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Abstract

A similarity-driven multi-dimensional binning algorithm (SIMBA) reconstruction of free-run-

ning cardiac magnetic resonance imaging data was previously proposed. While very effi-

cient and fast, the original SIMBA focused only on the reconstruction of a single motion-

consistent cluster, discarding the remaining data acquired. However, the redundant data

clustered by similarity may be exploited to further improve image quality. In this work, we

propose a novel compressed sensing (CS) reconstruction that performs an effective regular-

ization over the clustering dimension, thanks to the integration of inter-cluster motion com-

pensation (XD-MC-SIMBA). This reconstruction was applied to free-running ferumoxytol-

enhanced datasets from 24 patients with congenital heart disease, and compared to the

original SIMBA, the same XD-MC-SIMBA reconstruction but without motion compensation

(XD-SIMBA), and a 5D motion-resolved CS reconstruction using the free-running framework

(FRF). The resulting images were compared in terms of lung-liver and blood-myocardium

sharpness, blood-myocardium contrast ratio, and visible length and sharpness of the coro-

nary arteries. Moreover, an automated image quality score (IQS) was assigned using a pre-

trained deep neural network. The lung-liver sharpness and blood-myocardium sharpness

were significantly higher in XD-MC-SIMBA and FRF. Consistent with these findings, the IQS

analysis revealed that image quality for XD-MC-SIMBA was improved in 18 of 24 cases,

compared to SIMBA. We successfully tested the hypothesis that multiple motion-consistent

SIMBA clusters can be exploited to improve the quality of ferumoxytol-enhanced cardiac

MRI when inter-cluster motion-compensation is integrated as part of a CS reconstruction.
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Introduction

The use of whole-heart coronary magnetic resonance angiography (CMRA) has been investi-

gated during the past decades as a non-invasive and radiation-free approach to the diagnosis

of coronary artery disease [1] and to the assessment of anomalous coronary arteries [2–4].

Conventional whole-heart CMRA acquisitions require prolonged scan time and are therefore

highly sensitive to physiological motion [5]. Respiratory and cardiac motion produces artifacts

that adversely affect the image quality and prevent a correct anatomical characterization of the

heart and its vasculature. Traditionally, respiratory artifacts are suppressed using navigator-

gating [6] or breath-holding while the mainstay for cardiac motion suppression is ECG-trig-

gering or gating [7].

Alternatively, ungated or untriggered acquisitions have shown to replace navigators by the

extraction of self-navigation signals directly from the imaging data to retrospectively recon-

struct cardiac and respiratory resolved images [8–16]. These free-running approaches have the

potential to simplify cardiac MRI by deliberately shifting the motion management from the

acquisition side to the reconstruction. All of these techniques are free-breathing and resolve

the cardiac motion retrospectively, either by using ECG signals [10, 11, 13] or by extracting a

cardiac self-navigation signal, corresponding to the change of the ventricular blood volume [8,

9, 12, 14–16].

XD-GRASP [17] was proposed as a multi-dimensional motion-resolved compressed sens-

ing (CS) technique in which information among similar motion states is shared in new

dynamic sparse temporal dimensions. Building on this method, a fully automated framework

for both self-gated cardiac and respiratory motion-resolved 5D whole-heart MRI was previ-

ously published [14]. As this approach separates the data into motion-consistent states through

phyisiological binning, the reconstruction of 5D (3D spatial + cardiac motion + respiratory

motion) images makes use of CS approaches to reduce undersampling artefacts and recover

high-quality images [18]. 5D reconstructions rely on the explicit extraction of self-gating sig-

nals, and commonly assume a certain regularity of respiratory and cardiac motion over time,

within predefined frequency ranges. A similarity-driven multi-dimensional binning algorithm

(SIMBA) has been proposed as a fast (sub-minute) method for the reconstruction of free-run-

ning data [19]. SIMBA implicitly exploits the periodicity of physiological signals, captured as

spatial similarities in the numerous k-space profiles of the free-running acquisition, to cluster

motion-consistent data together. Combined with the injection of ferumoxytol [20], it was

demonstrated that SIMBA results in diagnostic whole-heart volumes, which provide informa-

tion about both the heart and coronary arteries with a quality similar to that obtained with the

5D CS reconstruction [19]. However, in classical SIMBA, only one among multiple motion-

consistent clusters is selected for reconstruction, using a simple direct non-uniform fast Fou-

rier transform (NUFFT), resulting in a large percentage of the data being discarded.

We posit that the additional information contained in these discarded clusters can be more

exhaustively exploited for improved image quality and more efficient use of the abundant data

collected during a free-running acquisition. Moreover, we demonstrate that with the addition

of deformation fields in the reconstruction the data does not have to be in a sequential physio-

logical order to be able to perform an effective regularization in CS.

Therefore, the goal of this work is to extend SIMBA with redundant information being

shared in the clustering dimension. In the pursuit of this, we test two hypotheses: First, that

the SIMBA clusters can be considered as a new dynamic dimension as part of a CS reconstruc-

tion approach that exploits the spatial redundancy of the anatomical information among the

clusters. Second, that since it is not possible to predict what specific physiological phases the

SIMBA algorithm returns in its most populated clusters, the sparsity of the clustering
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dimension will be heavily patient-dependent and often suboptimal (e.g., with systolic clusters

close to diastolic clusters). By incorporating inter-cluster motion compensation into the CS

reconstruction, large and unpredictable anatomical differences can be compensated, without

compromising image quality.

These hypotheses were tested in a cohort of patients with congenital heart disease (CHD)

after ferumoxytol-enhanced free-running 3D radial acquisitions using image quality metrics

of the heart and the coronary arterial system as endpoints.

Methods

Ferumoxytol-enhanced CMR acquisitions

Twenty-four patients with CHD (age 25±15 years, range 2–60 years; 18 male; weight 64±24 kg,

range 12.6–104 kg) with a clinical indication for ferumoxytol-enhanced cardiac MRI were

included in this IRB-approved retrospective study (Commission cantonale d’éthique de la

recherche sur l’être humain, CER-VD, approval number 2022–01521). Data was accessed for

research purposes between 20.10.2022 and 08.12.2022, together with the patients’ demograph-

ics and characteristics. Each study participant or their legal guardian provided IRB-approved

written informed consent. The datasets were obtained from consecutively recruited patients

who were scanned with an identical imaging protocol.

In vivo acquisitions were performed on a 1.5T clinical MRI scanner (MAGNETOM Sola,

Siemens Healthcare, Erlangen, Germany). The free-running research application sequence

used in this study is a gradient-echo sequence without fat saturation pre-pulses, which has

been previously published [21]. K-Space data were continuously sampled using a 3D golden

angle kooshball phyllotaxis trajectory [22], interleaved with the frequent acquisition of supe-

rior-inferior (SI) readouts, which are commonly used for the extraction of self-gating cardiac

and respiratory signals [14]. The acquisition protocol consists of 5’749 radial interleaves and

22 readouts/interleave. The main sequence parameters were as follows: radio frequency excita-

tion angle of 15˚ with an axial slab-selective sinc pulse, resolution of 1.15–1.35 mm3, FOV of

220–260 mm3, TE/TR of 1.64/2.84 ms, and readout bandwidth of 1002 Hz/pixel. The SI read-

outs are played out with a frequency of 16Hz. The total scan time was 5:59 minutes.

All examinations were performed during free-breathing after administration of 2 to 4 mg/

kg of ferumoxytol (Feraheme, AMAG Pharmaceuticals, Waltham, Massachusetts, USA) [20]

as a slow-infusion over 15 minutes.

Image reconstruction

Similarity-driven multidimensional binning algorithm (SIMBA). As a common start-

ing point to all reconstructions, we apply SIMBA as described in the original publication [19],

to have a fast binning of the data into different motion-consistent clusters, without explicitly

extracting or resolving the whole range of physiological motion. In summary, this technique

consists of two main steps: i) the acquired SI projections are concatenated into a single 2D

matrix that undergoes a dimensionality reduction by applying a principal component analysis

(PCA), ii) only the real part of the data projected in this PCA space is clustered using k-means

into 10 to 14 disjoint clusters. As described by Heerfordt et al. [19], this range was prospec-

tively chosen to have approximately 12000–15000 readouts (acceleration factor of 4 to 5), ade-

quate for the reconstruction of a 3D whole-heart volume in the most populated cluster. The

final optimal number of clusters, within this search range, is then determined by using an auto-

mated search procedure which aims at selecting a number of clusters k for which the average
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distance between the cluster’s centroid μk and the data points ŝ of the most populated cluster C
is minimized:argmink 2 10;...;14f g
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Each of the extracted clusters of data is reconstructed using a 3D gridded reconstruction for

non-Cartesian acquisitions, consisting of a density compensation, NUFFT [23], and applica-

tion of the coil sensitivities, which were estimated from the pre-scan calibration data using a

modified version of the method presented by Pruessmann et al. [24] and presented in Milani

et al. [25].

The original SIMBA method only considers the most populated cluster of data for image

reconstruction. It was shown that these images have the best image quality relative to other

clusters and generally target a diastolic and end-expiratory resting phase [19].

Motion-resolved reconstruction (XD-SIMBA). To make better use of the multiple

SIMBA clusters, we optimized the original SIMBA algorithm by selecting not just one but four

of the motion-consistent clusters for reconstruction. This was chosen empirically by targeting

the use of approximately half of the acquired data, which corresponds to 4–5 clusters having

12000–15000 readouts in the largest clusters. To account for the variability in the number of

readouts per cluster across subjects, we took a minimum of four clusters as a tradeoff between

potential image quality and computation time. The different clusters are representative of the

same anatomy in different states, so we can make use of a CS concept introduced in the origi-

nal XD-GRASP publication [17] and perform a motion-resolved reconstruction in which the

3D volumes reconstructed from the four most populated SIMBA clusters become a new

dynamic dimension (XD-SIMBA). The reconstruction problem can be formulated as:

x̂ ¼ argminx

XK

i¼1
kF ið ÞCx ið Þ � y ið Þk

2

2
þ l
XK

i¼1
kx ið Þ � x i� 1ð Þk

1
ð1Þ

where F is the NUFFT, C the coil sensitivities for all coils applied as a matrix block

C1. . .CNcoils

h iT
� �

in the same way for all clusters, x(i) the static 3D image reconstructed from

the cluster i where cyclical motion was considered by setting x(0) = x(K), y(i) the k-space data in

the cluster i, and K the number of SIMBA clusters chosen (K = 4). k � k
2

is the L2-norm and

k � k1 is the L1-norm. The total variation regularization parameter λ was experimentally opti-

mized (see S1 Fig) and was set to 0.3. This optimization problem was solved via the alternating

direction method of multipliers (ADMM), and the alternating minimization problem using

the conjugate gradient (CG) method. From the resultant four datasets, the XD-SIMBA image

originating from the most populated cluster was then used for analyses.

3D motion-resolved reconstruction with inter-cluster motion compensation

(XD-MC-SIMBA). As SIMBA clustering does not necessarily lead to the extraction of

motion states that follow each other in a physiological sense, we compensate for potentially

large deformations by estimating 3D non-rigid deformation fields between pairs of gridded

images from adjacent clusters using NiftyReg [26]. Motion compensation can be achieved by

integrating the deformation fields inside the CS reconstruction framework [27–29]. Similarly,

here the estimated 3D non-rigid deformation fields are incorporated into the reconstruction

(XD-MC-SIMBA) by reformulating the problem in Eq (1) as:

x̂ ¼ argmin
x

XK

i¼1
kF ið ÞCx ið Þ � y ið Þk

2

2
þ l
XK

i¼1
kT ið Þ

u x
ið Þ � x i� 1ð Þk

1
ð2Þ

Where T ðiÞu is the non-rigid image deformation operator that deforms x(i) in order to match x(i

−1), where cyclical motion was considered by setting x(0) = x(K). Estimation of the deformation

fields was obtained by optimizing an objective function based on the Normalized Mutual
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Information between x(i) and x(i−1), and the Niftyreg program was applied with the default

parameters except for the maximal number of iterations raised to 300. To evaluate the contri-

bution of such motion registration to the final image quality, we apply the same regularization

factor as for XD-SIMBA, meaning a λ of 0.3. For comparison with SIMBA and XD-SIMBA,

the XD-MC-SIMBA image was the one in the same motion state as the most populated

SIMBA cluster.

For more details about the formulation and implementation of the image reconstruction

problem please refer to the work of Milani et al. [25].

All 24 datasets were reconstructed with the three reconstructions (SIMBA, XD-SIMBA,

XD-MC-SIMBA), as visually summarized in Fig 1. All reconstructions (both 3D gridded and

motion-resolved) were performed with a GeForce RTX 3090TI GPU with 24 GB of VRAM,

while the other operations (SIMBA clustering and image registration) were carried out on

CPU. The ADMM iterations were set to 40, while the CG iterations were set to 3.

Free-running framework (FRF) 5D image reconstruction. In addition, the same 24

datasets were reconstructed using the published free-running framework (FRF) for 5D image

reconstruction of ferumoxytol-enhanced datasets [21], a CS reconstruction that exploits spar-

sity along both the cardiac and the respiratory dimensions, obtained by explicitly extracting

self-gating cardiac and respiratory motion signals. For the FRF, the ADMM iterations were set

to 10, while the CG iterations to 4. Total variation regularization weights were the same for

both cardiac and respiratory dimensions and set to 0.01. This reconstruction is compared to

all other reconstructions.

Image quality analysis

To objectively compare the quality of the four different reconstructions, the following metrics

were calculated. The contrast ratio between blood and myocardium was assessed by comput-

ing the ratio between the difference in signal intensity of blood and myocardium divided by

the myocardial signal intensity. The sharpness of the lung-liver and blood-myocardium inter-

faces were quantified by fitting parametrized sigmoid functions to the tissue interfaces, with

the slope parameter representing the sharpness value [30]. The total visible length and sharp-

ness of the first 4 cm of the right coronary artery (RCA) and the combined left main (LM) and

left anterior descending coronary artery (LAD) were quantified using the Soap-Bubble tool

[31]. Furthermore, image quality scores (IQS) were assigned to each whole-heart 3D volume

by using a previously published deep learning-based approach for image quality assessment

[32]. This algorithm was trained to assign grades according to the following scale: 0, non-diag-

nostic; 1, limited diagnostic value; 2, image of diagnostic value; 3, good diagnostic value; 4,

excellent diagnostic value. By using this automated approach, the IQS assignment is blinded to

the reconstruction type and can identify differences in image quality when applying different

reconstruction methods [32] (S1 Appendix).

Analysis of sharpness, contrast ratio, and coronary artery metrics were only performed on

the images resulting from the most populated cluster [19] and from a phase from the 5D FRF

reconstruction that mostly resembled the state depicted in the SIMBA images. We assigned

IQS to the selected FRF image, and final SIMBA, XD-SIMBA and XD-MC-SIMBA images,

from the most populated cluster. We reported the relative % difference in IQS grades between

pairs of reconstructions.

The average optimal number of SIMBA clusters across subjects was recorded, and the per-

centage of the acquired data used for each SIMBA reconstruction was reported together with

the undersampling factor R. In addition, the reconstruction times were measured.
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Fig 1. Summary of the main steps involved in the image reconstruction. Starting from a free-running acquisition (A), the reference SI projections are

concatenated to obtain a matrix that is used as input to SIMBA (B). After applying SIMBA, the resulting binning consists of a set of disjoint clusters. As a first

common step, the four most populated clusters are selected and reconstructed using a non-uniform 3D gridded reconstruction (C). The original SIMBA image

consists of taking the non-uniform 3D gridded reconstruction of the most populated cluster. (D1) A motion-resolved reconstruction (XD-SIMBA) is obtained

by performing a compressed-sensing reconstruction and regularization over the clustering dimension. (D2a) Additionally, we integrate a non-rigid motion

estimation in the iterative reconstruction framework (D2b) to regularize over co-registered clusters and obtain a motion-resolved reconstruction with inter-

cluster motion compensation (XD-MC-SIMBA).

https://doi.org/10.1371/journal.pone.0304612.g001
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Statistical analyses of all quantitative metrics were performed using one-way analysis of var-

iance (ANOVA) with Bonferroni correction to account for multiple comparisons [33]. Statisti-

cal significance was defined by two-sided paired sample t-tests with p<0.0125. All image

reconstructions and analyses were performed using MATLAB (ver. R2021, The MathWorks,

Natick, Massachusetts, USA).

Results

The SIMBA clustering resulted in 13 clusters on average per patient (see S2 Fig on the size and

shape of the clusters). Among the four most populated clusters selected for the reconstruction,

the first contained 12.2±1.9% of the acquired data, the second 10.5±1.4%, the third 9.6±1.2%,

and the fourth 8.9±1.0%. In terms of undersampling factors, the first cluster was undersampled

by a factor of R = 4, the second by R = 4.5, the third by R = 5, and the fourth by R = 5.4. The

average computation time for the different reconstructions (including also clustering, binning

and estimation of the deformation fields, when applicable) were: 1.8 min ± 25 sec (SIMBA),

2.4 hours ± 24 min (XD-SIMBA), 3.2 ± 1 hours (XD-MC-SIMBA), and 7.5 ± 1 hours (FRF).

As expected, the four selected SIMBA clusters can depict physiological states of the heart

that are very similar or very different, e.g. diastole for the first three clusters and systole for the

fourth cluster (Fig 2). Hence during the CS reconstruction, the images from the clusters adja-

cent to this fourth one, i.e. the third and the first one when assuming circular motion, are neg-

atively affected by this large uncompensated deformation. Indeed, we observe that the simple

CS reconstruction (XD-SIMBA) results in blurrier images, compared to the gridded images

(SIMBA), especially in the left ventricular region, where most of the deformations of the myo-

cardium are observed. This is particularly visible for the fourth image, for which it is no longer

possible to distinguish the border between the blood-pool and the myocardium. However,

when compensating for inter-cluster motion with the integration of deformation fields inside

the CS reconstruction (XD-MC-SIMBA), the blurring is no longer observed, but instead we

have very sharp images for all clusters, even compared to the original SIMBA reconstructions

(see S3 Fig about the performance of image registration).

Zooming into smaller anatomical structures, we observe how XD-MC-SIMBA offers a

much improved visualization of the coronary arteries and aortic valve, compared to both

SIMBA and XD-SIMBA (Fig 3). This case shows how XD-SIMBA, because of uncompensated

and possibly large motion between neighboring clusters, may not be sufficient to recover ana-

tomical detail and may even lead to blurring of the coronary vessels. When comparing these

reconstructions to that of 5D FRF, we see how the FRF image has higher image quality com-

pared to both SIMBA and XD-SIMBA, with the depiction of the coronary vessels or the aortic

valve being very similar to that from XD-MC-SIMBA.

The lung-liver sharpness is significantly higher in XD-MC-SIMBA compared to SIMBA

(p = 0.0004), but not compared to XD-SIMBA (p = 0.02). For FRF, it is significantly higher

compared to SIMBA (p = 0.003), but not compared to XD-SIMBA (p = 0.09) or

XD-MC-SIMBA (p = 0.86). The blood-myocardium sharpness is also significantly higher in

XD-MC-SIMBA compared to SIMBA (p = 0.0002), but neither compared to XD-SIMBA

(p = 0.03) nor compared to FRF (p = 0.23). The blood-myocardium contrast ratio does not

show significant differences among the methods (Fig 4; Table 1).

Analysis of the coronary arteries (Fig 4) indicates a trend for a higher average total visible

vessel length in XD-MC-SIMBA, for LM+LAD and RCA compared to SIMBA and

XD-SIMBA, although this was not found to be statistically significant. The vessel lengths are

the highest for FRF. Computation of the sharpness for the first proximal 4 cm of the RCA were

higher for XD-MC-SIMBA in the first 4 cm compared to SIMBA and XD-SIMBA, while not
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Fig 2. Example of the different images reconstructed from the four selected SIMBA clusters using a simple gridded

reconstruction (SIMBA), a CS reconstruction for which the SIMBA clustering is a dimension of sparsity (XD-SIMBA), and

the same CS reconstruction extended with inter-cluster motion compensation (XD-MC-SIMBA). The data shown are from a

patient with tetralogy of Fallot (M, 36 years). The indication for the ferumoxytol-enhanced scan was a transannular patch repair.

https://doi.org/10.1371/journal.pone.0304612.g002
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statistically significant. FRF gives the highest RCA sharpness. Sharpness measures of the LAD

are very similar between SIMBA and XD-MC-SIMBA while lower for XD-SIMBA and FRF,

even though not statistically significant. Only in 2 and 3 cases the left and right coronary sys-

tems respectively were not visible, but this was the case for all SIMBA reconstructions as the

resolution was not high enough to see such small vessels. In 2 additional cases, FRF resulted in

lower visibility of the LAD. In 1 case the RCA was only visible with FRF (Table 2).

Fig 3. Example (also shown in Fig 2) of a patient after repair of tetralogy of Fallot and zoomed-in view of the aortic valve. The coaptation area of the

aortic leaflet (arrow) is more clearly visible in XD-MC-SIMBA and FRF. In this example, XD-MC-SIMBA has a much higher assigned image quality score,

even compared to FRF. When looking at the coronary reformat, the distal portions of the left anterior descending (LAD) and left circumflex (LCX) coronary

arteries are only depicted in XD-MC-SIMBA and FRF, and the proximal right coronary artery (RCA) is also better delineated in XD-MC-SIMBA, even

compared to FRF. Abbreviations: RCA, right coronary artery; LM, left main coronary artery; LAD, left anterior descending.

https://doi.org/10.1371/journal.pone.0304612.g003
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For the SIMBA reconstructions, both RCA and LM coronary ostia were visible in the same

cases, while SIMBA and XD-SIMBA show lower counts of visible proximal and distal portions

of the RCA and LAD coronary arteries, compared to SIMBA. For the FRF reconstruction, an

additional RCA vessel can be observed, compared to SIMBA, while there two less visible LAD

vessels.

Fig 4. Quantitative image analysis metrics for the 3D gridded reconstruction (SIMBA) in red, the motion-resolved reconstruction (XD-SIMBA) in purple,

the motion-resolved reconstruction with inter-cluster motion compensation (XD-MC-SIMBA) in blue, and a resting phase from the 5D free-running

reconstruction (FRF) in green. Analysis of the LAD and RCA coronary arteries comprises the total visible vessel length, and the sharpness of the first proximal

4 cm. All results are shown using box plots, where the “x” indicates the mean values and the solid line the median values. Differences that are statistically

significant are indicated by an asterisk (*) for p<0.0125. When looking at the relative percentage changes in image quality scores (IQS), overall XD-SIMBA

results in a decrease in image quality score compared to SIMBA. Conversely, XD-MC-SIMBA improves the image quality compared to both SIMBA and

XD-SIMBA. For FRF, there is also an improvement compared to both SIMBA and XD-SIMBA, but a slight worsening in score compared to XD-MC-SIMBA.

Abbreviations: LM+LAD, left main+left anterior descending; RCA, right coronary artery.

https://doi.org/10.1371/journal.pone.0304612.g004

Table 1. Summary of all metrics values (mean standard deviation) for the different reconstructions, with the corresponding statistical analysis (p-values) using

one-way analysis of variance (ANOVA).

METRICS RECONSTRUCTION ALGORITHM p-value

SIMBA XD-SIMBA XD-MC-SIMBA FRF

Lung-liver sharpness 1.54±0.45 1.77±0.57 2.05±0.63 2.08±0.70 0.008

Blood-myocardium sharpness 1.60±0.40 1.70±0.56 1.96±0.65 2.17±0.60 0.003

Contrast ratio (blood to myocardium) 2.35±0.45 2.21±0.50 2.40±0.52 2.15±0.67 0.416

RCA visible length (cm) 6.14±3.31 5.39±2.99 6.31±3.37 6.25±2.85 0.771

RCA proximal sharpness (%) 38.8±4.93 38.0±6.12 39.49±5.05 42.2±7.54 0.445

LM+LAD visible length (cm) 6.12±2.45 6.64±2.73 7.79±3.03 7.42±3.58 0.265

LAD proximal sharpness (%) 45.1±7.22 41.4±6.03 44.5±5.52 42.9±5.46 0.337

https://doi.org/10.1371/journal.pone.0304612.t001

PLOS ONE Similarity-driven motion-resolved reconstruction for ferumoxytol-enhanced whole-heart MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0304612 June 13, 2024 10 / 20

https://doi.org/10.1371/journal.pone.0304612.g004
https://doi.org/10.1371/journal.pone.0304612.t001
https://doi.org/10.1371/journal.pone.0304612


The IQS comparison (Fig 4) demonstrates how XD-SIMBA resulted in a decrease in IQS

(-18±40%) when compared to SIMBA for 19 out of 24 cases. Conversely, XD-MC-SIMBA led

to an improved image quality (+103±154%) in 18 out of 24 cases. For FRF there was an

increase in IQS compared to both SIMBA (+49±88%) and XD-SIMBA (145±355%), but a

slight decrease compared to XD-MC-SIMBA (-9±42%).

Focusing on the depiction of specific anatomical features, such as the papillary muscles and

coronary vessels, XD-MC-SIMBA results in sharper images (Fig 5). Moreover, the traceable

length of both left and right coronary vessels increases, making even more distal portions of

the coronaries visible using to XD-MC-SIMBA. The FRF image does not provide equally high

vessel conspicuity and sharpness as XD-MC-SIMBA (RCA sharpness: XD-MC-SIMBA 42.8%

vs. FRF 40.4%).

In the case of pediatric patients, the anatomical structures are much smaller compared to

those of the adults and the visualization of the coronary arteries is more challenging (Fig 6).

Nonetheless, both XD-SIMBA and XD-MC-SIMBA allow a better visualization of both right

and left coronary arteries, with longer traceable lengths, and improved vessel conspicuity, par-

ticularly for the more distal segments, even compared to FRF. However, the myocardium and

papillary muscles are better visualized with FRF.

A summary of all image quality metrics for each figure showed in the paper can be found in

the Supporting Information (S4 Fig).

Discussion

The SIMBA reconstruction was proposed as an effective method to suppress adverse effects of

respiratory and cardiac motion in 3D free-running MRI, without an explicit extraction of

physiological signals. In this work, we developed a new reconstruction (XD-MC-SIMBA) that

further exploits the inherent abundance of information from a free-running acquisition by

using the SIMBA clustering as a new dimension of sparsity for CS reconstruction. Without the

inter-cluster motion compensation, XD-SIMBA is not able to achieve good image quality,

because the anatomical state depicted in each cluster cannot be predicted. This method was

refined with non-rigid inter-cluster deformation fields to further promote sparsity without any

constraint on the selection or reordering of the clusters and improve the image quality.

Moreover, the XD-SIMBA and XD-MC-SIMBA reconstructions exploit 41% of the

acquired data compared to only 12% of the data for SIMBA.

In terms of image quality metrics, our results suggest improved sharpness and coronary vis-

ibility for XD-MC-SIMBA, together with higher assigned IQS, relative to SIMBA. Compared

to the 5D free-running FRF reconstruction, we documented comparable image quality, and in

some instances even improved visibility and sharpness of coronary vessels. Conversely,

XD-SIMBA resulted in an overall inferior image quality. This result can be explained with two

Table 2. Count of visible ostia, visible proximal and distal portions of the RCA and LAD for all analyzed cases. Reported scores are from all 24 cases.

METRICS RECONSTRUCTION ALGORITHM

SIMBA XD-SIMBA XD-MC-SIMBA FRF

Visible RCA ostium 21 21 21 22

Visible RCA proximal portion 18 17 18 20

Visible RCA distal portion 4 4 7 7

Visible LM ostium 22 22 22 22

Visible LAD proximal portion 22 22 22 20

Visible LAD distal portion 6 7 8 10

https://doi.org/10.1371/journal.pone.0304612.t002
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main contributors. On the one hand, the motion deformation between adjacent clusters can

be significant (e.g., systolic clusters close to diastolic clusters), and thus performing a total vari-

ation regularization is ineffective without the addition of inter-cluster motion compensation.

On the other hand, to fulfill the sparsity condition in XD-SIMBA, the choice and ordering of

Fig 5. 23-year-old male patient post Fontan procedure, with a right atrial isomerism. In the coronal view, the RCA is

clearly visible (yellow arrow), and sharper for the XD-SIMBA and XD-MC-SIMBA reconstructions. Moreover, the papillary

muscles (red arrow) are better delineated for XD-MC-SIMBA. This is observed also in the axial view (yellow arrow). When

looking at the coronary reformats, the more distal segments of the RCA, LAD and LCX can be visualized in the

XD-MC-SIMBA reconstruction (red arrows). Also for FRF there is a very good depiction of the cardiac anatomy, while only

the coronary vessels seem less visible, compared to XD-MC-SIMBA. Abbreviations: RCA, right coronary artery; LAD, left

anterior descending; LCX: left circumflex.

https://doi.org/10.1371/journal.pone.0304612.g005
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clusters become crucial elements for a successful image reconstruction. Moreover, because of

the high variability of adjacent SIMBA clusters across subjects, keeping the same regularization

factor may have no undesired effects for similar cluster images, but it may cause sever blur for

very different images. The optimization of the regularization factor is one of the most critical

steps in CS reconstructions and requires accurate tuning. Previous publications reported an

empirical optimization based on a visual image quality comparison [17, 34], which was also

done in this work. Moreover, in Feng et al. [17], a series of reconstructions with different regu-

larization factors was reported, showing how extensive regularization produces compression

artifacts while insufficient regularization fails to adequately remove the undersampling arti-

facts. The performance of XD-SIMBA was comparable to SIMBA in only a few cases, which

means that depending on the physiological states selected with SIMBA and the clusters’ order,

we may have to tune λ for each patient individually, and for pairs of images depending on

their similarity. This greatly hinders the applicability of the technique. XD-MC-SIMBA mini-

mizes differences in-between images from adjacent clusters, and hence the dependency on λ is

reduced.

Similar to the work of Correia et al. [35] and of Bustin et al. [36] integrating an inter-bin, or

inter-cluster in our case, non-rigid registration inside an iterative reconstruction framework

Fig 6. 2-year-old female patient with Kawasaki disease. The yellow bar (first image on the left in the sagittal view) indicates

the scale after the zoom around the heart (heart diameter<10cm). In the axial view, the right atrial wall is sharper for

XD-SIMBA and XD-MC-SIMBA, compared to SIMBA (yellow arrow), and so are the papillary muscles in the left ventricle

(red arrow). In the sagittal view, the yellow arrow indicates the LAD, while the green arrow indicates the left ventricular wall,

which is sharper in FRF. In the coronal views, the papillary muscles (yellow arrow) are sharper compared in XD-MC-SIMBA,

compared to both SIMBA and XD-SIMBA. For FRF, the image quality is good in terms of delineation of big anatomical

features (e.g. papillary muscles, septal wall), but small features such as the coronary vessels are blurrier. Abbreviations: RCA,

right coronary artery; LM, left main coronary artery; LAD, left anterior descending.

https://doi.org/10.1371/journal.pone.0304612.g006
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reduced the appearance of motion artifacts. However, we did not correct for residual intra-bin

(or intra-cluster) motion. With the current approach to the SIMBA clustering, we clustered

data according to similarity by only putting a constraint on the maximal number of clusters,

meaning that two cardiac phases that are anatomically similar (e.g., same ventricular size) may

be grouped together, although small features (e.g., the valve cusps) may not be identical. By

using self-navigation signals in combination with autofocusing [37, 38], we may also correct

for intra-cluster motion prior to the CS reconstruction. Another solution would entail the inte-

gration of intra-cluster deformation fields into the iterative CS reconstruction.

Although motion-resolved compressed sensing reconstructions should minimize temporal

blurring in the case of large inter-frame (inter-cluster in this case) motion, the addition of a

temporal regularization supports de-noising. Consequently, the images may appear filtered,

with the risk of having anatomical contours less defined. As described in other publications,

the blurring in CS is due to this denoising property and can render images non-diagnostic for

high undersampling factors combined with a wrong choice of regularization parameters [39].

As an alternative to CS, exploiting the inherent redundancy in the anatomical information

along the clustering dimension by using a patch-based regularization may be an interesting

option [36, 40–42]. Assuming that each 3D volume can be represented in terms of a redundant

dictionary of 3D patches, the regularization could be reformulated to include a self-similarity

matrix built on these extracted patches. Thanks to this sparser image representation, we could

extend our algorithm to consider also highly undersampled images (i.e. reconstructed from

very small clusters of data) and increase even further our data efficiency, without introducing

artifacts [43].

Having a motion-resolved CS reconstruction with inter-cluster motion compensation con-

siderably increased the computation time, going from a few minutes of reconstruction to well

above three hours. The goal of this work was not to improve the performance in terms of com-

putation time, but to push the limits of the reconstruction framework by using the redundancy

of information shared among clusters and obtain the best possible image quality. Strategies to

decrease the total computation time are needed if we want to allow better clinical translation

of our technique. Reducing the number of ADMM iterations, performing a coil compression,

and optimizing the code via parallel processing or conversion of the code to a more efficient

programming language (e.g. C++) are all options that we will investigate to speed up computa-

tions and be able to perform our reconstruction inline at the scanner.

One of the main limitations lies in the number of clusters chosen for the reconstruction

and in the criterion used for their selection. Currently, we used the size of the clusters, i.e., the

amount of data used for the gridded image reconstruction, to select the four most populated

clusters. These more populated clusters result in images with higher SNR and consequently

guarantee a good performance of the registration algorithm. Moreover, selecting the four most

populated clusters allowed us to have uniform reconstruction parameters and comparable

reconstruction times for all subjects. Having considered these arguments, we could argue that

choosing a fixed number of four clusters may not be optimal for all cases. The SIMBA cluster-

ing allows in a very fast and data-driven way to select a resting phase of the heart, while at the

same time discarding bulk movement. In the future, we will consider the implementation of a

dynamic and automated way to select the clusters, by computing an image quality metric com-

bined with the evaluation of the quality of the registration to have an individually optimized

number of clusters.

With respect to the image quality metric, we chose an automated score assignment to evalu-

ate the relative increase or decrease in image quality between the different reconstruction tech-

niques. Piccini et al. claim that this algorithm can differentiate image quality of the same

dataset reconstructed with different techniques [32]. In our case, it allowed for an automated,
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fast, and unbiased evaluation of all 3D images to compare different reconstruction techniques.

We observed an increase in scores in 18 out of 24 cases with XD-MC-SIMBA, while image

quality seemed equally improved in the other 6 cases by visual inspection. For 5 out of these 6

cases the scores differ by only 0.5 or less which is reported to be not perceivable by human

observers [32].

One of the advantages of the SIMBA technique is the fact that it does not target a specific

physiological phase, hence it is independent of a precise extraction of a clean physiological sig-

nal, where specific assumptions on the timings and frequencies of the respiratory and heart

rates are imposed. SIMBA overcomes this by directly targeting data similarity, hence moving

towards a data selection that is less affected by subject-specific physiological variabilities. In

Heerfordt et al. [19] the type of data selected in each cluster was extensively analyzed and also

compared to the 5D image reconstruction [14]. It was observed that the most populated cluster

preferentially targets a diastolic end-expiratory phase, yet the anatomical sharpness was not

adversely affected in rare cases where the algorithm chose end-systolic phases instead. In this

work, we considered the improvement of image quality solely from an image reconstruction

point of view, without questioning the data selection. When comparing our reconstruction to

a resting phase from the 5D free-running reconstruction, we are able to get similar to better

image quality at a lower computational expense, especially when looking at fine structures

such as the coronary arteries, which may explain the lower assigned image quality scores.

However, XD-MC-SIMBA still does not provide us with the functional dynamic information

of FRF, which is of high diagnostic impact when considering wall motion abnormalities, for

example. In future work we will develop a precise extraction of end-diastolic and end-systolic

images, so that we could use this reconstruction framework also for the computation of ejec-

tion fractions. We plan to achieve this by improving the dimensionality reduction and cluster-

ing steps to have a better understanding of the relationship between these two data analysis

steps and the underlying physiology. This reconstruction would be executable in smaller

computational times than a 5D dynamic reconstruction [14], and would not require con-

straints on the amount of data per cluster, as opposed to equally populated bins in the 5D

reconstruction [14], minimizing residual intra-cluster motion.

Additionally, each SIMBA cluster contains all the readouts from the selected interleaves.

The current SIMBA clustering is thus greatly affected by the temporal sampling of the SI read-

outs and blurring of cardiac phases could occur if the sampling rate is not high enough com-

pared to the heart rate. A prospective study in which protocols with different sampling

frequencies of the SI readouts or with signals acquired at each k-space line could provide more

information about the impact of the input on the performance of the SIMBA clustering and

consequently on the final image quality.

In this study we focused on ferumoxytol-enhanced free-running CMRA. The use of this

iron-based contrast agent enables higher spatial resolution, excellent anatomical definition,

and a more accurate evaluation of the origin and course of coronary arteries, even in young

patients with CHD [21, 44–46]. In this context, our proposed reconstruction framework mini-

mized the effects of motion artefacts on image quality without making assumptions about the

type of motion and its frequency range, resulting in a fully automated and patient-specific

technique. This is particularly significant when considering pediatric CHD patients, as irregu-

lar respiratory rates and arrhythmia can make the CMR examination non-diagnostic.

This work has limitations. First, the semantic meaning, in terms of cardiac and respiratory

phases, of the SIMBA clusters is unknown before image reconstruction, and cannot be con-

trolled. Moreover, even once the images are obtained, we can only guess where these states fall

within the respiratory and cardiac cycles. By not having control over this, the motion between

neighboring clusters might be challenging to compensate for. Furthermore, in this work we
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only consider the largest cluster, which may not yield the ideal anatomical state to visualize the

coronary arteries. Finally, our technique is still addressing the reconstruction of data with

quite low undersampling factors (below 5.4), which leaves the unexplored potential to address

the reconstruction of datasets with much higher undersampling factors, and resultant potential

scan time reduction.

Future work should focus on studying the performance of our proposed technique in

patients with highly irregular breathing and heartbeat patterns. Additionally, we should also

apply it for the reconstruction of datasets acquired with slow infusion of gadolinium [47], and

extend our proposed technique to non-contrast CMRA, such as bSSFP with native contrast.

Conclusion

We successfully implemented a new reconstruction framework (XD-MC-SIMBA) for the

effective suppression of respiratory and cardiac motion artifacts in free-running acquisitions.

This technique improves data efficiency compared to the original SIMBA method without

requiring a reordering of the data according to physiological cycles, which is a novel finding

compared to other published motion-resolved reconstructions. We showed that SIMBA clus-

ters can be considered as a new dynamic dimension in a CS reconstruction, exploiting the

redundant information. Moreover, we maximized sparsity in the clustering dimension by add-

ing an inter-cluster motion compensation. Compared to the original approach,

XD-MC-SIMBA resulted in a significantly improved image quality and coronary artery visibil-

ity of ferumoxytol-enhanced cardiac images in patients with CHD. There was no significant

difference in image quality metrics between XD-MC-SIMBA and FRF, with XD-MC-SIMBA

allowing for a better visualization of finer anatomical features and lower computational times.

Future work will aim to further validate this technique in non-contrast-enhanced whole-heart

free-running CMRA.

Supporting information

S1 Fig. Reconstruction results for XD-SIMBA and XD-MC-SIMBA, for four regularization

parameters λ. For λ = 0.003 and λ = 0.03 we do not perceive any significant difference in

image quality or image sharpness by comparing images of the same reconstruction

(XD-SIMBA or XD-MC-SIMBA) or images of different reconstructions (XD-SIMBA vs.

XD-MC-SIMBA). Moreover, for these two λ values we do not see big improvements compared

to the original SIMBA either. However, for λ = 0.3, the final value chosen in our work, we have

a significant reduction in noise for XD-MC-SIMBA compared to both SIMBA and

XD-SIMBA, without compromising on sharpness or image conspicuity (e.g. the valve leaflets

are better visible in XD-MC-SIMBA). Conversely, for XD-SIMBA several features (e.g. the

liver dome and the papillary muscles) are blurrier for λ = 0.3, which means that for XD-SIMBA

we should use λ = 0.03. Finally, a too high regularization term λ = 3 blurs the cardiac anatomy,

in both XD-SIMBA and XD-MC-SIMBA and creates an overly regularized image in

XD-MC-SIMBA.

(DOCX)

S2 Fig. Analysis of all cluster sizes and shapes for all subjects. To be noted that subjects have

different number of clusters. We report the following: N = 10 for 1 subject, N = 11 for 2 sub-

jects, N = 12 for 1 subject, N = 13 for 5 subjects and N = 14 for the remaining 15 subjects. A.

The size, corresponding to the number of readouts, of each cluster, ordered by largest to small-

est. B. The sparsity, which is equal to the mean of the within-cluster point to point distances.

The higher this value the more sparsely distributed the data in the cluster. C. The uniformity
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of the data in k-space, calculated as the distance between readouts and their four closest neigh-

bors, on a unit sphere. We can observe how going down with the cluster’s size, the sparsity

increases, meaning that the data in the clusters is more sparsely distributed. However, the very

similar values of uniformity in k-space indicate that the factor contributing to this sparsity in

the clusters is motion- and not trajectory-dependent artefacts. This result is in line with our

hypothesis that the largest cluster targets more precisely a resting phase of the heart, while the

smaller the cluster the more data in slightly different anatomical configurations is clustered

together.

(DOCX)

S3 Fig. Examples of image registration with NiftyReg. A. Gridded images from one SIMBA

cluster: the reference and moving images are very similar, with a slight change in the respira-

tory liver position (as visible in the difference image). This small deformation is completely

corrected after image registration using NiftyReg, as visible in the image difference in which

only residual noise is present. The magnitude of the computed deformation field is also shown

as a colormap, highlighting the highest deformation at the level of the lung-liver interface. B.

Example of gridded images from another SIMBA cluster in which the reference and moving

images are in very different cardiac phases. After image registration we are able to correct for

these large differences. The residual uncorrected features, as visible in the image difference, are

mostly due to differences in contrast (e.g. blood flow dephasing artefacts in systolic phases).

The magnitude of the deformation field shows the highest deformation at the level of the

heart, mostly at the location of the pulmonary artery and the left ventricle.

(DOCX)

S4 Fig. Summary of all image quality metrics for each figure in the paper.

(DOCX)

S1 Appendix. Description of the deep neural network used for the automated assignment

of image quality scores (IQS). The algorithm is the one published by Piccini et al., consisting

of a deep convolutional neural network (A) trained to reproduce the grading performance of

an expert observer. This image quality assessment algorithm (IQ-DCNN) was trained, opti-

mized and cross-validated on a database of 324 3D whole-heart cardiac MRI scans. The final

architecture was tested on 100 scans. All scans were performed on a 1.5-T clinical MR scanner

(MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany) using a research free-breath-

ing and respiratory self-navigated ECG-triggered 3D radial bSSFP sequence. Readers graded

each image using a diagnostic quality scale ranging from 0 (poor quality) to 4 (excellent qual-

ity), in steps of 0.5 according to the level of artefact, blurring, vessel sharpness and noise. The

authors showed that the IQ-DCNN algorithm performed within the range of human intra-

and inter-observer agreement. When applied during an iterative compressed sensing recon-

struction, it correlated with the cost function at each iteration. Moreover, they showed that the

final grade is mostly determined by specific anatomical features in the volume, such as the

sharpness of small vessels, and not by general blurriness. These findings motivated the use of

the IQ-DCNN algorithm to assess different reconstruction techniques, using compressed sens-

ing, as it proved to be able to identify improvements in image quality.
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