained with 780 trajectory segments (blood cells—390 and parasites

—390) in each repetition. All the features extracted from the trajectory segments have been

normalized. The mean accuracy values for cross-validation were above 0.980 for the three clas-

sifiers used in our experiment. This result shows that the models generated with the adjusted

parameters have valuable generalization capacities for new trajectory segments.

Once the model has been trained, the resulting model can predict the labels of the test tra-

jectory segments. These segments were generated with sequential splitting. Thus, we obtained

116 trajectory segments (blood cells—87 and parasites—29). The accuracy of each classifier is

shown in Table 1. Note that we perform predictions with isolated features and with all of the

features (the feature collection). The feature collection and TSD presented the best results,

achieving the best performance with the XGBoost classifier. The feature collection also

obtained an accuracy of 0.966 with the decision tree classifier. The λ-MSD presented the worst

performance out of all the features, obtaining the lowest accuracy of 0.440 with the decision

tree classifier. Considering that the XGBoost algorithm obtained the highest accuracy in two

analyzed cases, we present the results for the precision, recall, and F1 metrics in Table 2. The

feature collection and TSD presented the same performance for all metrics. Maximum preci-

sion means that the model is always correct when it predicts that the trajectory segment is

from a parasite. The low precision for the λ-MSD may explain the low accuracy observed in

Table 1. We analyzed the relative importance of each feature in the feature collection for

model prediction and found that TSD contributes 99.8% of the final result. The TSD descriptor

was also the most relevant feature for the other classifiers, indicating that TSD is a valuable

descriptor that can be used to identify T. cruzi parasites in video microscopy.

The qualitative analysis of the results obtained with the XGBoost classifier in the feature col-

lection experiment shows distinct patterns for parasites and blood cells. Fig 5A highlights

some trajectory segments and the predicted class. The trajectory segments of the T. cruzi para-

site are characterized by high dispersion and irregularity in the displacement. The pattern

demonstrates the parasite’s intrinsic swimming motion, which already has a certain random-

ness, and the influence of its interactions with the environment; for example, parasite 1 is sur-

rounded by cells. These aspects highlight the collateral motion of the parasites in the

microscope’s visual field. There are also cell trajectory segments with more dispersed patterns,

such as cell 1 in Fig 5A. However, Fig 5B shows that the displacement of these cells is smaller

Table 1. Accuracy results for test trajectory segments for different tree-based classifiers.

Feature collection Mean speed λ-MSD TSD

Decision tree 0.966 0.888 0.440 0.948

Random forest 0.957 0.862 0.543 0.931

XGBoost 0.966 0.888 0.509 0.966

https://doi.org/10.1371/journal.pone.0304716.t001

Table 2. XGBoost classifier performance metrics.

Precision Recall F1

Feature collection 1.000 0.862 0.926

Mean speed 0.767 0.793 0.780

λ-MSD 0.274 0.586 0.374

TSD 1.000 0.862 0.926

https://doi.org/10.1371/journal.pone.0304716.t002
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than the parasites. Cell 1 presents some trajectory steps with a perpendicular shape, in addition

to overlapping points, indicating the absence of motion. On the other hand, cell 2 maintains a

uniform and directional motion pattern, covering a greater distance than cell 1. Parasite 2 is in

a confinement and cell overlap scenario, making locomotion difficult. The trajectory segment

of parasite 2 has many overlapping trajectory points, similar to cell 1, causing the false

prediction.

Cell motion identification

We analyzed blood cell motion patterns using clustering experiments. We generate a single

dataset with all the cell trajectory segments of the training and test datasets. The segments were

obtained using the sequential splitting strategy, which provided 411 trajectory segments. The

experiments were performed with the spectral clustering algorithm, with the number of clus-

ters equal to two. The clustering performance is given in terms of the silhouette coefficient for

the feature collection and feature pairs in Table 3. We found silhouette coefficients of around

0.67, with no values close to zero or negative. These results indicate that the generated clusters

Fig 5. Qualitative analysis of the XGBoost classifier results in the feature collection experiment. (A) Trajectory segments by predicted class. The lighter

tones of each segment indicate the beginning of the trajectory, and the darker tones indicate the end. The moving element region is highlighted for some

trajectory segments. The arrow indicates the precise location of the element. (B) Comparison of the distance traveled by the elements.

https://doi.org/10.1371/journal.pone.0304716.g005
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have reasonable cohesion and separation [51]. The TSD + λ-MSD feature pair presented the

best silhouette coefficient compared to the other feature combinations. We also investigated

the percentage of trajectories with variation in motion pattern, which we called bi-labeled tra-

jectories. Considering that a moving cell tends to preserve its motion along the trajectory, a

percentage equal to or close to zero indicates a better clustering. Trajectories without variation

in the segment labeling reveal more consistent dynamic patterns. The TSD + λ-MSD feature

pair experiment had a percentage of bi-labeled trajectories of 38.3%, while the other experi-

ments all had a percentage of bi-labeled trajectories of 26.7%.

Our cluster analysis in Fig 6A–6D demonstrates that trajectory segments with low feature

values tend to be labeled as cluster 0. Otherwise, the segments are labeled as cluster 1. We

observe scattered segments in the frontier region, with different cluster assignments depending

on the experiment. Note that the trajectory segments with a TSD value greater than 0.6 were

assigned to cluster 0 in the three-dimensional analysis of the feature collection and to cluster 1

in the TSD + λ-MSD feature pair experiment. These segments contribute to intra-cluster cohe-

sion in the TSD + λ-MSD feature pair experiment, increasing the silhouette coefficient. How-

ever, in this experiment, we observed that segments of the same trajectory are labeled

differently, increasing the percentage of bi-labeled trajectories. In this case, we prefer a low per-

centage of bi-labeled trajectories since it suggests a certain tolerance of the motion pattern, even

with small variations in the features. Fig 6E confirms that defining two clusters for the spectral

clustering algorithm is optimal for identifying cell motions in optical microscopy videos, result-

ing in the highest value of the silhouette coefficient and the lowest percentage of bi-labeled tra-

jectories. From this number of clusters, our experiments reached the best results regarding

labeling cell trajectory segments, supporting the findings reported by Martins et al. [29].

In the feature collection experiment, the region where the cells move can reveal more details

about the clustering results. Fig 6A shows three trajectory segments, with the cell region in the

video frame highlighted. We chose trajectory segments close to the centroid of each cluster, in

addition to a third segment in the frontier region between the clusters. In a quasi-confinement

situation, the cell of the trajectory segment assigned to cluster 0 is in front of a cell clump. The

cell labeled as cluster 0 in the frontier region has a moderate number of neighboring cells. It

overlaps with some cells in the scene. The cell of the trajectory segment labeled as cluster 1

interacts with a smaller number of cells, and there is no overlap. Physical obstacles can make it

difficult for cells to move or even prevent their motion. This dynamic context results in low

values for the features, increasing the number of trajectory segments assigned to cluster 0.

Fig 7A shows the set of cell trajectories, where each step is labeled according to the cluster-

ing results from the feature collection experiment. The cells are distributed in various regions

of the microscope’s visual field, and two motion patterns are observed. Some cells move for

small distances and tend to be assigned to cluster 0. Their trajectory is restricted and limited, a

characteristic behavior of PTZ motion. The other cells move for greater distances and are

assigned to cluster 1. Their trajectory is uniform and directional, following the displacement of

blood fluids or solutions used in the T. cruzi parasitological analysis, as observed in the

Table 3. Spectral clustering results for the dataset of cell trajectory segments.

Silhouette coefficient Bi-labeled trajectories (%)

Feature collection 0.667 26.7%

TSD + λ-MSD 0.673 38.3%

TSD + mean speed 0.667 26.7%

λ-MSD + mean speed 0.667 26.7%

https://doi.org/10.1371/journal.pone.0304716.t003
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fluctuating motion. Such behaviors confirm the previous results, indicating that the clusters

emphasize distinct motion patterns for cells. We also analyzed some bi-labeled trajectories

from Fig 7A. We investigated whether cells c1 to c6, which are from the same video, change

their motion pattern given a dynamic event. These events can have the participation of the ele-

ments or not. When the slide’s static equilibrium is affected, the elements tend to move under

the action of fluids. Or even some stimuli, such as the microscope focus adjustments, introduce

dynamicity without interacting with the elements.

Fig 6. Clustering analysis of blood cell trajectory segments. Clusters obtained in the experiments: (A) the feature collection, in which the moving cell

region is highlighted for some trajectory segments; (B) TSD + λ-MSD; (C) TSD + mean speed; and (D) λ-MSD + mean speed. (E) Behavior of silhouette

coefficient and percentage of bi-labeled trajectories across different numbers of clusters for the studied feature combinations. Notably, the experiments

reached the best results with two clusters, as we observed the highest silhouette coefficient value in conjunction with the lowest percentage of bi-labeled

trajectories.

https://doi.org/10.1371/journal.pone.0304716.g006
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Fig 7. Analysis of bi-labeled trajectories in the feature collection experiment. (A) Complete cell trajectories with labeled steps according to segment

clustering. The trajectories of cells c1 to c6 are analyzed below. (B) Influence of dynamic events on the occurrence of bi-labeled trajectories. The graph’s

axes correspond to the trajectory segments, and the lines of specific colors represent the cells. The color of the rhombus indicates the clustering label.

Dynamic events, which can focus on adjustments or dynamic fluids, are signaled at the end of each axis. We also highlight the frame number in which the

event started and ended.

https://doi.org/10.1371/journal.pone.0304716.g007
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The influence of dynamic events on the trajectories is shown in Fig 7B. The video contain-

ing cells c1 to c6 comprises 313 frames, resulting in 10 trajectory segments, each consisting of

30 steps. Based on our observation of the scene, we identified that the predominant motion of

the cells is PTZ motion. This finding is further supported by clustering the trajectory segments

of cells c1 to c6, which were mostly assigned to cluster 0. This indicates that dynamic events in

the video stimulate the transition in the cells’ motion pattern toward fluctuating motion. An

interesting aspect is that not all cells are influenced. Cells c5 and c6 did not change their labels

over time. Furthermore, the motion pattern does not change for all elements simultaneously,

e.g., only cells c3 and c4 change to cluster 1 due to dynamic fluid in the last trajectory segment.

This evidences that some regions of the sample are more susceptible to fluid action. The stimu-

lus duration and intensity must also be considered for changing the motion pattern. The

dynamic fluid in segments 5 and 9 does not change the motion pattern of the cells, as this

event is not present in many video frames. Cell c1 changes its label in segment 6, despite the

short duration of the dynamic fluid. However, the event time is longer than that in segment 5

and is under the influence of focus adjustment compared to segment 9.

Our contribution to medical diagnosis involves applications specifically targeted at diagnos-

ing acute Chagas disease, as the diagnosis in the chronic phase depends on serology. Other

limitations of our work include the dynamism of the video, which, in very turbulent scenarios,

can substantially change the trajectory of the elements. In addition, cells in contact with para-

sites can be influenced by them, assuming characteristics of the collateral motion. Although it

contributes to detecting T. cruzi parasites, this behavior does not configure a regular cell

motion pattern. Thus, we limited the work to confirm the initial hypothesis.

Conclusions

This paper presents a trajectory-based analysis for the element characterization and identifica-

tion of motion patterns in optical video microscopy. The elements in T. cruzi video micros-

copy present distinct dynamic patterns. Parasites perform the collateral motion, which is the

most salient motion on the scene. Cells exhibit the PTZ motion, which leads to some displace-

ment into a constrained area. Cells under fluctuating motion tend to follow a homogeneous

and directional large path according to fluids in the blood sample. By measuring the standard

deviation between trajectory steps of a moving element, the proposed TSD enables the dis-

crimination between parasites and blood cells, outperforming state-of-the-art approaches. The

collateral motion of the parasites has a superdiffusive behavior, and the interactions with the

cells result in very random trajectory steps. When combined with mean speed and λ-MSD fea-

tures, TSD enhances the identification of the cell motion pattern into fluctuating and PTZ,

providing reasonable cohesion and separation between groups in our clustering experiments.

Since fluctuating and PTZ motions tend to have low variance between the length of constant

time trajectory steps, TSD performs poorly in differentiating these motions, with λ-MSD rep-

resenting the most relevant feature in our surveyed feature collection. We confirm that λ-MSD

captures explored area by the element, which is relevant to distinguishing a motion driven by a

flow from that occurring in a constraint region. The dynamic events, such as fluids and micro-

scope focus adjustment, may lead to bi-labeled cell trajectories. The effects of these events on

cells depend on the microscope’s field of view, the cell positioning in the blood slide, and the

stimulus’s intensity and duration. Since that Chagas disease is a neglected disease, our findings

may contribute to developing new computational tools focused on motion, boosting the study

and medical diagnosis of Chagas disease. Future works may investigate the interaction mecha-

nisms between parasites and cells, providing insights into if and how cells may assume
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collateral motion. The trajectory patterns of elements also may be analyzed under the action of

drugs or other substances.
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